桥梁桩基础设计计算部分
桩基础工程量计算

桩基础工程量计算桩基础工程量计算是指根据设计要求和施工方案,对桩基础施工所需要的材料和工作量进行计算和估算的过程。
桩基础通常用于建筑物、桥梁、堤坝等工程的基础中,承受荷载并将荷载传递到地下的深层土体中。
以下是桩基础工程量计算的一般步骤和相关内容。
第一步:确定设计要求在进行桩基础工程量计算之前,首先需要确定设计要求,包括桩的类型、直径或截面尺寸、桩长、桩身和桩头的材料等。
这些设计要求将直接影响桩基础的工程量计算结果。
第二步:桩体积计算根据桩的类型和尺寸,计算桩的体积。
比如,对于圆柱形桩,可以通过计算桩的底面积和桩长来得到桩的体积。
对于其他形状的桩,可以使用相应的公式或几何方程进行计算。
第三步:桩身材料计算桩身材料的计算包括桩的钢筋和混凝土的计算。
根据桩的设计要求和施工方案,计算桩身钢筋的总长度和数量。
同时,根据桩的尺寸和设计强度要求,计算混凝土的用量。
第四步:桩头材料计算桩头材料的计算包括桩头的钢筋和混凝土的计算。
根据设计要求和施工方案,计算桩头钢筋的总长度和数量。
同时,根据桩头的尺寸和设计强度要求,计算混凝土的用量。
辅助工程量计算包括桩基础施工所需的其他材料和工作量的计算。
这些材料和工作量可能包括桩机的使用时间、土方量和回填材料的用量等。
第六步:计算总工程量和成本估算将以上各项工程量计算结果相加,得到桩基础施工的总工程量。
根据工程量计算结果和相关材料的价格,估算桩基础施工的成本。
以上是桩基础工程量计算的一般步骤和相关内容。
在实际工程中,还需要根据具体情况进行调整和细化。
同时,使用计算软件和工程测量仪器可以提高计算的准确性和效率。
桥梁桩基础计算书

桥梁桩基础课程设计桥梁桩基础课程设计一、恒载计算(每根桩反力计算)1、上部结构横载反力N1 N1=12⨯2350=1175kN 2、盖梁自重反力N2 N2=12⨯350=175kN 3、系梁自重反力N312⨯25 ⨯3.5 ⨯0.8 ⨯1=35kN 4、一根墩柱自重反力N4KN N 94.222)1025(5.01.5255.0)1.54.13(224=-⨯⨯⨯+⨯⨯⨯-=ππ(低水位)KN N 47.195255.08.4155.06.8224=⨯⨯⨯+⨯⨯⨯=ππ (常水位)5、桩每延米重N5(考虑浮力) m KN N /96.16152.1425=⨯⨯=π二、活载反力计算1、活载纵向布置时支座最大反力⑴、公路二级:7.875/k q kN m = 193.2k P kN =Ⅰ、单孔布载 55.57822.1932875.74.24=⨯+⨯=)(R Ⅲ、双孔布载 24.427.875(193.2)2766.3082R kN ⨯⨯=+⨯=(2)、人群荷载Ⅰ、单孔布载 113.524.442.72R kN =⨯⨯=1、计算墩柱顶最大垂直反力R 组合Ⅰ:R= 恒载 +(1+u )汽ϕ∑iiyP +人ϕql= 1175+175+(1+0.2)⨯1.245⨯766.308+1.33⨯85.4 =2608.45kN (汽车、人群双孔布载)2、计算桩顶最大弯矩⑴、计算桩顶最大弯矩时柱顶竖向力 R= 1N +2N +(1+u )汽ϕ∑i i y P + 人ϕql 21 = 1175+175+1.2⨯1.245⨯578.55+1.33⨯42.7= 2271.14kN (汽车、人群单孔布载)⑵、计算桩顶(最大冲刷线处)的竖向力0N 、水平力0Q 和弯矩0M0N = max R +3N + 4N (常水位)= 2608.45+35+195.47=2838.92 kN0Q = 1H + 1W + 2W= 22.5+8+10=40.5 kN0M = 14.71H + 14.051W + 11.252W + 0.3活max R= 14.7⨯22.5+14.05⨯8+11.25⨯10+0.3⨯(2608.45-1175-175) = 933.185kN.m活max R ——组合Ⅰ中活载产生的竖向力。
