三明学院大一下高数期末考十套卷 (1)讲课讲稿

合集下载

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

⼤⼀⾼等数学期末考试试卷及答案详解⼤⼀⾼等数学期末考试试卷(⼀)⼀、选择题(共12分) 1. (3分)若2,0,(),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为(). (A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-?的值为().(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)⼀定可导(C)可能可导 (D)必⽆极限⼆、填空题(共12分)1.(3分)平⾯上过点(0,1),且在任意⼀点(,)x y 处的切线斜率为23x 的曲线⽅程为 .2. (3分) 1241(sin )x x x dx -+=? . 3. (3分) 201lim sin x x x→= . 4. (3分) 3223y x x =-的极⼤值为 .三、计算题(共42分) 1. (6分)求20ln(15)lim.sin 3x x x x →+2. (6分)设2,1y x =+求.y '3. (6分)求不定积分2ln(1).x x dx +?(1),f x dx -?其中,1,()1cos 1, 1.x xx f x xe x ?≤?=+??+>?5. (6分)设函数()y f x =由⽅程0cos 0yxte dt tdt +=??所确定,求.dy6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +?7. (6分)求极限3lim 1.2nn n →∞+四、解答题(共28分)1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x2. (7分)求由曲线cos 22y x x ππ??=-≤≤与x 轴所围成图形绕着x 轴旋转⼀周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线⽅程.4. (7分)求函数y x =+[5,1]-上的最⼩值和最⼤值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbab a f x dx f a f b x a x b f x dx -''=++--?(⼆)⼀、填空题(每⼩题3分,共18分) 1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第类间断点.2.函数()21ln x y +=,则='y.3. =?+∞→xx x x 21lim.4.曲线xy 1=在点2,21处的切线⽅程为 . 5.函数2332x x y -=在[]4,1-上的最⼤值,最⼩值 . 6.=+?dx xx21arctan . ⼆、单项选择题(每⼩题4分,共20分) 1.数列{}n x 有界是它收敛的() . () A 必要但⾮充分条件; () B 充分但⾮必要条件; () C 充分必要条件; () D ⽆关条件. 2.下列各式正确的是() .() A C e dx e x x +=--?; () B C xxdx +=?1ln ; () C ()C x dx x +-=-?21ln 2211; () D C x dx xx +=?ln ln ln 1. 3.设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数().() A 等于1; () B 等于1-; () C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是().() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去⼼邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每⼩题6分,共36分) 1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ?+dx xx 221. 5. ?xdx x cos .6.⽅程yxx y 11=确定函数()x f y =,求y '.四、(10分)已知2x e 为()x f 的⼀个原函数,求()?dx x f x 2.五、(6分)求曲线x xe y -=的拐点及凹凸区间. 六、(10分)设()()C e x dx x f x++='?1,求()x f .(三)⼀、填空题(本题共5⼩题,每⼩题4分,共20分).(1) 21(cos lim x x x → e1.(2)曲线x x y ln =上与直线01=+-y x 平⾏的切线⽅程为1-=x y . (3)已知xxxeef -=')(,且0)1(=f , 则=)(x f =)(x f 2)(ln 21x .(4)曲线132+=x x y 的斜渐近线⽅程为 .9131-=x y(5)微分⽅程522(1)1'-=++y y x x 的通解为.)1()1(32227+++=x C x y⼆、选择题 (本题共5⼩题,每⼩题4分,共20分). (1)下列积分结果正确的是( D )(A) 0111=?-dx x (B) 21112-=?-dx x(C) +∞=?∞+141dx x (D) +∞=?∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所⽰,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点.(C) 1x 是极值点.,())(,22x f x(D) ())(,11x f x 是拐点,2x 是极值点图1-1(3)函数212e e e x x xy y y x '''--=(B )23e .xy y y '''--= (C )23e .x y y y x '''+-= (D )23e .xy y y '''+-=(4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ). (A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是( A ).(A) (())().f x dx f x '=? (B) ()().=?df x f x (C) [()]().d f x dx f x =(D) ()().fx dx f x '=?三、计算题(本题共4⼩题,每⼩题6分,共24分). 1.求极限) ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim 1-+-→ 1分=x x x xx ln 1ln lim1+-→ 2分= xx x x x x ln 1ln lim1+-→ 1分分2.⽅程??+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 与2 2dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分) .sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222(1) =2arctan 2 =2d x C =----------+------+---------??分分(分4.计算定积分?++3011dx xx.解 ??-+-=++3030)11(11dx x x x dx x x ?+--=30)11(dx x (3分)35)1(3(或令t x =+1)四、解答题(本题共4⼩题,共29分).1.(本题6分)解微分⽅程256xy y y xe '''-+=.2122312*20101*223212-56012,31.1()111.21(1)121(1).12x x x x x x x r r r r e C e y x b x b e b b y x x e y e C e x x e +=----------==----------+-------=+-----------=-=-=-------------=+-+----解:特征⽅程分特征解.分次⽅程的通解Y =C 分令分代⼊解得,所以分所以所求通解C 分2.(本题7分)⼀个横放着的圆柱形⽔桶(如图4-1),桶内盛有半桶⽔,设桶的底半径为R ,⽔的⽐重为γ,计算桶的⼀端⾯上所受的压⼒.解:建⽴坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------??分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1baf x dx =?,试求()()b a222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平⾯图形D. (1) (3) 求D 的⾯积A;(2) (4) 求D 绕直线e x =旋转⼀周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线⽅程是).(1ln 000x x x x y -+=1分yxyO1e 1D由该切线过原点知 01ln 0=-x ,从⽽.0e x =所以该切线的⽅程为.1x e y =平⾯图形D 的⾯积 ?-=-=10.121)(e dy ey e A y 2分(2)切线xe y 1=与x 轴及直线e x =所围成的三⾓形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =与x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(?-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=?e e dy e e e V V V y πππ 1分五、证明题(本题共1⼩题,共7分).1.证明对于任意的实数x ,1x e x ≥+.解法⼀:2112xe e x x xξ=++≥+解法⼆:设() 1.x f x e x =--则(0)0.f = 1分因为() 1.xf x e '=- 1分当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1x e x ≥+。

