模板法制备超级电容器活性炭电极材料
超级电容器的研究

3、表面官能团
主要通过两种途径: 1)改变表面的润湿性能 2)官能团自身发生可逆的氧化还原反应 从制备高容量、耐高压、稳定性好的电容器角度 出发 , 要求活性炭材料表面的官能团有一个合适 的比例。
4、微晶结构
对超级电容器来说,中孔比例大一些比较好 中孔碳材料的方法主要有三种: 1)催化活化法 2)混合聚合物炭化法 3)模板炭化法
3、发展趋势:
• 提高性能、降低成本是超级电容器发展的主旋律。 • 从超级电容器的发展历史来看,电容器虽然能够 提供高功率,但电容器不能像电池一样提供高的 重量能量比,期望将来超级电容器能够代替电池 作为储能元件,兼具高能量和高功率的性能。 • 超级电容器是绿色环保、能源开发的重要方向之 一,它的研发必将带动整个电子产业及相关行业 的发展,目前国内超级电容器的开发生产刚刚起 步,具有广阔的发展空间。
双电层原理示意图
2. 性能特点
—介于电池和物理电容器之间
性 能 铅酸电池 1-5小时 超级电容器 0.3-若干秒 普通电容器 10-3—10-6秒
充电时间
放电时间
比能Wh/kg 循环寿命 比功率W/kg 充放电效率
0.3-3小时
30- 40 300 < 300 0.7-0.85
0.3-若干秒
1- 20 >10000 >1000 0.85-0.98
2) 赝电容型超级电容器
(1) 金属氧化物材料 • 贵金属氧化物材料 —RuO2:无定型RuO2拥有更高 的电导率,更高的比电容,更高的电化学可逆性。 • 替代RuO2的廉价金属氧化物材料—MnO2和NiO。
(2) 导电聚合物材料 聚苯胺(PANI)、聚吡 (PPy)和聚噻吩(PTh) 他们的一些相关衍生 物。 优点: 价格低廉、对环境友 好、高导电率、高度 可逆以及活性可控。
超级电容器及其电极材料的研究

第5期2018年10月No.5 October,2018随着人类对友好型社会的美好向往,大家逐渐开始重视可再生能源,然而可再生能源不适合电能输送,因其不稳定、不连续性会影响输电质量。
因此我们需要开发良好的储能装置。
超级电容器凭借它具有的诸多良好性质而被关注。
不同电极材料影响着超级电容器的性能,因此我们应注重电极材料的研究。
超级电容器是介于电池和传统电容器之间通过极化电解质储能的电源[1]。
其充电速度快、放电能力超强、循环使用时间长,而且其功率密度极高。
目前研究的主要有法拉第准电容(赝电容)和双电层电容器两种类型。
1 赝电容赝电容是电活性物质处于潜在沉积下,在电极上发生可逆的化学吸附、解吸或氧化还原反应,产生电极的充电电位[2]。
赝电容的电极材料有以下几种。
1.1 金属氧化物氧化钌材料的比电容较大、导电性能极好,但其价格较为昂贵,并不能广泛应用;氧化锰价格低廉、对环境友好、性能良好,价态较多容易获得且价格低廉,因此被广泛使用;氧化镍导电性能好、易获取、制备简单,也很有发展前景。
1.2 复合金属氧化物钼酸盐因其催化和电化学性能的优异性而被研究作为电极材料,有实验小组研究了COMOO 4/MnMOO 4异质结构纳米材料的超电容性,结果发现,COMOO 4纳米棒活性电极电化学性能优异;有文献报道了用NiCO 2O 4作为赝电容的电极材料,其常用的制备方法有水热法(溶剂热法)、微波辅助法、模板法、电沉积法、共沉淀法等;据报道,CuCO 2S 4成功用熔剂法合成,结果显示制得的花瓣状的CuCO 2S 4材料具有较高的比电容、充放电速率很优良、循环性也很稳定,因其特殊的3D 结构,导电率较高、比表面积较大而体现出优异的赝电容性能。
1.3 导电聚合物导电聚合物是利用掺杂原理使材料电导率处于半导体和导体范围间,其主链上含有交替的单键与双键,形成共轭大π体系,因π电子流动而能导电[3]。
其可使用的温度范围宽、其寿命长。
纳米氧化镁模板法制备氮掺杂炭电极材料