桩基础的设计计算

上式中:E、I——桩的弹性模量及截面惯矩
zx——桩侧土抗力zx=Cxz=mZxz,C为地基系数; b1——桩的计算宽度; xz——桩在深度z处的横向位移(即桩的挠度)。
将上式整理可得:
d4xz dZ4
mEb1I Zxz
0
(1)
或
d4xz dZ4
a5Zxz
0
式中:——桩—土变形系数,
5
mb 1
EI
从上式中不难看出:桩的横向位移与截面所在深度、桩的刚度(包括桩身材料和截面尺寸)
以及桩周土的性质等有关,是与桩土变形相关的系数。
式(1)为四阶线性变系数齐次常微分方程,在求解过程中注意运用材料力学中有关梁的 挠度xz与转角z、弯矩Mz和剪力Qz之间的关系即
将式(7)代入式(2)得
x z Q 3 E 0A x 0 IM 2 E 0B x 0 I A 1 B 1 (Q 2 E 0A 0 I M E 0 B 0 ) I M 2 E 0 C 1 I Q 3 E 0D 1
Q 3 E 0(A 1 I A x 0 B 1 A 0 D 1 ) M 2 E 0(A 1 I B x 0 B 1 B 0 C 1 )
2)当基础侧面为数种不同土层时,将地面或局部冲刷线以下hm深度内各土层的mi,根据换算前 后地基系数图形面积在深度hm内相等的原则,换算为一个当量m值,作为整个深度的m值。
3)桩底面地基土竖向地基系数Co为: C0=m0h
(二)单桩、单排桩与多排桩
单桩、单排桩:指在与水平外力H作用面相垂直的平面上,由单根或多根桩组成的单根(排) 桩的桩基础,如下图a)、b)所示,对于单桩来说,上部荷载全由它承担。
B 0 也都是Z的函数,根据Z值制
桥梁桩基础设计计算部分要点

一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级0一级、二级、三级,分别为1.1、1.0和0.9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
桥台桩基础设计计算书

.62cos(25.1 0) =22694.12 kN E Ax E A cos( ) 25060
作用点与基础底面的距离:
1 e y 9.5 3.17 m 3
水平方向土压力对基底形心轴的弯矩:
M ex E Ax e y 22694 .12 (3.17) 71940 .36kN m
台后填土自重引起的主动土压力:
EA
式中:
1 mH 2Ka B 2
; m ——墙后填土重度的加权平均值( kN m3 )
H ――土压力作用的高度; B ――土压力作用的宽度;
K a ――主动土压力作用系数。
土压力作用系数如下:
Ka =
cos2 ( m ) cos2 cos( ) 1 sin( ) sin( ) cos( ) cos( ) cos2 (25.1 0) cos2 0 cos(25.1 2 0) 1 sin(25.1 2 25.1) sin(25.1 0) cos(25.1 2 0) cos(0 0)
Quk Qsk Qpk u p qsik li q pk AP
桩侧土的极限侧阻力标准值如下: 中密卵石土层,取 qs1k =85kPa. 密实卵石土层,取 q s 2 k =90kPa。 桩的极限端阻力标准值如下: 密实卵石土层,取 q pk =2200kPa
Quk Qsk Qpk u p qsik li q pk AP
) 1,4 36445 .14 1.4 2250 1.4 13282 .92 o M ud 1.2 (14742 37800