【教育资料】福建省三明一中高一下数学期末考试练习题1含详解答案学习专用

【教育资料】福建省三明一中高一下数学期末考试练习题1含详解答案学习专用

福建省三明一中2019学年高一下期末考试练习题1一、选择题(共12小题,每小题4.0分,共48分)1.一个空间几何体的三视图如图所示,且这个空间几何体的所有顶点都在同一个球面上,则这个球的表面积是()A.16π B.12π C.8π D.25π2.下列说法中正确的是()A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形3.已知A(1,0),B(7,8),若点A和点B到直线l的距离都为5,且满足上述条件的直线l共有n条,则n的值是()A. 1 B. 2 C. 3 D. 44.过点P(3,-2),且垂直于直线3x+2y-8=0的直线方程为()A. 3x+2y-5=0B. 3x+2y+5=0C. 2x-3y-12=0D. 2x-3y+12=05.直线l过点(0,3)且垂直于y轴,它的倾斜角和斜率是()A. 90°,不存在B. 180°,0C. 90°,1D. 0°,06.过点A(-1,0),斜率为k的直线,被圆(x-1)2+y2=4截得的弦长为2,则k的值为()A. ± B. C. ± D.7.设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是()①若m⊥α,n∥α,则m⊥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若m∥α,n∥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.A.①②B.②③C.③④D.①④8.如图,下列选项不是几何体的三种视图的为()A.B.C.D.9.如图,直线a与直线b的位置关系是()A.平行B.异面C.相交D.平行或异面10.当t=±时,直线l1:(t-2)x+y-2=0与直线l2:x+(t+2)y-4=0的位置关系是() A.平行B.相交C.垂直D.重合11.已知直线l1:ax+2y+1=0与直线l2:(3-a)x-y+a=0,若l1∥l2,则a的值为() A. 1B. 2C. 6D. 1或212.过平面外一条直线作该平面的平行平面()A.必定可以并且只可以作一个B.至少可以作一个C.至多可以作一个D.一定不能作二、填空题(共4小题,每小题4.0分,共16分)13.已知点(1,-4)和(-1,0)是直线y=kx+b上的两点,则k=________,b=________.14.已知一平面图形的斜二测直观图是底角等于45°的等腰梯形,则原图的形状是________.15.与直线2x+3y-6=0关于点(1,-1)对称的直线方程为________.16.与圆相切且在两坐标轴上截距相等的直线方程三、解答题(共6小题,每小题9.0分,最后一题11分,共56分)17.给出两块正三角形纸片(如图所示),要求将其中一块剪拼成一个底面为正三角形的三棱锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,分别用虚线标示在图中,并作简要说明.18.如图所示,已知:α⊥β,α∩β=l,AB⊂α,AB⊥l,BC⊂β,BC⊥DE.求证:AC⊥DE.19.如图,O为矩形ABCD的中心,E,F为平面ABCD同侧两点,EF∥BC,且EF=BC,△CDE和△ABF都是等边三角形.(1)求证:FO∥平面ECD;(2)设BC=CD,求证:EO⊥平面FCD.20.画两个平行平面.21.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.(1)求证:BC⊥D1E;(2)若AA1=,求三棱锥D1-B1CB的体积.22.如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,CD⊥AD,求证:平面PDC⊥平面PAD.答案解析1.【答案】A【解析】由三视图知,几何体是三棱柱ABC-A1B1C1,三棱柱的底面是边长为3的正三角形ABC,侧棱长是2,三棱柱的两个底面的中心连接的线段MN的中点O与三棱柱的顶点A的连线AO就是外接球的半径,∵△ABC是边长为3的等边三角形,MN=2,∴AM=,OM=1,∴这个球的半径r==2,∴这个球的表面积S=4π×22=16π,故选A.2.【答案】A【解析】棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错误;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C 错误;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错误.3.【答案】C【解析】与直线AB平行且到直线l的距离都为5的直线共有两条,分别位于直线AB的两侧,由线段AB的长度等于10,还有一条直线是线段AB的中垂线,故满足上述条件的直线l共有3条,故选C.4.【答案】C【解析】∵直线3x+2y-8=0的斜率为,由垂直关系可得所求直线的斜率为,∴直线的点斜式方程为y-(-2)=(x-3),化为一般式可得2x-3y-12=0.故选C.5.【答案】D【解析】因为直线l与y轴垂直,所以直线的倾斜角是0°,斜率为0,故选D.6.【答案】A【解析】设直线方程为y=k(x+1),即kx-y+k=0,∵圆(x-1)2+y2=4截得的弦长为2,∴圆心到直线的距离为=1,∴=1,∴k=±.故选: A.7.【答案】A【解析】①若m⊥α,n∥α,则m⊥n,是直线和平面垂直的判定,正确;②若α∥β,β∥γ,m⊥α,则m⊥γ,推出α∥γ,满足直线和平面垂直的判定,正确;③若m∥α,n∥α,则m∥n,两条直线可能相交,也可能异面,不正确;④若α⊥γ,β⊥γ,则α∥β中m与n可能相交或异面.考虑长方体的顶点,α与β可以相交.不正确.故选A.8.【答案】D【解析】A是左视图;B是主视图;C是俯视图.故选D.9.【答案】B【解析】空间两直线有平行、相交、异面三种位置关系.假设图中a,b直线是平行关系,则a,b 必在同一个平面中,即平面M与平面N为同一个平面,显然平面M与平面N是相交的,所以不可能,即a,b不平行.假设图中a,b直线是相交关系,不妨设交点为Q,则两个平面除了有一条公共直线外还有一个公共点Q,故两个平面重合,显然与已知矛盾,即a,b不相交.所以a,b 是异面直线.故选B.10.【答案】A【解析】由题意可得直线l1的斜率为-(t-2),在y轴的截距为2,直线l2的斜率为,在y轴的截距为,当t=时,=-(t-2),且≠2,∴当t=时,直线l1:(t-2)x+y-2=0与直线l2:x+(t+2)y-4=0的位置关系为平行.故选A.11.【答案】C【解析】∵直线l1:ax+2y+1=0与直线l2:(3-a)x-y+a=0斜率都存在,∴k1=,k2=3-a,∵l1∥l2,∴k1=k2,即=3-a.解得a=6.故选C.12.【答案】C【解析】当平面外一条直线与该平面相交时,过这条直线作的所有平面都与已知平面相交,故A,B错;当平面外一条直线与该平面平行时,一定可以作一个平面与已知平面平行,故D错.所以只有答案C成立.故选C.13.【答案】-2-2【解析】由题意,得解得k=-2,b=-2.14.【答案】直角梯形【解析】如图,等腰梯形O′A′B′C′为一四边形的斜二测直观图,根据斜二测画法还原原图形为四边形OABC.由图形可知底角等于45°的等腰梯形的原图形是直角梯形.故答案为直角梯形.15.【答案】2x+3y+8=0【解析】∵所求直线平行于直线2x+3y-6=0,∴设所求直线方程为2x+3y+c=0,由=,∴c=8或c=-6(舍去),∴所求直线方程为2x+3y+8=0.16.【答案】17.【答案】解如图(1)所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图(2)所示,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的,有一组对角为直角,余下部分按虚线折起,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个相同的四边形恰好拼成这个底面为正三角形的棱柱的上底.18.【答案】证明∵α⊥β,α∩β=l,AB⊂α,AB⊥l,∴AB⊥β.又DE⊂β,故AB⊥DE.又BC⊥DE,AB∩BC=B,∴DE⊥平面ABC,又AC⊂平面ABC,∴DE⊥AC.19.【答案】证明(1)取CD中点M,连接OM.在矩形ABCD中,OM∥BC且OM=BC,又EF∥BC,且EF=BC,则EF∥OM,EF=OM,连接EM,于是四边形EFOM为平行四边形,所以FO∥EM.又FO⊄平面CDE内,且EM⊂平面CDE内,所以FO∥平面CDE.(2)连接FM,由(1)和已知条件,在等边△CDE中,CM=DM,EM⊥CD且EM=CD=BC=EF,因此,平行四边形EFOM为菱形,从而EO⊥FM.因为AD⊥CD,OM∥AD,所以OM⊥CD,又EM∩CD=M,所以CD⊥平面EOM,从而CD⊥EO.而FM∩CD=M,所以,EO⊥平面CDF.20.【答案】两个平面平行时,要注意把表示平面的平行四边形画成对应边平行,如图①,而图②的画法则不恰当.21.【答案】(1)证明∵底面ABCD和侧面BCC1B1是矩形,∴BC⊥CD,BC⊥CC1,又∵CD∩CC1=C,∴BC⊥平面DCC1D1,∵D1E⊂平面DCC1D1,∴BC⊥D1E.(2)解在四棱柱ABCD-A1B1C1D1中,DD1∥B1BCC1,∴三棱锥D1-B1CB的体积等于三棱锥D-B1CB的体积,即三棱锥B1-DCB的体积,B1到底面DCB 的距离就是D1E,在四棱柱ABCD-A1B1C1D1中,底面ABCD和侧面BCC1B1都是矩形,E是CD的中点,D1E⊥CD,AB=2BC=2.AA1=,∴D1E===1.所求体积V=S△DCB×D1E=××2×1×1=.22.【答案】证明∵PA⊥平面ABCD,∴PA⊥CD,又CD⊥AD,PA∩AD=A,∴CD⊥平面PAD.又CD⊂平面PDC,∴平面PDC⊥平面PAD.。

