二次函数练习题(1)

合集下载

二次函数的应用例(练习)题1ppt

二次函数的应用例(练习)题1ppt
数学九年级下:2.7《最大面 积是多少》(第1课时)二次函 数的应用例(练习)题课件ppt
九年级数学(下)第二章 《二次函数》
§2、7最大面积是多少 二次函数的应用
想一想P62
何时面积最大
M D ┐ A
40cm
如图,在一个直角三角形的内部作一个 矩形ABCD,其中AB和AD分别在两直角边上.
30cm
bcm
30cm
想一想P62
何时面积最大
如图,在一个直角三角形的内部作一个矩 形ABCD,其中AB和AD分别在两直角边上.
解 : 1.设AB bcm,
xcm
30cm
(1).如果设矩形的一边AD=xcm, 那么AB边的长度如何表示?
M D ┐bcm
40cm
C
A
B
N
4 易得b x 40. 3
1.理解问题; 2.分析问题中的变量和常量,以及它们之间的关系 3.用数学的方式表示出它们之间的关系; 4.做数学求解;
5.检验结果的合理性,拓展等.
同学们再见
作业 P63页习题2.8 第1、2题.
结束寄语 不知道并不可怕和
有害,任何人都不可能 什么都知道,可怕的和 有害的是不知道而伪 装知道.
D ┐ xcm
40cm
C
3 易得b x 30. 4
A
B
N
想一想P62
何时面积最大
如图,在一个直角三角形的内部作一个矩 形ABCD,其中AB和AD分别在两直角边上.
(2).设矩形的面积为ym2,当x取何值时,y M 的最大值是多少?
3 2. y xb x x 30 4
C N
B
(1).设矩形的一边AB=xcm,那么AD边的长度如 何表示? (2).设矩形的面积为ym2,当x取何值时,y的最大 值是多少?

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

二次函数练习题及答案

二次函数练习题及答案

二次函数练习题及答案一、选择题1.下列函数中,是二次函数的是()A. y=3x+2B. y=x^3+2xC. y=x^2-5x+6D. y=2^x2.二次函数y=ax^2+bx+c的图象是()A. 一条直线B. 一个抛物线C. 一个圆D. 一个双曲线3.已知二次函数f(x)=ax^2+bx+c的对称轴方程为x=2,则a、b和c 的值分别是()A. a=1, b=0, c=-4B. a=0, b=1, c=-4C. a=1, b=0, c=4D. a=0, b=1, c=4二、填空题1. 已知二次函数f(x)=2x^2+4x+1,求其对称轴的方程:________2. 二次函数y=x^2-4x+3的顶点坐标为:________3. 已知二次函数f(x)=ax^2+12x+3的图象与y轴交于点(0, -3),则a 的值为:________三、解答题1. 某商品的生产成本y(万元)与产量x(万件)之间的关系为二次函数y=2x^2-8x+20。

求:a) 生产2000件商品时的生产成本;b) 使生产成本最小的产量。

2. 已知二次函数y=ax^2+bx+c的图象顶点坐标为(-3, 4),且经过点(2, -2)。

求a、b和c的值。

答案及解析:一、选择题1. 答案:C解析:二次函数的标准形式为y=ax^2+bx+c,其中a不等于0。

只有选项C满足二次函数的形式。

2. 答案:B解析:二次函数的图象为一个抛物线。

3. 答案:A解析:对称轴方程的一般形式为x=-b/2a。

根据题目中对称轴方程为x=2,可以得出-b/2a=2,解得b=0和a=1。

由于对称轴方程不包含c,因此c的值可以是任意实数。

二、填空题1. 答案:x= -b/2a = -4/(2*2) = -1解析:对称轴方程的一般形式为x=-b/2a。

2. 答案:(-2, 7)解析:二次函数的顶点坐标为(-b/2a, f(-b/2a))。

3. 答案:a=-3解析:由题意可得,当x=0时,f(x)=y=-3。

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。

(完整版)初中数学二次函数专题经典练习题(附答案)