=33773.292 kN.m 3、桥上无飞机,台后有飞机荷载
桩基础课程设计计算书

桩基础课程设计计算书桩基础是土木工程中非常重要的一部分,它承担着支撑建筑物的重要作用。
在设计桩基础时,需要进行一系列的计算和分析,以确保其稳定性和安全性。
本文将介绍桩基础课程设计计算书的内容,以及其中涉及的一些重要计算。
一、桩基础设计的背景和意义桩基础是一种常见的基础形式,主要用于承载建筑物的重力和水平力。
它通过将桩打入地下,利用桩与土壤之间的摩擦力和桩端的抗拔力来支撑建筑物。
桩基础的设计需要考虑土壤的性质、桩的类型和尺寸、荷载条件等因素。
二、桩基础设计计算书的内容1. 工程背景和设计要求:介绍工程的背景和设计的基本要求,包括建筑物的类型、土壤条件、设计荷载等。
2. 土壤力学参数的确定:确定土壤的力学参数,包括土壤的强度参数、变形参数等,这些参数将用于后续的计算。
3. 桩的类型和尺寸选择:根据土壤条件和设计荷载,选择合适的桩的类型和尺寸,包括钢筋混凝土桩、预应力混凝土桩等。
4. 桩身的承载力计算:根据桩的类型和尺寸,计算桩身的承载力,考虑桩身与土壤的摩擦力和桩身的抗压能力。
5. 桩端的承载力计算:根据桩的类型和尺寸,计算桩端的承载力,考虑桩端的抗拔能力和桩端的摩擦力。
6. 桩基础的稳定性分析:对桩基础的稳定性进行分析,包括桩身的稳定性和桩端的稳定性,确保桩基础在不同荷载条件下的稳定性。
7. 桩基础的变形分析:对桩基础的变形进行分析,包括桩身的弯曲变形和桩端的沉降变形,确保桩基础在设计寿命内的变形满足要求。
8. 桩基础的设计优化:根据上述分析结果,对桩基础的设计进行优化,包括调整桩的类型和尺寸、增加桩的数量等,以提高桩基础的承载能力和稳定性。
三、桩基础设计计算书的重要性桩基础设计计算书是桩基础设计的重要依据,它包含了桩基础设计的各个环节的计算方法和结果。
通过桩基础设计计算书,可以评估桩基础的承载能力和稳定性,指导工程的施工和监测,确保工程的安全性和可靠性。
四、桩基础设计计算书的应用桩基础设计计算书广泛应用于土木工程领域,包括建筑物的基础设计、桥梁的基础设计、码头的基础设计等。
桩基础设计计算

第四章桩基础的设计和计算桩基础具有承载力高、稳定性好、沉降变形小、抗震能力强,以及能适应各种复杂地质条件的显著优点,是桥梁工程的常用基础结构。
在受到上部结构传来的荷载作用时,桩基础通过承台将其分配给各桩,再由桩传递给周围的岩土层。
当为低承台桩基础时,承台同时也将部分荷载传递给承台周边的土体。
由于桩基础的埋置深度更大,与岩土层的接触界面和相互作用关系更为复杂,所以桩基础的设计计算远比浅基础繁琐和困难。
本章主要依据《铁路桥涵地基和基础设计规范》TB 10002.5-2005(以下简称《铁路桥涵地基规范》)的相关规定介绍铁路桥涵桩基础的设计与计算。
第一节桩基础的设计原则设计桩基础时,应先根据荷载、地质及水文等条件,初步拟定承台的位置和尺寸、桩的类型、直径、长度、桩数以及桩的排列形式等,然后经过反复试算和比较将其确定下来。
在上述设计过程中,设计者必须注意遵守相关设计规范的基本原则和具体规定,因此,在讨论设计计算方法之前,先将桩基础的设计原则介绍如下。
一、承台座板底面高程的确定低承台桩基和高承台桩基在计算原理及方法上没有根本的不同,但将影响到施工难易程度和桩的受力大小,故在拟定承台座板底面高程时,应根据荷载的大小、施工条件及河流的地质、水文、通航、流冰等情况加以决定。
一般对于常年有水且水位较高,施工时不易排水或河床冲刷深度较大的河流,为方便施工,多采用高承台桩基。
若河流不通航无流冰时,甚至可以把承台座板底面设置在施工水位之上,使施工更加方便。
但若河流航运繁忙或有流冰时,应将承台座板适当放低或在承台四周安设伸至通航或流冰水位以下一定深度的钢筋混凝土围板,以避免船只、排筏或流冰直接撞击桩身。