大一下学期高等数学期末考试试题及答案

大一下学期高等数学期末考试试题及答案

高等数学A(下册)期末考试试题【A卷】院(系)别班级学号姓名成绩一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.2、设,则.3、曲面在点处的切平面方程为.4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数在处收敛于,在处收敛于.5、设为连接与两点的直线段,则.※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2、求由曲面及所围成的立体体积.3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?4、设,其中具有二阶连续偏导数,求.5、计算曲面积分其中是球面被平面截出的顶部.三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小值.四、(本题满分10分)计算曲线积分,其中为常数,为由点至原点的上半圆周.五、(本题满分10分)求幂级数的收敛域及和函数.六、(本题满分10分)计算曲面积分,其中为曲面的上侧.七、(本题满分6分)设为连续函数,,,其中是由曲面与所围成的闭区域,求.—-——-—-——-———--—————-—-——--——---—--—-备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;不得带走试卷。

高等数学A(下册)期末考试试题【A卷】参考解答与评分标准一、填空题【每小题4分,共20分】1、;2、;3、; 4、3,0;5、。

二、试解下列各题【每小题7分,共35分】1、解:方程两边对求导,得,从而,…………。

【4】该曲线在处的切向量为…………。

.【5】故所求的切线方程为 (6)法平面方程为即…….。

【7】2、解:,该立体在面上的投影区域为.….。

【2】故所求的体积为 (7)3、解:由,知级数发散 (3)又,。

故所给级数收敛且条件收敛.【7】4、解:, (3)【7】5、解:的方程为,在面上的投影区域为.又,…。

福建省三明市高一下学期期末数学试卷

福建省三明市高一下学期期末数学试卷

福建省三明市高一下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列命题是真命题的是()①必然事件的概率等于1 ②某事件的概率等于1.1 ③互斥事件一定是对立事件④对立事件一定是互斥事件⑤在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型.A . ①③B . ③⑤C . ①③⑤D . ①④⑤2. (2分) (2016高一下·周口期末) 已知,为两个单位向量,下列四个命题中正确的是()A . =B . 如果与平行,则 =C . • =1D .3. (2分) (2016高一下·周口期末) 某工厂利用随机数表对生产的700个零件进行抽样测试,先将700个零件进行编号001,002,…,699,700.从中抽取70个样本,如图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第5个样本编号是()A . 607B . 328C . 253D . 0074. (2分) (2016高一下·周口期末) 已知α、β都是锐角,tanα=2,tanβ=3,那么α+β等于()A .B .C .D .5. (2分) (2016高一下·周口期末) 有四个游戏盘,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖,他应当选择的游戏盘为()A .B .C .D .6. (2分)(2017·湖南模拟) 如图是秦九韶算法的一个程序框图,则输出的S为()A . a1+x0(a3+x0(a0+a2x0))的值B . a3+x0(a2+x0(a1+a0x0))的值C . a0+x0(a1+x0(a2+a3x0))的值D . a2+x0(a0+x0(a3+a1x0))的值7. (2分) (2016高一下·周口期末) 已知向量 =(cosθ,sinθ),向量 =(,﹣1)则|2 ﹣ |的最大值,最小值分别是()A . 4 ,0B . 4,4C . 16,0D . 4,08. (2分) (2016高一下·周口期末) 函数y=Asin(ωx+φ)( A>0,ω>0,|φ|<)的部分图象如图所示,则该函数的表达式为()A .B .C .D .9. (2分) (2016高一下·周口期末) 若0<α<,﹣<β<0,cos(+α)= ,cos(﹣)= ,则cos(α+ )=()A .B . ﹣C .D . ﹣10. (2分) (2016高一下·周口期末) 先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为X、Y,则log2XY=1的概率为()A .B .C .D .11. (2分) (2016高一下·周口期末) 已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的最小正周期是π,若将其图象向右平移个单位后得到的图象关于原点对称,则函数f(x)的图象()A . 关于直线x= 对称B . 关于直线x= 对称C . 关于点(,0)对称D . 关于点(,0)对称12. (2分) (2016高一下·周口期末) 设△ABC的三个内角A,B,C,向量,,若 =1+cos(A+B),则C=()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高二下·廊坊期末) 若(1﹣8x5)(ax2﹣)4的展开式中含x3项的系数是16,则a=________.14. (1分) (2016高一下·周口期末) 如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差,其中为x1 , x2 ,…,xn的平均数)15. (1分) (2016高一下·周口期末) 如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是________.16. (1分) (2016高一下·周口期末) 下面有五个命题:①函数y=sin4θ﹣cos4θ的最小正周期是π;②终边在y轴上的角的集合是;③把的图象向右平移得到y=3sin2x的图象;④函数在[0,π]是减函数;其中真命题的序号是________(写出所有真命题的序号)三、解答题 (共6题;共55分)17. (5分) (2018高一下·攀枝花期末) 在中,角、、的对边分别为、、,且.(Ⅰ)求角;(Ⅱ)若外接圆的面积为,且的面积,求的周长.18. (10分)在一场垒球比赛中,其中本垒与游击手的初始位置间的距离为1,通常情况下,球速是游击手跑速的4倍.(1)若与连结本垒及游击手的直线成α角(0°<α<90°)的方向把球击出,角α满足什么条件下时,游击手能接到球?并判断当α=15°时,游击手有机会接到球吗?(2)试求游击手能接到球的概率.(参考数据 =3.88,sin14.5°=0.25).19. (5分) (2016高一下·周口期末) 飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海波25000米,速度为3000米/分,飞行员先在点A看到山顶C的俯角为30°,经过8分钟后到达点B,此时看到山顶C的俯角为60°,则山顶的海拔高度为多少米.(参考数据: =1.414, =1.732, =2.449).20. (10分) (2016高一下·周口期末) 设函数f(x)=x2+2ax﹣b2+4(1)若a是从0,1,2三个数中任取的一个数,b是从﹣2,﹣1,0,1,2五个数中任取的一个数,求函数f (x)有零点的概率;(2)若a是从区间[﹣3,3]上任取的一个数,b是从区间[0,3]上任取的一个数,求函数g(x)=f(x)+5无零点的概率.21. (10分) (2016高一下·周口期末) 已知 =(cosα,sinα), =(cosβ,sinβ),0<β<α<π.(1)若| ﹣ |= ,求证:⊥ ;(2)设 =(0,1),若 + = ,求α,β的值.22. (15分) (2016高一下·周口期末) 已知函数f(x)=2a•sinωxcosωx+2 cos2ωx﹣ +1(a>0,ω>0)的最大值为3,最小正周期为π.(1)求函数f(x)的单调递增区间.(2)若f(θ)= ,求sin(4θ+ )的值.(3)若存在区间[a,b](a,b∈R,且a<b)使得y=f(x)在[a,b]上至少含有6个零点,在满足上述条件的[a,b]中,求b﹣a的最小值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分)17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、。