2 6 n m 的氧化 镁 , 以纳 米 氧化 镁 为模 板 , 将 聚 丙 烯 酰
胺 高温炭化 , 酸 溶去模 板 , 制 备 出 高 含 氮 量 的 多 孔 炭 材
料, 并对材料 进行 X RD、 S E M、 孔径表 征 和 电化 学性 能
测试 。 结 果 显 示 , 炭 材 料 以 层 状 为 主, 平 均 孔 径
一
步提 高 电极 材 料 的功 率 密 度 和能 量 密度 , 除 了提 高 团l _ 2 ] 。而模 板 法_ [ ] 是 目前 较 活 跃 的 多 孔 炭材 料 的制
质 量配 比混合 , 干燥后 , 在惰 性气 氛的保 护下 高 温炭 化 6 0 0 9 0 0 ℃。用过量 的 1 mo l / I 的硫 酸溶 液将 氧 化 镁 溶解 , 抽 滤洗 涤至 滤液 p H 值 一7 , 7 0 ℃ 真空 干燥 1 0 h 。 将 制得 的炭材 料 、 乙炔 黑 和 聚 四氟 乙烯 按 8 5:1 0: 5 比例混合 , 均 匀涂抹 在泡沫 镍或钛 金 属片 上 , 6 o ℃干 燥
1 引 言
超级 电容 器作 为一种 高效 、 清洁 的新 型储 能器 件 , 受 到越来 越多 研 究人 员 的 关 注 , 而炭 材 料 是 负极 材 料 研究 的热 点之 一 。多 孔炭 作为 电极材料 的优势 在 于能
镁/ 氨水 ( 摩尔 比) 为一 定 比例 2: 1 ~6:1 , 2 0 mi n反应
制备 了含氮 炭材料 , 考查 了形貌 特征 、 孔径 分 布 以及含 氮炭 材料在 碱性 、 中性 和 酸性 电解 质溶 液 中 电化学 性
能 的差 异 。
关键 词 : 超级 电容器 ; 负极 材料 ; 模板 法 ; 多子 L 炭 材 料 中 图分类号 : TM 5 3 1 文献标 识码 : A
超级电容器的电极材料的研究进展

超级电容器的电极材料的研究进展一、本文概述随着科技的不断进步和新能源领域的飞速发展,超级电容器作为一种高效、快速储能器件,已逐渐引起科研工作者和工业界的广泛关注。
作为超级电容器的核心组件,电极材料的性能直接影响着超级电容器的电化学性能和实际应用效果。
研究和开发高性能的电极材料对于提升超级电容器的整体性能、推动其在新能源领域的应用具有十分重要的意义。
本文旨在对超级电容器的电极材料的研究进展进行全面的梳理和综述。
文章首先介绍了超级电容器的基本原理和电极材料在其中的作用,然后重点阐述了当前常用的电极材料类型,包括碳材料、金属氧化物、导电聚合物等,并分析了它们各自的优势和存在的问题。
接着,文章综述了近年来在电极材料研究方面取得的重要突破和进展,包括材料结构设计、复合材料的开发、表面改性等方面的研究。
文章对超级电容器电极材料的研究趋势和未来发展方向进行了展望,以期为相关领域的研究者提供参考和借鉴。
二、超级电容器概述超级电容器(Supercapacitor),亦称为电化学电容器(Electrochemical Capacitor),是一种介于传统电容器和电池之间的储能器件。
其具有高功率密度、快速充放电、长循环寿命以及良好的环境适应性等特点,因此在能源储存和转换领域引起了广泛关注。
超级电容器的储能原理主要基于电极材料表面和近表面的快速、可逆的法拉第氧化还原反应或非法拉第的静电吸附过程。
相比于传统电容器,超级电容器能够提供更高的能量密度而相较于电池,它又具备更高的功率密度和更快的充放电速度。
这些独特的性能使得超级电容器在电动汽车、可再生能源系统、移动通讯、航空航天等领域具有广泛的应用前景。
超级电容器的电极材料是其性能的决定性因素。
理想的电极材料应具备高比表面积、高电导率、良好的化学稳定性和环境友好性等特点。
目前,研究者们已经开发出多种类型的电极材料,包括碳材料、金属氧化物、导电聚合物等。
这些材料各有优势,但也存在一些问题,如比能量低、循环稳定性差等。
超级电容器.ppt