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( )(A) 没有交点.(B) 只有一个交点.(C) 有且只有两个交点.(D) 有且只有三个交点.2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( )(A)2 .(B)1 .(C)3 .(D)4 .3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 .24.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( )(A) 没有交点.(B) 有两个交点,都在x 轴的正半轴.(C) 有两个交点,都在x 轴的负半轴.(D) 一个在x 轴的正半轴,另一个在x 轴的负半轴.5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a(A) x= .(B) x=2.(C) x=4.(D) x=3.b6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( )7.二次函数y=2x2-4x+5 的最小值是_____ .28.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ .9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ .10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:801001101008060为获得最大利润,销售商应将该品牌电饭锅定价为元.11.函数y=ax 2-(a-3)x+ 1 的图象与x 轴只有一个交点,那么 a 的值和交点坐标分别为12.某涵洞是一抛物线形, 它的截面如图3 所示, 现测得水面宽AB 1.6m, 涵洞顶点O 到水面的距离为2.4m, 在图中的直角坐标系内, 涵洞所在抛物线的解析式为13.(本题8 分)已知抛物线y=x2-2x-2 的顶点为A,与y 轴的交点为B,求过A、B 两点的直线的解析式.14.(本题8分)抛物线y=ax2+2ax+a2+2的一部分如图3所示,求该抛物线在y 轴左侧与x 轴的交点坐标.15.(本题8 分)如图4,已知抛物线y=ax2+bx+c(a> 0)的顶点是C(0,1),直线l :y=-ax+3 与这条抛物线交于P、Q两点,且点P 到x 轴的距离为2.(1)求抛物线和直线l 的解析式;(2)求点Q的坐标.16.(本题8 分)工艺商场以每件155 元购进一批工艺品.若按每件200 元销售,工艺商场每天可售出该工艺品100 件;若每件工艺品降价 1 元,则每天可多售出该工艺品 4 件.问每件工艺品降价多少元出售,每天获得的利润最大?获得的最大利润是多少元?17.(本题10 分))杭州休博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施.若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第 1个月到第x 个月的维修保养费用累计为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元) ,g也是关于x 的二次函数.(1) 若维修保养费用第 1 个月为 2 万元,第 2 个月为 4 万元.求y 关于x 的解析式;(2) 求纯收益g 关于x 的解析式;(3) 问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?18(本题10分)如图所示,图4- ①是一座抛物线型拱桥在建造过程中装模时的设计示意图,拱高为30m,支柱A3B3=50m,5 根支柱A1B1、A2B2、A3B3、A4B4、A5B5 之间的距离均为15m,B1B5∥ A1A5,将抛物线放在图4- ②所示的直角坐标系中.(1) 直接写出图4- ②中点B1、B3、B5的坐标;(2) 求图4- ②中抛物线的函数表达式;(3) 求图4- ①中支柱A2B2、A4B4 的长度.B319、如图5,已知A(2,2),B(3,0).动点P( m,0)在线段OB上移动,过点P作直线l 与x 轴垂直.(1) 设△ OAB中位于直线l 左侧部分的面积为S,写出S与m之间的函数关系式;(2) 试问是否存在点P,使直线l 平分△ OAB的面积?若有,求出点P 的坐标;若无,请说明理由.更多学习方法和中高考复习资料,免费下载,扫一扫关注微信:答案:一、1.B 2 .D 3 .C 4 .D 5 .D 6.B二、 7.3 8 .y =- x +3x +4 9 .- 2< x <2 10 .1301 115 211. a =0, ( ,0);a =1,(-1,0);a =9,( ,0) 12 . y x 23 3 413.抛物线的顶点为 (1,- 3),点 B 的坐标为 (0,- 2).直线 AB 的解析式为 y =-x -2 14.依题意可知抛物线经过点 (1,0) .于是 a + 2a + a 2+ 2=0,解得 a 1=-1,a 2=-2.当 a = -1 或 a =-2 时,求得抛物线与 x 轴的另一交点坐标均为 ( -3,0)2 15. (1) 依题意可知 b =0,c =1,且当 y =2 时,ax 2+1=2①,- ax +3=2②.由①、②解得 a =1, x =1.故抛物线与直线的解析式分别为: y =x 2+ 1,y =- x +3;(2) Q ( -2,5)216.设降价 x 元时,获得的利润为 y 元.则依意可得 y =(45-x )(100 +4x )= -4x 2+80x +4500, 即 y =-4(x -10)2+4900.故当 x =10时, y 最大=4900(元)2217. (1) 将(1,2)和(2,6) 代入 y =ax 2+bx ,求得 a =b =1.故 y =x 2+x ;(2) g =33x -150-y , 22即 g =-x 2+32x -150;(3) 因 y =-(x -16) 2+106,所以设施开放后第 16 个月,纯收益最大.令 g =0,得- x 2+ 32 x - 150=0.解得 x =16± 106 ,x ≈16- 10.3=5.7( 舍去 26.3) .当 x =5 时, g <0, 当 x =6 时, g >0,故 6 个月后,能收回投资18.(1) B 1( 30,0), B 3 (0,30) , B 5 (30,0) ;(2)设抛物线的表达式为 y a (x 30)(x 30) ,把 B 3 (0,30) 代入得 y a(0 30)(0 30) 30.1∴ a .30∵所求抛物线的表达式为: y3)∵ B 4 点的横坐标为 15, 1 45∴B 4 的纵坐标 y 4 (15 30)(15 30) .4 30 2∵ A 3B 3 50 ,拱高为 30,1 (x 30)(x 30) . 30∴立柱A4B445 8520 (m) .22由对称性知:85A2B2 A4B4 (m) .2四、1 2 1 119.(1)当0≤m≤2时,S= m2;当2<m≤3时,S= ×3×2-(3 -m)(-2m+6)= -m22 2 2+6m-6.(2)若有这样的P点,使直线l 平分△ OAB的面积,很显然0<m<2.由于△ OAB3 1 3的面积等于3,故当l 平分△ OAB面积时,S= .∴ m2.解得m= 3 .故存在这样2 2 2的P点,使l 平分△ OAB的面积.且点P的坐标为(3 ,0).。

二次函数基础练习题大全(含答案)