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷(一)一、选择题(共12分)1. (3分)若2,0,(),0x e x f x a x x ⎧<=⎨+>⎩为连续函数,则a 的值为( ).(A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0(3)(3)lim2h f h f h →--的值为( ).(A)1 (B)3 (C)-1 (D)123. (3分)定积分22ππ-⎰的值为( ).(A)0 (B)-2 (C)1 (D)24. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分)1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 .2. (3分) 1241(sin )x x x dx -+=⎰ . 3. (3分) 201lim sin x x x→= .4. (3分) 3223y x x =-的极大值为 .三、计算题(共42分)1.(6分)求2ln(15)lim.sin 3x x x x→+2. (6分)设y =求.y '3.(6分)求不定积分2ln(1).x x dx +⎰ 4.(6分)求3(1),f x dx -⎰其中,1,()1cos 1, 1.x xx f x x e x ⎧≤⎪=+⎨⎪+>⎩5. (6分)设函数()y f x =由方程00cos 0yxte dt tdt +=⎰⎰所确定,求.dy 6.(6分)设2()sin ,f x dx x C =+⎰求(23).f x dx +⎰7. (6分)求极限3lim 1.2nn n →∞⎛⎫+ ⎪⎝⎭四、解答题(共28分)1.(7分)设(ln )1,f x x '=+且(0)1,f =求().f x2.(7分)求由曲线cos 22y x x ππ⎛⎫=-≤≤ ⎪⎝⎭及x 轴所围成图形绕着x 轴旋转一周所得旋转体的体积.3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程.4.(7分)求函数y x =+[5,1]-上的最小值和最大值.五、证明题(6分)设()f x ''在区间[,]a b 上连续,证明1()[()()]()()().22bbaab a f x dx f a f b x a x b f x dx -''=++--⎰⎰(二)一、填空题(每小题3分,共18分)1.设函数()23122+--=x x x x f ,则1=x 是()x f 的第 类间断点.2.函数()21ln x y +=,则='y.3. =⎪⎭⎫⎝⎛+∞→xx x x 21lim.4.曲线xy 1=在点⎪⎭⎫ ⎝⎛2,21处的切线方程为 .5.函数2332x x y -=在[]4,1-上的最大值 ,最小值 . 6.=+⎰dx xx 21arctan . 二、单项选择题(每小题4分,共20分)1.数列{}n x 有界是它收敛的( ) .() A 必要但非充分条件; () B 充分但非必要条件 ;() C 充分必要条件; () D 无关条件.2.下列各式正确的是( ) .() A C e dx e x x +=--⎰; () B C xxdx +=⎰1ln ; () C ()C x dx x +-=-⎰21ln 21211; () D C x dx xx +=⎰ln ln ln 1. 3. 设()x f 在[]b a ,上,()0>'x f 且()0>''x f ,则曲线()x f y =在[]b a ,上.() A 沿x 轴正向上升且为凹的; () B 沿x 轴正向下降且为凹的;() C 沿x 轴正向上升且为凸的; () D 沿x 轴正向下降且为凸的.4.设()x x x f ln =,则()x f 在0=x 处的导数( ).() A 等于1; () B 等于1-;() C 等于0; () D 不存在.5.已知()2lim 1=+→x f x ,以下结论正确的是( ).() A 函数在1=x 处有定义且()21=f ; () B 函数在1=x 处的某去心邻域内有定义;() C 函数在1=x 处的左侧某邻域内有定义;() D 函数在1=x 处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:xx x 1sin lim 20→. 2. 已知()21ln x y +=,求y '. 3. 求函数x x y sin =()0>x 的导数.4. ⎰+dx x x 221. 5. ⎰xdx x cos .6.方程yxx y 11=确定函数()x f y =,求y '.四、 (10分)已知2x e 为()x f 的一个原函数,求()⎰dx x f x 2.五、 (6分)求曲线x xe y -=的拐点及凹凸区间. 六、 (10分)设()()C ex dx x f x++='⎰1,求()x f .(三)一、填空题(本题共5小题,每小题4分,共20分).(1) 210)(cos lim x x x → =_____e 1________.(2)曲线x x y ln =上及直线01=+-y x 平行的切线方程为___1-=x y ______.(3)已知xx xe e f -=')(,且)1(=f , 则=)(x f ______=)(x f 2)(ln 21x _____ .(4)曲线132+=x x y 的斜渐近线方程为 _______.9131-=x y __(5)微分方程522(1)1'-=++y y x x 的通解为_________.)1()1(32227+++=x C x y二、选择题 (本题共5小题,每小题4分,共20分).(1)下列积分结果正确的是( D )(A) 0111=⎰-dx x (B) 21112-=⎰-dx x(C) +∞=⎰∞+141dx x (D) +∞=⎰∞+11dx x(2)函数)(x f 在],[b a 内有定义,其导数)('x f 的图形如图1-1所示,则( D ).(A)21,x x 都是极值点. (B) ()())(,,)(,2211x f x x f x 都是拐点. (C) 1x 是极值点.,())(,22x f x 是拐点(D) ())(,11x f x 是拐点,2x 是极值点. 