对于有强烈流冰的河流,则应将承台底面置于最低流冰层底面以下且不少于0.25m处。
低承台桩基的稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流。
若承台位于冻胀性土中时,承台座板底面应置于冻结线以下不少于0.25m处。
桥梁桩基础计算

桩长计算一、计算参数根据XXX桥《岩土工程勘察报告》取如下参数:(1)桩长埋入黄土地基容许承载力[б0]黄土:[б0]=164KPa(2)钻孔桩桩周的摩阻力标准值τi黄土:τi =80KPa桩长验算例:1号桥墩二、上部和下部荷载(1)上部荷载支点最大反力:中梁:949 kN;边梁:893 kN每个桥墩上部荷载为2*949+2*893=3684kN(2)单个桥墩下部结构自重盖梁N1=26*22.1=574.6kN墩柱N2=26*2*16.78*3.1416*0.75*0.75=1541.9kN系梁N3=26*7.49=194.7kN承台N3=26*88.2=2293.2kN桩基N5=26*4*L*3.1416*0.75*0.75=183.8LkN 桩基取自重的一半计算91.9LkN每个桩基承受的荷载为1/4* 51N N+3684/4=1/4*(574.6+1541.9+194.7+2293.2+91.9L)+3684/4= 1151.1+23L+921=2072.1+23L(kN)二、桩基轴向受压承载力容许值[Ra]按照《公路桥涵地基与基础设计规范》 JTG D63-2007中5.3.3条 摩擦桩单桩轴向受压承载力容许值:[][][])3(21a 22001-+=+=∑=h k f m q q A l q u R a r n i r p i ik γλ 其中r q =0.7*0.7*(164+1.5*18*(L-3)=13.23L+40.67则单桩轴向受压承载力容许值[Ra]=1/2*4.71*(80*L )+3.1416*0.75*0.75*(13.23L+40.67)=211.8L+71.9三、结论当N<[Ra],桩长满足设计要求。
即2072.1+23L <211.8L+71.9L>10.6桩顶至冲刷线5m根据甘肃地区地震区带划分,本桥址地处青藏北部地震区南北地震带兰州—通渭地震亚带,桥址地震动峰值加速度为0.2g ,为8度区,加之桥址处为饱和黄土地质,地质情况较差,建议采用钻孔灌注桩群桩基础,桩径1.5m,桩长30m 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1。
0和0。
9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1。
4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
S Q1k、S Q1d-汽车荷载效用含汽车冲击力、离心力)的标准值和设计值;φc-在作用效应组合中,除汽车荷载效应效应(含汽车冲击力、离心力)以外其他可变作用效应的组合系数,当永久作用与汽车荷载和人群荷载(或其他一种可变作用)组合时,人群荷载(或其他一种可变作用)的组合系数取0.80;当除汽车荷载(含汽车冲击力、离心力)以外尚有两种其他可变作用参与组合时,其组合系数取0.70;尚有三种可变作用组合时,其组合系数取0。
60;尚有四种及多于四种的可变作用参与组合时取0.50。
(2)偶然荷载。
永久作用标准值效应与可变作用某种代表值效应、一种偶然作用标准值效应相组合.偶然作用的效应分项系数取1。
0与偶然作用同时出现的可变作用,可根据观测资料和工程经验取用适当的代表值。
地震作用标准值及其表达式按现行《公路工程抗震设计规范》中的规定采用。