二次函数基础练习题大全(含答案)
3
6、二次函数 y a(x 4)2 ,当自变量 x 由 0 增加到 2 时,函数值增加 6.(1)求出此函数关系式.
(2)说明函数值 y 随 x 值的变化情况.
7、已知抛物线 y x 2 (k 2)x 9 的顶点在坐标轴上,求 k 的值.
练习五 y ax h2 k 的图象与性质
3
3、请你写出函数 y x 12 和 y x 2 1 具有的共同性质(至少 2 个).
4、二次函数 y ax h2 的图象如图:已知 a 1 ,OA=OC,试求该抛物
2
线的解析式.
5、抛物线 y 3(x 3)2 与 x 轴交点为 A,与 y 轴交点为 B,求 A、B 两点坐标及⊿AOB 的面积.
2
2
平移 3 个单位,再向
2 个单位得到.
5、 已知抛物线的顶点坐标为(2,1) ,且抛物线过点(3, 0) ,则抛物线的关系式是
平移
6、 如图所示,抛物线顶点坐标是 P(1,3),则函数 y 随自变量 x 的增大而减小的 x 的取值范围是 () A、x>3 B、x<3 C、x>1 D、x<1
7、已知函数 y 3x 22 9 .
8、已知函数 y x 12 4 .
(1) 指出函数图象的开口方向、对称轴和顶点坐标; (2) 若图象与 x 轴的交点为 A、B 和与 y 轴的交点 C,求△ABC 的面积; (3) 指出该函数的最值和增减性; (4) 若将该抛物线先向右平移 2 个单位,在向上平移 4 个单位,求得到的抛物线的解析式; (5) 该抛物线经过怎样的平移能经过原点. (6) 画出该函数图象,并根据图象回答:当 x 取何值时,函数值大于 0;当 x 取何值时,函数值

二次函数基础题(含答案)

二次函数基础练习练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离5(米)与时间1(秒)的数据如下表:时间短秒)1234• • •距离5(米)281832• • •写出用1表示5的函数关系式.2、下列函数:① g = \:'3x2 ;② y — x2 — x 1 + x ;③ y = x2 x2 -p x— 4 ;④y = — + x;⑤y = x 1_x,其中是二次函数的是,其中a= ,x 2b =,c =3、当m时,函数y= m-2 x 2 + 3x—5 (m为常数)是关于x的二次函数4、当m ______ 时,函数y = m2 + m x m厂2m-1是关于x的二次函数5、当m ______ 时,函数y = m-4 x m 2-5 m+ 6 +3x是关于x的二次函数6、若点A (2, m)在函数y = x 2 -1的图像上,则A点的坐标是_________ .7、在圆的面积公式S二n「2中,5与r的关系是()人、一次函数关系8、正比例函数关系1反比例函数关系口、二次函数关系8、正方形铁片边长为15^^,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.⑴求盒子的表面积5552)与小正方形边长x(cm)之间的函数关系式;⑵当小正方形边长为3cm时,求盒子的表面机9、如图,矩形的长是4^^,宽是3^^,如果将长和宽都增加x cm, 那么面积增加ycm2,①求y与x之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函数y = ax 2 + c(a丰0),当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为2米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽人8为*米,则猪舍的总面积$(米2)与*有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽人8的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二函数y = ax2的图象与性质1、填空:(1)抛物线y = 1 x2的对称轴是(或),顶点坐标是,当X 时,y随*的增大而增大,当x 时,y随*的增大而减小,当x=时,该函数有最____ 值是_________ ;(2)抛物线y = - 1 x 2的对称轴是(或),顶点坐标是________________________________ ,当x 时,"随*的增大而增大,当x 时,"随*的增大而减小,当x=时,该函数有最值是;2、对于函数y = 2 x 2下列说法:①当*取任何实数时,y的值总是正的;②x的值增大,旷的值也增大;③"随*的增大而减小;④图象关于"轴对称.其中正确的是.3、抛枷线V= -X2不具有的性质是( )A 、开口向下B 、对称轴是V 轴C 、与V 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程S 与下落时间t 满足S = 1 gt 2(g = 9.8),则s 与t 的 25、函数y = ax 2 3与y = — ax + b 的图象可能是( )6、已知函数y =mx m 2 ~m~ 4的图象是开口向下的抛物线,求m 的值.7、二次函数y = mx m 2 -i 在其图象对称轴的左侧,"随*的增大而增大,求团的值.3••一8、二次函数y = -- x 2,当x 1>x 2>0时,求匕与旷2的大小关系. 已知函数y & + 2^m 2 + m -4是关于*的二次函数,求:团为何值时,抛物线有最低点?求出这个最低点,这时*为何值时,"随*的增大而增大;团为何值时,抛物线有最大值?最大值是多少?当*为何值时,"随*的增大而减小?9、(1) 满足条件的m 的值;(2)(3)10、如果抛物线y = ax2与直线y=x — 1交于点b,2,求这条抛物线所对应的二次函数的关系式.练习三函数y=ax 2 +。

二次函数知识点及练习 (1)