图1-1(3)函数212e e e x x xy C C x -=++满足的一个微分方程是( D ).(A )23e .xy y y x '''--= (B )23e .xy y y '''--= (C )23e .xy y y x '''+-=(D )23e .x y y y '''+-= (4)设)(x f 在0x 处可导,则()()000limh f x f x h h →--为( A ).(A) ()0f x '. (B) ()0f x '-. (C) 0. (D)不存在 .(5)下列等式中正确的结果是 ( A ).(A) (())().f x dx f x '=⎰ (B) ()().=⎰df x f x (C) [()]().d f x dx f x =⎰ (D) ()().f x dx f x '=⎰三、计算题(本题共4小题,每小题6分,共24分). 1.求极限)ln 11(lim 1x x x x --→.解 )ln 11(lim 1x x x x --→=x x x x x x ln )1(1ln lim1-+-→ 1分=x x x x x ln 1ln lim1+-→ 2分= x x x xx x ln 1ln lim1+-→ 1分= 211ln 1ln 1lim 1=+++→x x x 2分2.方程⎩⎨⎧+==t t t y t x sin cos sin ln 确定y 为x 的函数,求dx dy 及22dx y d .解 ,sin )()(t t t x t y dx dy =''= (3分).sin tan sin )()sin (22t t t t t x t t dx y d +=''= (6分)3. 4. 计算不定积分.222 =2arctan 2 =2C =----------------+---------⎰分分(分4.计算定积分⎰++3011dx xx.解 ⎰⎰-+-=++3030)11(11dx x x x dx x x ⎰+--=30)11(dx x (3分)35)1(3233023=++-=x (6分)(或令t x =+1)四、解答题(本题共4小题,共29分). 1.(本题6分)解微分方程256xy y y xe '''-+=.212-56012,31r r r r +=----------==----------解:特征方程分特征解.分2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为γ,计算桶的一端面上所受的压力.解:建立坐标系如图22022220322203*********RRRP gx R x dx g R x d R x g R x g R ρρρρ=----------=---------=--------=----------------⎰⎰分()分[()]分分3. (本题8分)设()f x 在[,]a b 上有连续的导数,()()0f a f b ==,且2()1b af x dx =⎰,试求()()baxf x f x dx'⎰.222()()()()21 ()221 =[()]()2211=0222b b aab a b b a a xf x f x dx xf x df x xdf x xf x f x dx '=-----=---------=----------⎰⎰⎰⎰解:分分分分4. (本题8分)过坐标原点作曲线x y ln =的切线,该切线及曲线x y ln =及x 轴围成平面图形D.(1) (3) 求D 的面积A;(2) (4)求D 绕直线e x =旋转一周所得旋转体的体积V.解:(1) 设切点的横坐标为0x ,则曲线x y ln =在点)ln ,(00x x 处的切线方xyy1程是).(1ln 000x x x x y -+= ----1分由该切线过原点知 01ln 0=-x ,从而.0e x =所以该切线的方程为 .1x e y =----1分平面图形D 的面积 ⎰-=-=10.121)(e dy ey e A y ----2分(2) 切线xe y 1=及x 轴及直线e x =所围成的三角形绕直线e x =旋转所得的圆锥体积为 .3121e V π= 2分曲线x y ln =及x 轴及直线e x =所围成的图形绕直线e x =旋转所得的旋转体体积为dye e V y 2102)(⎰-=π, 1分因此所求旋转体的体积为).3125(6)(312102221+-=--=-=⎰e e dy e e e V V V y πππ 1分五、证明题(本题共1小题,共7分).1.证明对于任意的实数x ,1xe x ≥+.解法一:2112xe e x x xξ=++≥+ 解法二:设() 1.xf x e x =--则(0)0.f = 1分 因为() 1.xf x e '=- 1分 当0x ≥时,()0.f x '≥()f x 单调增加,()(0)0.f x f ≥= 2分当0x ≤时,()0.f x '≤()f x 单调增加,()(0)0.f x f ≥= 2分所以对于任意的实数x ,()0.f x ≥即1xe x ≥+。

高一下数学期末复习讲义

高一下数学期末复习讲义

3.1 随机事件的概率一 随机事件的概率及概率的意义1、重点:事件的分类;概率的定义以及和频率的区别与了解;2、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; (4)频率与概率的区别与了解:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值nn A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率(2) 射手击中靶心的概率是多少?3.2 古典概型重点:(1)古典概型的两大特点:1、试验中所有可能出现的基本事件只有有限个;2、每个基本事件出现的可能性相等;(2)掌握古典概型的概率计算公式:P (A )=A 包含的基本事件个数m总的基本事件个数n例题例1: 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率。