六、总结
DDGS:可溶性干酒糟(Distillers Dried Grains with Solubles) EDLC:双电层电容器(Electric double layer capacitor) EDS:能量色散谱(Energy-dispersive spectroscopy) SEM:扫描电子显微镜(Scanning electron microscope) TEM:透射电子显微镜(Transmission electron microscope) EIS:电化学阻抗谱(Electrochemical Impedance Spectroscopy) CV:循环伏安法(Cyclic Voltammetry)
二、超级电容器的分类
1.双电层电容器(Electrical double-layer capacitor)
公式: C 4d
原理:离子迁移
双电层电容器工作原理示意图
二、超级电容器的分类
2.赝电容电容器
在电极表面或者体相中的二维空间上,活性物质进行欠电位沉积,产生高度 可逆的化学吸附/脱附或者氧化还原反应所产生的电容。
原理:法拉第电池
赝电容器原理图
三、超级电容器性能影响因素
1.比表面积(Specific surface area) 2.孔径分布(Pore size distribution) 3.孔隙结构(Porous structure) 4.表面官能团(Surface functional groups)
四、电极材料
1.炭电极材料 活性炭、活性炭纤维、炭气凝胶、模板炭、
纳米炭管、石墨烯、 2 .氧化物电极材料
二氧化锰的晶体结构、二氧化锰的电荷存储 机理、二氧化锰的制备工艺 3 .导电聚合物电极材料
负极碳材料

负极碳材料1 石墨烯1.1石墨烯结构与性能石墨烯是由碳原子构成的二维新材料,碳原子采用sp2杂化形成了具有蜂巢状的二维晶格结构,这种结构非常稳定,碳-碳键键长只有 1.42埃,单层石墨烯只有0.335nm是一种近乎完美的二维晶体结构,是平面多环芳香烃原子晶体。
作为世界上最薄的纳米材料:①.石墨烯几乎是完全透明的,只吸收2.3% 的光;②导热系数达到5300W/m.K,比金刚石和碳纳米管更高;③室温下电子迁移率达到光速的1/300;④电阻率只有10-6Ω.cm,比铜和银电阻率更低,是世界上电阻率最小的材料;⑤有超高的力学性能,达到1060GPa;⑥具有超高比表面积。
1.2 石墨烯的制备方法严格来讲,石墨烯是具有单层碳原子厚度的二维碳材料,然而研究发现大于一层的石墨烯也会显示出非同寻常的物理性质,具有良好的应用前景。
由片层厚度,可将石墨烯分为单层石墨烯,双层石墨烯以及层数少于10 的多层石墨烯。
具有单双层厚度的石墨烯最先是由微机械剥离法制备出来,更多的石墨烯制备方法在不断地被发展出来。
此外,基于一些特殊应用,对石墨烯尺寸和边缘位可控的需求也变高,石墨烯纳米带的制备逐渐地被开发。
1.2.1 单层石墨烯的制备(1)机械剥离法。
机械剥离是石墨烯制备的第一种方法,通过反复地粘揭块体石墨,来获得石墨烯薄膜。
总体来讲,对于制备单层(1-3层)的高质量石墨烯,微机械剥离的方法仍然是最普遍且最成功的途径,以求得石墨烯在光学和电学上更加透彻的研究。
然而,这种方法存在石墨烯片层尺寸、形状以及厚度不可控的弊端,而且产量极低。
除此之外,机械剥离法制备石墨烯还包括超声液相氧化石墨、球磨处理原始石墨粉末等手段,也获得了相应较好的石墨烯片层。
(2)化学气相沉积法。
化学气相沉积法(CVD)是制备大尺寸石墨烯片层先进的制备方法。
(3)外延生长法。
将SiC进行热沉积的外延生长法制备石墨烯,也是获得高质量石墨烯片层用于物理学应用的常用方法。