二次函数考点一 二次函数的定义1.形如 的函数是二次函数;2.二次函数的一般形式: ;3. 已知:二次函数22(2)32ky k x x -=--+ ,则k 的值是 ;考点二 二次函数、图像及其性质1、二次函数图像是一条 ;2、a值探究(1) 当a >0时,图像开口 ;当a <0时,图像开口 ; (2) a 的绝对值相等,则图像形状、大小相同(3)a 的绝对值越大,图像的开口越小;a 的绝对值越小,图像的开口越大3、c 值探究:二次函数与y 轴的交点坐标( , )4、对称轴:(1)对称轴在y 轴左侧,则a 与b(2)对称轴在y 轴右侧,则a 与b 简称5、顶点坐标( )6、增减性:结合 开口 、对称轴 分析 如:7、最值:结合 开口 、顶点坐标 分析 如:8、平移:(1)首先化成顶点式 ;(2)应用左 右 ; 上 ,下 完成平移。

如:9、对称应用:(1)关于x 轴对称:(2)关于y 轴对称:考点三 二次函数常见形式图像及其性质1、2(0)y ax a =≠ 2、2(0)y ax c a =+≠ 3、2()(0)y a x h k a =-+≠ 4、2(0)y ax bx c a =++≠5、12()()(0)y a x x x x a =--≠考点三 用二次函数观点看一元二次方程1、 ∆>0 ⇔ 二次函数与X 轴有两个不同的交点坐标2、 ∆=0 ⇔ 二次函数与X 轴有一个交点坐标3、 ∆<0 ⇔ 二次函数与X 轴无交点坐标 应用举例:1、已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.2、小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面八条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->;⑥∆<0;⑦a b <;⑧ 420a b c -+>,你认为其中正确信息的个数有_____ (填序号)3、二次函数223y x x =--的图象如图所示.当y <0时,自变量x 的取值范围是考点四 实际问题和二次函数应1、小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?图2图12、某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3、某商品的进价每件为50元,现在的售价为每件60元,每星期可卖出70件,市场调查反映:如果每件的售价每涨10元(售价每件不能高于140元),那么每星期少卖5件,设每件涨价x 元(x 为10的正整数倍),每周销售量为y 件 。

二次函数基础练习题及答案

二次函数练习题(一)1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t (秒)的数据如下表:写出用t 表示s 的函数关系式.2、 下列函数:①y =()21y x x x =-+;③()224y x x x =+-;④ 21y x x =+; ⑤()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数 4、当____m =时,函数()2221mm y m m x --=+是关于x 的二次函数 5、当____m =时,函数()2564m m y m x-+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2,① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?二次函数练习题(二)-----函数2ax y =的图象与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图象关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D5、函数2ax y =与b ax y +-=的图象可能是( ) A . B . C . D . 6、已知函数24m m y mx --=的图象是开口向下的抛物线,求m 的值.t tt7、二次函数12-=mmx y 在其图象对称轴的左侧,y 随x 的增大而增大,求m 的值.8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系.9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式.-----函数c ax y +=2的图象与性质 1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 .3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .-----函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有最 值 . 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.-----()k h x a y +-=2的图象与性质 1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到. 5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1) 确定下列抛物线的开口方向、对称轴和顶点坐标;(2) 当x= 时,抛物线有最 值,是 .(3) 当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.(4) 求出该抛物线与x 轴的交点坐标及两交点间距离;(5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y . (1) 指出函数图象的开口方向、对称轴和顶点坐标;(2) 若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积;(3) 指出该函数的最值和增减性;(4) 若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式;(5) 该抛物线经过怎样的平移能经过原点.(6) 画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.二次函数练习题(六)-----c bx ax y ++=2的图象和性质1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为___ ____;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?二次函数练习题(七)-----c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为 2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是 3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么acb= 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限. 7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当y =-x 的值只能为0;其中正确的是8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( )A ()1,1--B ()1,1-C ()1,1D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如图所示,则下列选项中正确的是( ) A 、0,0>>c ab B 、0,0><c ab C 、0,0<>c ab D 、0,0<<c ab111、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个 13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点,求a 、b 、c15、试求抛物线2y ax bx c =++与x 轴两个交点间的距离(240b ac ->)二次函数练习题(八)-----确定二次函数解析式1、抛物线y=ax 2+bx+c 经过A(-1,0), B(3,0), C(0,1)三点,则a= , b= , c=2、把抛物线y=x 2+2x-3向左平移3个单位,然后向下平移2个单位,则所得的抛物线的解析式为 .3、 二次函数有最小值为1-,当0x =时,1y =,它的图象的对称轴为1x =,则函数的关系式为4、根据条件求二次函数的解析式(1)抛物线过(-1,-6)、(1,-2)和(2,3)三点(2)抛物线的顶点坐标为(-1,-1),且与y 轴交点的纵坐标为-3 (3)抛物线过(-1,0),(3,0),(1,-5)三点;(4)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,-2);5、已知二次函数的图象经过()1,1-、()2,1两点,且与x 轴仅有一个交点,求二次函数的解析式6、抛物线y=ax 2+bx+c 过点(0,-1)与点(3,2),顶点在直线y=3x-3上,a<0,求此二次函数的解析式.7、已知二次函数的图象与x 轴交于A (-2,0)、B (3,0)两点,且函数有最大值是2. (1) 求二次函数的图象的解析式;(2) 设次二次函数的顶点为P ,求△ABP 的面积.8、以x 为自变量的函数)34()12(22-+-++-=m m x m x y 中,m 为不小于零的整数,它的图象与x 轴交于点A 和B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)一次函数y=kx+b 的图象经过点A ,与这个二次函数的图象交于点C ,且ABC S ∆=10,求这个一次函数的解析式.二次函数练习题(九)-----二次函数与方程和不等式1、已知二次函数772--=x kx y 与x 轴有交点,则k 的取值范围是 .2、关于x 的一元二次方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;3、抛物线222++-=kx x y 与x 轴交点的个数为( ) A 、0 B 、1 C 、2 D 、以上都不对4、二次函数c bx ax y ++=2对于x 的任何值都恒为负值的条件是( ) A 、0,0>∆>a B 、0,0<∆>a C 、0,0>∆<a D 、0,0<∆<a5、12++=kx x y 与k x x y --=2的图象相交,若有一个交点在x 轴上,则k 为( ) A 、0 B 、-1 C 、2 D 、416、若方程02=++c bx ax 的两个根是-3和1,那么二次函数c bx ax y ++=2的图象的对称轴是直线( )A 、x =-3 B 、x =-2 C 、x =-1 D 、x =17、已知二次函数2y x px q =++的图象与x 轴只有一个公共点,坐标为()1,0-,求,p q 的值。