例2: 现有一批产品共有10件,其中8件为正品,2件为次品:(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.练习:1.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是 A .51 B .41 C .54 D . 101 2.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是 。

3.抛掷2颗质地均匀的骰子,求点数和为8的概率 。

4 甲、乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.5. 甲、乙两人做出拳游戏(锤子、剪刀、布),求: (1)平局的概率; (2)甲赢的概率; (3)乙赢的概率.3.3 几何概型重点(1) 正确理解几何概型的概念;(2) 几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.(3)掌握几何概型的概率公式: P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A例题:例1 《课课练》P68 第8题 例3 《必修3》P112页 第8题 例2 《课课练》P69 第9题 练习: 1.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草!V 履虫的概率是( )A .0.5B .0.4C .0.004D .不能确定2.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.3、甲乙两人相约某天在某地点见面,甲计划在上午8:30至9:30之间到达,乙计划在上午9:00至10:00之间到达. (i )求甲比乙提前到达的概率; (ii )如果其中一人先到达后最多等候另一人15分钟,然后离去. 求两人能够会面的概率. 可评讲《课课练》上的题3.4互斥事件及发生的概率重点:1互斥事件,对立事件的概念 2概率的几个基本性质:1) 必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2) 当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B) 例题:1 从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是( ) A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”2抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数,事件B 为出现2点,已知P (A )=21,P (B )=61,求出现奇数点或2点的概率之和。

(完整版)大一下学期高等数学期末考试试题及答案

高等数学A(下册)期末考试试题【A 卷】院(系)别班级 学号姓名成绩大题一二三四五六七小题12345得分一、填空题:(本题共5小题,每小题4分,满分20分,把答案直接填在题中横线上)1、已知向量、满足,,,则.a b0a b += 2a = 2b = a b ⋅= 2、设,则.ln()z x xy =32zx y ∂=∂∂3、曲面在点处的切平面方程为.229x y z ++=(1,2,4)4、设是周期为的周期函数,它在上的表达式为,则的傅里叶级数()f x 2π[,)ππ-()f x x =()f x 在处收敛于,在处收敛于.3x =x π=5、设为连接与两点的直线段,则.L (1,0)(0,1)()Lx y ds +=⎰※以下各题在答题纸上作答,答题时必须写出详细的解答过程,并在每张答题纸写上:姓名、学号、班级.二、解下列各题:(本题共5小题,每小题7分,满分35分)1、求曲线在点处的切线及法平面方程.2222222393x y z z x y⎧++=⎪⎨=+⎪⎩0M (1,1,2)-2、求由曲面及所围成的立体体积.2222z x y =+226z x y =--3、判定级数是否收敛?如果是收敛的,是绝对收敛还是条件收敛?11(1)lnn n n n∞=+-∑4、设,其中具有二阶连续偏导数,求.(,sin x z f xy y y =+f 2,z zx x y∂∂∂∂∂5、计算曲面积分其中是球面被平面截出的顶部.,dSz ∑⎰⎰∑2222x y z a ++=(0)z h h a =<<三、(本题满分9分)抛物面被平面截成一椭圆,求这椭圆上的点到原点的距离的最大值与最小22z x y =+1x y z ++=值.四、(本题满分10分)计算曲线积分,(sin )(cos )x x Le y m dx e y mx dy -+-⎰其中为常数,为由点至原点的上半圆周.m L (,0)A a (0,0)O 22(0)x y ax a +=>五、(本题满分10分)求幂级数的收敛域及和函数.13nn n x n∞=⋅∑六、(本题满分10分)计算曲面积分,332223(1)I x dydz y dzdx z dxdy ∑=++-⎰⎰其中为曲面的上侧.∑221(0)z x y z =--≥七、(本题满分6分)设为连续函数,,,其中是由曲面()f x (0)f a =222()[()]tF t z f xy z dv Ω=+++⎰⎰⎰t Ω与所围成的闭区域,求 .z =z =30()lim t F t t+→-------------------------------------备注:①考试时间为2小时;②考试结束时,请每位考生按卷面答题纸草稿纸由表及里依序对折上交;→→不得带走试卷。