二次函数基础练习题大全含答案

二次函数基础练习题练习一 二次函数1、 一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s (米)与时间t写出用t 表示s 的函数关系式:2、 下列函数:① y =② ()21y x x x =-+;③ ()224y x x x =+-;④ 21y x x =+; ⑤ ()1y x x =-,其中是二次函数的是 ,其中a = ,b = ,c =3、当m 时,函数()2235y m x x =-+-(m 为常数)是关于x 的二次函数4、当____m =时,函数()2221m m y m m x --=+是关于x 的二次函数5、当____m =时,函数()2564m m y m x -+=-+3x 是关于x 的二次函数 6、若点 A ( 2, m ) 在函数 12-=x y 的图像上,则 A 点的坐标是____.7、在圆的面积公式 S =πr 2 中,s 与 r 的关系是( )A 、一次函数关系B 、正比例函数关系C 、反比例函数关系D 、二次函数关系8、正方形铁片边长为15cm ,在四个角上各剪去一个边长为x (cm )的小正方形,用余下的部分做成一个无盖的盒子.(1)求盒子的表面积S (cm 2)与小正方形边长x (cm )之间的函数关系式;(2)当小正方形边长为3cm 时,求盒子的表面积.9、如图,矩形的长是 4cm ,宽是 3cm ,如果将长和宽都增加 x cm ,那么面积增加 ycm 2, ① 求 y 与 x 之间的函数关系式.② 求当边长增加多少时,面积增加 8cm 2.10、已知二次函数),0(2≠+=a c ax y 当x=1时,y= -1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a 米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1) 如果设猪舍的宽AB 为x 米,则猪舍的总面积S (米2)与x 有怎样的函数关系?(2) 请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC 和宽AB 的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?练习二 函数2ax y =的图像与性质1、填空:(1)抛物线221x y =的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ;(2)抛物线221x y -=的对称轴是 (或 ),顶点坐标是 ,当x 时,y 随x 的增大而增大,当x 时,y 随x 的增大而减小,当x= 时,该函数有最 值是 ; 2、对于函数22x y =下列说法:①当x 取任何实数时,y 的值总是正的;②x 的值增大,y 的值也增大;③y 随x 的增大而减小;④图像关于y 轴对称.其中正确的是 .3、抛物线 y =-x 2 不具有的性质是( )A 、开口向下B 、对称轴是 y 轴C 、与 y 轴不相交D 、最高点是原点4、苹果熟了,从树上落下所经过的路程 s 与下落时间 t 满足 S =12gt 2(g =9.8),则 s 与 t 的函数图像大致是( )A B C D 5、函数2ax y =与b ax y +-=的图像可能是( )A .B .C .D . 6、已知函数24m m y mx--=的图像是开口向下的抛物线,求m 的值. 7、二次函数12-=mmx y 在其图像对称轴的左侧,y 随x 的增大而增大,求m 的值. 8、二次函数223x y -=,当x 1>x 2>0时,求y 1与y 2的大小关系. 9、已知函数()422-++=m m x m y 是关于x 的二次函数,求:(1) 满足条件的m 的值;(2) m 为何值时,抛物线有最低点?求出这个最低点,这时x 为何值时,y 随x 的增大而增大;(3) m 为何值时,抛物线有最大值?最大值是多少?当x 为何值时,y 随x 的增大而减小?10、如果抛物线2y ax =与直线1y x =-交于点(),2b ,求这条抛物线所对应的二次函数的关系式. tt tt练习三 函数c ax y +=2的图象与性质1、抛物线322--=x y 的开口 ,对称轴是 ,顶点坐标是 ,当x 时, y 随x 的增大而增大, 当x 时, y 随x 的增大而减小.2、将抛物线231x y =向下平移2个单位得到的抛物线的解析式为 ,再向上平移3个单位得到的抛物线的解析式为 ,并分别写出这两个函数的顶点坐标 、 . 3、任给一些不同的实数k ,得到不同的抛物线k x y +=2,当k 取0,1±时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是 .4、将抛物线122-=x y 向上平移4个单位后,所得的抛物线是 ,当x= 时,该抛物线有最 (填大或小)值,是 .5、已知函数2)(22+-+=x m m mx y 的图象关于y 轴对称,则m =________;6、二次函数c ax y +=2()0≠a 中,若当x 取x 1、x 2(x 1≠x 2)时,函数值相等,则当x 取x 1+x 2时,函数值等于 .练习四 函数()2h x a y -=的图象与性质 1、抛物线()2321--=x y ,顶点坐标是 ,当x 时,y 随x 的增大而减小, 函数有 最 值 . 2、试写出抛物线23x y =经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移32个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数()21+=x y 和12+=x y 具有的共同性质(至少2个).4、二次函数()2h x a y -=的图象如图:已知21=a ,OA=OC ,试求该抛物线的解析式.5、抛物线2)3(3-=x y 与x 轴交点为A ,与y 轴交点为B ,求A 、B 两点坐标及⊿AOB 的面积.6、二次函数2)4(-=x a y ,当自变量x 由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y 随x 值的变化情况.7、已知抛物线9)2(2++-=x k x y 的顶点在坐标轴上,求k 的值.练习五 ()k h x a y +-=2的图象与性质1、请写出一个二次函数以(2, 3)为顶点,且开口向上.____________.2、二次函数 y =(x -1)2+2,当 x =____时,y 有最小值.3、函数 y =12(x -1)2+3,当 x ____时,函数值 y 随 x 的增大而增大. 4、函数y=21(x+3)2-2的图象可由函数y=21x 2的图象向 平移3个单位,再向 平移2个单位得到.5、 已知抛物线的顶点坐标为()2,1,且抛物线过点()3,0,则抛物线的关系式是6、 如图所示,抛物线顶点坐标是P (1,3),则函数y 随自变量x 的增大而减小的x 的取值范围是( )A 、x>3B 、x<3C 、x>1D 、x<17、已知函数()9232+--=x y . (1)确定下列抛物线的开口方向、对称轴和顶点坐标; (2)当x= 时,抛物线有最 值,是 . (3)当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小. (4)求出该抛物线与x 轴的交点坐标及两交点间距离; (5) 求出该抛物线与y 轴的交点坐标;(6) 该函数图象可由23x y -=的图象经过怎样的平移得到的?8、已知函数()412-+=x y . (1)指出函数图象的开口方向、对称轴和顶点坐标; (2)若图象与x 轴的交点为A 、B 和与y 轴的交点C ,求△ABC 的面积; (3)指出该函数的最值和增减性; (4)若将该抛物线先向右平移2个单位,在向上平移4个单位,求得到的抛物线的解析式; (5)该抛物线经过怎样的平移能经过原点. (6)画出该函数图象,并根据图象回答:当x 取何值时,函数值大于0;当x 取何值时,函数值小于0.练习六 c bx ax y ++=2的图象和性质 1、抛物线942++=x x y 的对称轴是 .2、抛物线251222+-=x x y 的开口方向是 ,顶点坐标是 .3、试写出一个开口方向向上,对称轴为直线x=-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .4、将 y =x 2-2x +3 化成 y =a (x -h)2+k 的形式,则 y =____.5、把二次函数215322y x x =---的图象向上平移3个单位,再向右平移4个单位,则两次平移后的函数图象的关系式是6、抛物线1662--=x x y 与x 轴交点的坐标为_________;7、函数x x y +-=22有最____值,最值为_______;8、二次函数c bx x y ++=2的图象沿x 轴向左平移2个单位,再沿y 轴向上平移3个单位,得到的图象的函数解析式为122+-=x x y ,则b 与c 分别等于( )A 、6,4B 、-8,14C 、-6,6D 、-8,-149、二次函数122--=x x y 的图象在x 轴上截得的线段长为( )A 、22B 、23C 、32D 、3310、通过配方,写出下列函数的开口方向、对称轴和顶点坐标:(1)12212+-=x x y ; (2)2832-+-=x x y ; (3)4412-+-=x x y 11、把抛物线1422++-=x x y 沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由.12、求二次函数62+--=x x y 的图象与x 轴和y 轴的交点坐标13、已知一次函数的图象过抛物线223y x x =++的顶点和坐标原点1) 求一次函数的关系式;2) 判断点()2,5-是否在这个一次函数的图象上14、某商场以每台2500元进口一批彩电.如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?练习七 c bx ax y ++=2的性质1、函数2y x px q =++的图象是以()3,2为顶点的一条抛物线,这个二次函数的表达式为2、二次函数2224y mx x m m =++-的图象经过原点,则此抛物线的顶点坐标是3、如果抛物线2y ax bx c =++与y 轴交于点A (0,2),它的对称轴是1x =-,那么ac b = 4、抛物线c bx x y ++=2与x 轴的正半轴交于点A 、B 两点,与y 轴交于点C ,且线段AB 的长为1,△ABC 的面积为1,则b 的值为______.5、已知二次函数c bx ax y ++=2的图象如图所示,则a___0,b___0,c___0,ac b 42-____0;6、二次函数c bx ax y ++=2的图象如图,则直线bc ax y +=的图象不经过第 象限.7、已知二次函数2y ax bx c =++(0≠a )的图象如图所示,则下列结论:1),a b 同号;2)当1x =和3x =时,函数值相同;3)40a b +=;4)当2y =-时,x 的值只能为0;其中正确的是(第5题) (第6题) (第7题) (第10题)8、已知二次函数2224m mx x y +--=与反比例函数xm y 42+=的图象在第二象限内的一个交点的横坐标是-2,则m=9、二次函数2y x ax b =++中,若0a b +=,则它的图象必经过点( ) A ()1,1-- B ()1,1- C ()1,1 D ()1,1-10、函数b ax y +=与c bx ax y ++=2的图象如上图所示,则下列选项中正确的是( )A 、0,0>>c abB 、0,0><c abC 、0,0<>c abD 、0,0<<c ab11、已知函数c bx ax y ++=2的图象如图所示,则函数b ax y +=的图象是( )12、二次函数c bx ax y ++=2的图象如图,那么abc 、2a+b 、a+b+c 、a-b+c 这四个代数式中,值为正数的有( )A .4个B .3个C .2个D .1个13、抛物线的图角如图,则下列结论:①>0;②;③>;④<1.其中正确的结论是( ).(A )①② (B )②③ (C )②④ (D )③④14、二次函数2y ax bx c =++的最大值是3a -,且它的图象经过()1,2--,()1,6两点, 求a 、b 、c 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数练习题(1) A卷 一、选择题(每题5分,共30分) 1.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点( ) A.(-1,-1) B.(1,-1) C.(-1,1) D.(1,1) 2.若直线y=ax+b(ab≠0)不过第三象限,则抛物线y=ax2+bx的顶点所在的象限是( ) A.一 B.二 C.三 D.四 3.函数y=ax2+bx+c中,若ac<0,则它的图象与x轴的位置关系为( ) A.无交点 B.有1个交点; C.有两个交点 D.不确定 4.抛物线与x轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( ) A.y=2x2-2x-4; B.y=-2x2+2x-4; C.y=x2+x-2; D.y=2x2+2x-4 5.二次函数y=ax2+bx+c的图象如图1所示,下列五个代数式ab、ac、a-b+c、b2- 4ac、2a+b中,值大于0的个数为( ) A.5 B.4 C.3 D.2 6.二次函数y=ax2+bx+c与一次函数y=ax+c 在同一坐标系内的图象可能是图3所示的( )