大一高等数学期末考试试卷及复习资料详解

大一高等数学期末考试试卷及复习资料详解大一高等数学期末考试试卷(一)一、选择题(共12分)1.(3分)若/3= 2XXV0,为连续函数,则d的值为().a+ x,x>0(A)I (B) 2 (C)3 (D)-I2.(3分)已知厂⑶=2,则Ii y "7⑶的值为().λ→0 2hOOl (B) 3 (C)-I (D)I23.(3分)定积分∫>Λ∕1-COS23Xdx的值为()•■⑷ 0 (B)-2 (C)I (D) 24.(3分)若/⑴在“勺处不连续,则/3在该点处()・(A)必不可导(B)—定可导(C)可能可导(D)必无极限二、填空题(共12分)1.(3分)平面上过点(0,1),且在任意一点(Λ∙,y)处的切线斜率为3疋的曲线方程为_________________________ .2.( 3 分)∫ ι(x2+x4 Sin XyIX = _______ 1-3.(3 分)IilnX2 Sin丄= ・.r→υX4.(3分)y = 2√ -3√的极大值为________________ —2 (6分)设尸冕,求*JT + 1三、计算题(共42分)1.(6 分)求Iim史S.∙*→υ Sin 3x^3.(6分)求不定积分JXIn(I+十)厶.x .v<ι4.(6 分)求J /(X-1)JΛ∖其中/(x)= < l + cosχ,e' +l,x> 1.5.(6分)设函数y = f(x)由方程JO e,M + [cos∕d∕ = 0所确定,求dy.6.( 6 分)设 f f{x)dx = Sin + C,求j + 3)dx.7.(6 分)求极限IinJI÷-Γn→30k 2/7 7四、解答题(共28分)1.(7 分)设,Γ(lnx) = l+x,且/(0) = 1,求32.(7分)求由曲线y = cosx[-^-<x<^及X轴所围成图形绕着X轴旋I 2 2)转一周所得旋转体的体积.3.(7分)求曲线y = x3-3√÷24x-19在拐点处的切线方程•4.(7分)求函数y = x + √∏7在[-5,1]上的最小值和最大值.五、证明题(6分)设厂(X)在区间[“]上连续,证明i a f^dx = ¥ [/(“) + f(b)]+1 [(X - a)(x - b)fj)dx.(二)一、填空题(每小题3分,共18分)1.设函数/(χ)= 2χ2~1 ,则"1是心)的第_________ 类间断点.X -3x + 23.=∙v→∞V X)4・ 曲线 V 在点(扣)处的切线方程 为 ・5 .函数J = 2X 3-3X 2在[-1,4]上的最大值 _________________ ,最小值 __________ .二、 单项选择题(每小题4分,共20分)1.数列&”}有界是它收敛的( )•(A)必要但非充分条件; (C)充分必要条件; 2.下列各式正确的是((B)充分但非必要条件; (D)无关条件.)・(A) je-χdx=e"x+C i(B) J In X(IX = _ + C ; (C)JI 2∕x=2hl (l 2x)+C ;(D) f —5—JX = Inlllx+ C ・' ,J XInX3-设/(x)在RM 上,广(x)>O 且厂(x)>0,则曲线y = f(x)在[“问上•6.∣∙arctanx J l +x 2(IX(小沿X轴正向上升且为凹(B)沿兀轴正向下降且为凹的;的;(D)沿X轴正向下降且为凸(C)沿兀轴正向上升且为凸的;的.则/(x)在兀=0处的导? :( )•4. 设/(*)=XInX ’⑷等于1;(C)等于O ;(D)不存在•5.已知Ihn/(x)= 2,以下结论正确的是()•G)函数在工=1处有定义且/(1)=2 ; (B)函数在;V = I处的某去心邻域内有定义;(C)函数在2 1处的左侧某邻域内有定义;(D)函数在21处的右侧某邻域内有定义.三、计算(每小题6分,共36分)1.求极限:HlnX2 sinx→0X2.已知y = ln(l + χ2),求几3.求函数J = >0)的导数.5.J X COS XdX ・丄 16.方程y x =X y确定函数y = f(x)f求八四、(H)分)已知/为/(X)的一个原函数,求∫x2∕(x}∕x.五、(6分)求曲线,=壮7的拐点及凹凸区间.六、(10 分)设J广(√∑)/X = X(e、' +1)+C ,求/(X)・(三)填空题(本题共5小题,每小题4分,共20分)・±J_(1)⅛(COSX)r = ________ 石________ .(2)曲线A = Xlnx上及直线X-y + l= °平行的切线方程为y =x-∖(3 )已知f f(e x) = xe~x,且/(D = O ,则大一高等数学期末考试试卷及复习资料详解/(X)= _________ /Cv)= 2(In X)________ .X 211(4)曲线V =3777的斜渐近线方程为 _______ V= 3Λ^9,二、选择题(本题共5小题,每小题4分,共20分)・(1)下列积分结果正确的是(D )(2)函数/W 在[恥]内有定义,其导数广⑴的图形如图1-1所示, 则(D ) •(A)刁宀都是极值点.⑻ g ,/3)),(£,/(£))都是拐点.(C) F 是极值点.,U 是拐点. (D) WJy))是拐点,勺是极值点.(3) 函数y = qe v ÷C 2e-÷A -e'满足的一个微分方程是(D ).(A) /-y-2>∙ = 3xe t . (B) /-y-2y = 3e v . (C) / + y-2y = 3Λ∙e c .(D) / + y~2y = 3e r .lim∕(⅞)-∕(⅞~z0 (4) 设/W 在%处可导,则I h 为(A ) •⑷ 广仇). (B) -f ,M.(C) O. (D)不存在.(5)下列等式中正确的结果是((A) (J* /(x)"∙χ)'Z=/W-(C) 町 /(χ)"χ]=/W -) 微分方程= (V+1)-的通解为三、计算J (本 共4小题,每小题6分,共24分).y =3 _5 "3 O(或令 √Γ+χ = r)四、解答题(本题共4小题,共29分)•1. (本题6分)解微分方程r-5∕÷6j = xe -.解:特征方程r 2-5r + 6 = 0 ------------- 1分 特征解斤=2,r 2 =3. ------------ 1分 3x大一高等数学期末考试试卷及复习资料详解 恤(丄—丄)1∙求极限j X-I In —X 11. xlnx-x+1Iim (—— _ ——)IIm ---------In XIUn I XTl x-1 I---- + In xh ∖x Iim x →,X -1 + xln1.1 + In X 1 IUn -------- =— j 1 + In X +1 2Λ = In Sin t2.方程尸COSWSinf 确定V 为X 的函数,dy y ,(f)-=-一 =∕sm∕, 解 JX 十⑴求dx 及Jx 2 .(3分) (6分)arctan JX3. 4.计算不定积分J石(1+『. arctanA∕√7—— (i + χ)=21 arctan √7t∕ arctan y ∕x ——解 Hatan 仇=2 J √x(l + x)=(arctan2+C ——「一 dx4.计算定积分如+曲.'3χ(l -VTTX) 0解 分)oT7⅛7_ V dx = 一J(:(I-、/i+x)〃X(6分)LL i∖l4/1 «\ ? r V 八2.(本题7分)一个横放着的圆柱形水桶(如图4-1),桶内盛有半桶水,设桶的底半径为R ,水的比重为乙计算桶的一端面上所受的压力.解:建立坐标系如图3.(本题8分)设/B在S】上有连续的导数,f(u) = f(b) = θ9且∫O∕2(X)JΛ =1^试求∫>∕ω∕解:J:Xf(X)f∖x)dx = £ Xf(X)df(x) 2 分= -∫n^^W ------------ 2 分=IV 2(Λ-)⅛-|£72(X)厶一一2 分4.(本题8分)过坐标原点作曲线>, = h^的切线,该切线及曲线y =lnx及X轴围成平面图形D.⑴(3) 求D的面积A;⑵(4) 求D绕直线X = e旋转一周所得旋转体的体积V.解:(1)设切点的横坐标为",则曲线y = In Λ在点(⅞Jn ⅞)处的切线方程y = Inx0 + —(X-X0).氐__I分由该切线过原点知山心-1 = 0,从而心=匕所以该切线的方程为1y = -X.平面图形D的面积1V = -X(2)切线"及X轴及直线Xe所围成的三角形绕直线Xe旋转V I = -7te1所得的圆锥体积为,3 2分曲线尸IZ及X轴及直线所围成的图形绕直线Xe旋转所得的旋转体体积为V2=(oπ(e-e>)2dy9】分因此所求旋转体的体积为V=V l-V2=-^2-e y)2dy = -(5e2-∖2e + 3).五、证明题(本题共1小题,共7分)•1.证明对于任意的实数Y , eJl + x.e x = l + x + —Λ2≥l + x2解法二设fM = e x-x~^则/(0) = 0.因为f f M = e x-∖. 1 分当Xno时,f,M≥o.f(χ)单调增加,/(χ)≥∕(θ)=o.当x≤0时,∕,ω≤0.∕(Λ∙)单调增加,/(X)≥/(0) =0. 所以对于任意的实数X, ∕3≥°∙即e'≥l + I 解法三:由微分中值定理得,R -1 = “ -60 =^(X-O) = ^Xt 其中§位于0 到X 之一1分2分A = V -ey)dy = ~e~^∙解法一:2分2分1分2分间。