二、填空题:(每题5分,共30分) 1.若抛物线y=x2+(m-1)x+(m+3)顶点在y轴上,则m=_______.

2.把抛物线y=12x2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 3.抛物线y=ax2+12x-19顶点横坐标是3,则a=____________. 4.若y=(a-1)231ax是关于x的二次函数,则a=____________. 5.二次函数y=mx2-3x+2m-m2的图象经过点(-1,-1),则m=_________. 6.已知点(2,5),(4,5)是抛物线y=ax2+bx+c上的两点, 则这条抛物线的对称轴是______. 三、解答题(共40分) 1.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象 经过点(- 1,5),求此二次函数图象的关系式.

2.二次函数的图象与x轴交于A、B两点,与y轴交于点C,如图2所示, AC= ,BC= ∠ACB=90°,求二次函数图象的关系式.

3.已知关于x的二次函数2212myxmx与2222myxmx,

这两个二次函数的图象中的一条与x轴交于A, B两个不同的点.

图1 CxBA

O

y

图2

图3 (l)试判断哪个二次函数的图象经过A, B两点; (2)若A点坐标为(-1, 0),试求B点坐标; (3)在(2)的条件下,对于经过A, B两点的二次函数,当x取何值时,y的值随x值的增大而减小? (B卷)拓广提高(30分) 时间:45分钟 满分:30分 一、选择题(每题4分,共8分) 1.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为( ) A.y=3(x-2)2+1 B.y=3(x+2)2-1 C.y=3(x-2)2-1 D.y=3(x+2)2+1 2.已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A, 抛物线的顶点

为B,则△OAB的面积为( ) A.32 B.2; C.1; D.12 二、填空题:(每题2分,共20分) 1.已知二次函数y=2x2-mx-4的图象与x轴的两个交点的横坐标的倒数和为2,则m=_________. 2.二次函数y= ax2+ bx+ c 的图象如图5所示, 则这个二次函数 的关系式为_________,当______时,y=3,根据图象回答:当x______时,y>0. 三、解答题

1.(1)请你画出函数y=12x2-4x+10的图象, 由图象你能发现这个函数具有哪些性质? (2)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴、 顶点坐标,这个函数有最大值还是最小值?这个值是多少?

2.根据下列条件,分别求出对应的二次函数关系式. (1)已知抛物线的顶点是(-1,-2),且过点(1,10); (2)已知抛物线过三点:(0,-2),(1,0),(2,3).