大一期末考试一数学试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 若函数f(x) = 3x^2 - 4x + 5在区间[1, 2]上单调递增,则f(x)在区间[0, 1]上的性质是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增2. 已知向量a = (2, 3),向量b = (1, -2),则向量a与向量b的点积是:A. 1B. -1C. 5D. -53. 在直角坐标系中,点P(2, -3)关于y轴的对称点是:A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)4. 若等差数列{an}的第一项a1 = 3,公差d = 2,则第10项a10的值是:A. 23B. 25C. 27D. 295. 设函数f(x) = x^3 - 6x^2 + 9x,则f(x)的零点是:A. 1, 3, 9B. 1, 2, 3C. 1, 3, 6D. 1, 2, 6二、填空题(每题5分,共25分)6. 若函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则a、b、c应满足的关系是__________。

7. 向量a = (3, 4)与向量b = (-2, 1)的夹角余弦值是__________。

8. 已知等比数列{an}的第一项a1 = 2,公比q = 3,则第5项a5的值是__________。

9. 在平面直角坐标系中,直线y = 2x + 1的斜率是__________。

10. 若函数f(x) = |x - 2| + 3,则f(x)的最小值是__________。

三、解答题(每题15分,共45分)11. (5分)求函数f(x) = x^3 - 3x^2 + 4x + 1的导数f'(x)。

12. (5分)已知向量a = (2, -3),向量b = (1, 2),求向量a与向量b的向量积。

13. (5分)设等差数列{an}的第一项a1 = 5,公差d = 3,求该数列的前n项和Sn。

完整高数(一)PPT课件

y
y f (x)
f (x1)
f (x2 )
o
x
I
.
22
3.函数的奇偶性:
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数 ;
y y f (x)
f (x)
f (x)
-x o
x
x
偶函数
.
23
设D关于原点对称 , 对于x D, 有 f ( x) f ( x) 称 f ( x)为奇函数 ;
y 1 x2
定义: 设函数 y f (u)的定义域D f , 而函数 u ( x)的值域为Z, 若D f Z , 则称 函数 y f [( x)]为x 的复合函数.
x 自变量, u 中间变量, y 因变量,
.
47
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
或 x 0, ( x) x 2 1, 或 x 0, ( x) x 2 1 1,
综上所述
ex2,
f
[
(
x)]
x 2, e x2 1 ,
x2 1,
x 1 1 x 0
. 0 x 2
x 2
1 x 0; x 2;
.
50
三、双曲函数与反双曲函数
1.双曲函数
双曲正弦 sinh x e x ex 2
4321
-4 -3 -2 -1
o -1 1 2 3 4 5
x
-2 -3 -4
阶梯曲线
.
13
(3) 狄利克雷函数
y
D(
x)
1 0
当x是有理数时 当x是无理数时
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三明学院大一下高数
期末考十套卷 (1)
精品文档

收集于网络,如有侵权请联系管理员删除
3三明学院第二学期《高等数学》(下)期末考试卷 闭卷
(使用班级:四课时)考试时间:120分钟

一 选择题(每小题3分,共21分)
1对于微分方程02yyy,函数221cxecy ( )
A 是通解 B 是特解 C 不是解 D是解,但不是通解,也不是特解
2不是变量可分离的微分方程是( )

A xyy11 B 1yxyy C 022dyxdxy D 0xdyydx

3直线
53702370xyzxyz




( )

A垂直yoz平面 B 在yoz平面内 C垂直x轴 D在xoy平面内
4若xxxexxxfexxxfyxf22 22),(,),(),(,则),(2 xxfy=( C )
A 2xex B ()xxex22 C ex D ()21xex
5 累次积分
cos
2

00
(cos,sin)dfd





可以写作( )

A2100(,)yydyfxydx B2100(,)yydyfxydx
C1100(,)dxfxydy D2100(,)xxdxfxydy
6当( )时,

00a

a

n
q
n
收敛。

A 0q B 1q C 1q D 1q

题号 一 二 三 四 五 六 七 八 总分
得分
阅卷人
复核人






级 学号 姓名 --------------------------密---------------------封
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
线
-
-
-

-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
精品文档

收集于网络,如有侵权请联系管理员删除
7设积分路径
():()()xtltyt




,那么,第二类曲线积分计算公式

(,)(,)PxydxQxydy

=( )

A //[((),())()((),())()]PtttQtttdt B[((),())((),())]PttQttdt
C/[((),())((),())]()PttQtttdt D /[((),())((),())]()PttQtttdt
二填空题. (每小题3分,共30分)

1.(,)(0,0)24limxyxyxy____________.
2. 求函数yzux的全微分
3.将函数2()sin2fxx展开成x的幂级数
4.判断级数
2
21(1)1nnn


是条件收敛还是绝对收敛?_________.

5设D是由圆环2224xy所确定的闭区域,则Ddxdy
6设222(,,)2332fxyzxyzxy,求(0,0,0)fgrad=
7设L为圆周cos,sin(02)xatyatt,求22()LxydsÑ
8将xoz坐标面上的圆229xz绕z轴旋转一周,求所生成的旋转曲面方程
.

9 求微分方程xyyyx的通解

10 改换二次积分
2
100(,)x

dxfxydy

的积分次序

三、求过点(3,1,2)且过直线
43521xyz

的平面方程。(8分)
精品文档

收集于网络,如有侵权请联系管理员删除
四、求幂级数nnnxn0212的收敛域.(8分)

五、证明曲线积分(1,1)(0,0)()()xydxdy与路径无关,并计算积分值(8分)
六、求函数
22(,)(2)x
fxyexyy
的极值。(8分)
精品文档

收集于网络,如有侵权请联系管理员删除

七求微分方程: tansecyyxx满足初始条件
00xy
的特解.(8分)

八、计算22()xydv,其中是由曲面
22
zxy
及平面2z所围成的空间

闭区域.(9分)

相关文档
最新文档