(C卷)新题推荐(20分)

1.如图6所示,△ABC中,BC=4,∠B=45°,AB=32,M、N分别是 AB、AC上的点,MN∥BC.设MN=x,△MNC的面积为S. (1)求出S与x之间的函数关系式,并写出自变量x的取值范围. (2)是否存在平行于BC的线段MN,使△MNC的面积等于2? 若存在,请求出MN的长; 若不存在,请说明理由.

2.如图7,已知直线12yx与抛物线2164yx交于AB,两点.

2-11

xO

y

图5

BMACN

图6 (1)求AB,两点的坐标; (2)求线段AB的垂直平分线的解析式; (3)如图2,取与线段AB等长的一根橡皮筋,端点分别固定在AB,两处.用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P将与AB,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P点的坐标;如果不存在,请简要说明理由.

参考答案: A卷 一、1.D ;2.A ;3.C 4.D 5.C ;6.D; 二、1.1 2.y=12(x+3)2-2 ;3.-2 ;4.-1 5.4或-1 ;6.直线x=3 ; 三、1.解:∵二次函数图象的对称轴为x=2,y最小值=3, ∴顶点坐标(2,3).设所求关系式为y=a(x-2)2+3.

把(-1,5)代入上式,得5=a(-1-2)2+3,a=29.

∴2222835(2)39999yxxx. 2.解:∵AC=25,BC=5,∠ACB=90°, ∴AB=2222(25)(5)5ACBC. ∵∠AOC=∠ACB=90°,∠CAO=∠BAC,△AOC∽△ACB.

∴ACAOABAC, 即25525AO. ∴AO=4,∴BO=1. ∴A(-4,0),B(1,0).

y x O y x O P

A 图2 图1

B B

A 图7 同理可证△ACO∽△CBO,∴AOCOCOBO,即41COCO. ∴CO2=4,∴OC=2.∴C(0,-2), 设二次函数关系式为y=ax2+bx+c, 把A(-4,0),B(1,0),C(0,-2)分别代入上式,得

164002abcabcc





, 解得12322abc

∴所求二次函数图象的关系式为y=213222xx. 3.解:(l)对于关于x的二次函数y =221,2mxmx由于△=(-m ) 2-4×l×212m=-m2-2<0,所以此函数的图象与x轴没有交点, 对于关于x的二次函数 y =2222mxmx.由于△=(-m ) 2-4 ×l×21()2m=-m2-2<0, 所以此函数的图象与x轴没有交点,对于关于x的二次函数222,2myxmx 由于2222()41()340,2mmm所以此函数的图象与x轴有两个不同的交点,故图象经过A、B两点的二次函数为222,2myxmx (2 )将A(-1,0)代入2222myxmx,得2212mm=0. 整理,得m2-2m = 0,解之,得m=0,或m = 2. 当m =0时,y=x2-1.令y = 0,得x2-1 = 0,解这个方程,得x1=-1,x2=1,此时,B点的坐标是B (l, 0). 当m=2时,y=x2-2x-3.令y=0,得x2-2x-3=0,解这个方程,得x1=-1,x2=3 此时,B点的坐标是B(3,0) (3) 当m =0时,二次函数为y=x2-1,此函数的图象开口向上,对称轴为x=0,所以当x<0时,函数值 y 随:的增大而减小. 当m=2时,二次函数为y = x2-2 x-3 = (x-1)2-4, 此函数的图象开口向上,对称轴为x = l,所以当x < l 时,函数值y随x的增大而减小.

B卷 一、1.D ;2.C; 二、1. -8;2.y=x2-2x;x=3或x=-1;x<0或x>2; 三、1.解:(1)函数图象如答图所示,性质有: ①该函数图象的开口向上,对称轴为直线x=4,顶点(4,2). ②当x>4时,y随x的增大而增大; 当x<4时,y随x 的增大而减小. ③当x=4时,y最小值=2. (2)y=-2x2+8x-8=-2(x-2)2. 该函数图象的开口向下,对称轴为直线x=2,顶点(2,0); ∵a=-2<0, ∴y有最大值,当x=2时,y最大值=0. 2.解:(1)∵抛物线顶点(-1,-2), ∴设所求二次函数关系式为y=a(x+1)2-2, 把(1,10)代入上式,得10=a(1+1)2-2. ∴a=3,∴y=3(x+1)2-2,即y=3x2+6x+1. (2)设所求二次函数关系为y=ax2+bx+c, 把(0,-2),(1,0),(2,3)分别代入y=ax2+bx+c,得

20423cabcabc





, 12322abc

∴213222xx C卷

1.(1)过点A作AD⊥BC于D,则有AD=32×sin450=23232. 设△MNC的MN边上的高为h, ∵MN∥BC,∴343xh.∴h=1234x, ∴S=12MN·h=21123332482xxxx,

即S=23382xx (0(2)若存在这样的线段MN,使S△MNC=2,则方程 23382xx=2必有实根,即3x2-12x+16=0 必有实根.但△=(-12)2-4×3×16=-48<0,说明此方程无实根,所以不存在这样的线段MN.

2、(1)解:依题意得216412yxyx解之得12126432xxyy (63)(42AB,,,

x=4(4,2)y=12x2-4x+10

x

y

O

相关文档
最新文档