表1—1 永久作用效应的分项系数7基础变位作用混凝土和垢土结构0。
50.5钢结构111。
1 上部荷载计算1。
1.1 永久荷载主要考虑桩基础上部结构的自重荷载,其他形式的永久作用如砼收缩作用等可忽略。
计算简式如下:永久荷载=预应力T型梁重+盖梁重+系梁重+墩身重(1—3)钢筋与混凝土的比例小于3%,不考虑钢筋的重量。
1 T梁自重——单位体积重26KN/m3G T梁=205。
96×26=5354.96KN2 墩身重——单位体积重24KN/m3,则:墩身体积3.14×/4×15.14=30。
43墩身重量G墩身=24×30。
43=730。
32 KN3 盖梁重-—单位体积重24KN/m3体积:V1=11.95×0.85×2=20。
32V2=(11。
95×2-1.35×2)/2×0。
85×2=18.02V3=2×0。
35×0.5×2=0.75盖梁体积V改良体积= V1 +V2 +V3=20.32+18。
02+0。
75=39。
0924×39。
09=938.16KN4 系梁重——单位体积重24KN/m3系梁体积V系梁体积=7。
25×1.8×1.5=19.58 m3系梁重量G系梁=24×19.58=469。
92 KN5 桥面铺装—-单位体积重26KN/m3桥面铺装体积V桥面铺装=38.27 m3;G桥面铺装=38.27×26=995。
02 KN6 防撞墙-—单位体积重24KN/m3;=21。
06m3;防撞墙体积V防撞墙G防撞墙=21。
06×24=505.44 KN作用在墩身底面总的垂直永久荷载为:G= G T梁/2+G墩身+G盖梁/2+G系梁/2+G桥面铺装/2+G防撞墙/2=5354.96/2+730.32+938。
16/2+469。
92/2+995.02/2+505。
44/2=4862.07 KN1。
1。
2 可变荷载为高速公路桥梁,可变荷载主要考虑汽车荷载、汽车冲击力、汽车制动力(风荷载,流水荷载,温度荷载等均可忽略)几个方面。
(1)汽车荷载计中汽车荷载采用2车道荷载进行分析,由于汽车荷载等级为公路-Ⅰ级,据《公路桥涵设计通用规范》JTCD—60-2004,车道荷载计算图示如下:P k一集中荷载标准值q k一均布荷载标准值据《公路桥涵设计通用规范》JTCD—60—2004,公路-Ⅰ级车道荷载的均布荷载标准值为q k=10。
5KN/m标准值按以下规定选取:桥梁计算跨径小于或等于5m时,P k=180 KN;算跨径等于或大于50m时,P k=360KN;桥梁计算跨径在5m~50m之间时P k值采用直线内插求得.计算剪力效应时,上述集中荷载标准值P k应乘以1.2的系数.P k=180+180/45×(30—5)=280KNq k =10.5 (KN / m )计算剪力效应时集中荷载标准值Pk乘以1。
2;汽车荷载P k=280×1.2+10。
5×30=651 KN(2)汽车冲击力据《公路桥涵设计通用规范》JTCD-60—2004,汽车荷载的冲击力标准值为汽车荷载标准值乘以冲击系数μ。
冲击系数μ可按下式计算:f表示结构基频(HZ);当f<1.5HZ时,μ=0.05;当f>14HZ时,μ=0.45;当1.5HZ≤f≤14 HZ时,μ=0。
176lnf—0.0157;汽车冲击力=汽车荷载×μ此桥的频率f=4HZ,带入式中,故u=0。
228;则汽车冲击力N1=651×0.228=148。
43 KN(3)汽车制动力一个设计车道上由汽车荷载产生的制动力标准值按规范规定的车道荷载标准值在加载长度上计算以总重力的10%计算,但公路—Ⅰ级汽车荷载的制动力标准值不得小于165KN。
10%的总重力=322 KN>165KN;取汽车制动力N2=322 KN;由以上计算可变荷载可归纳列入下表:表1-2 可变荷载(4)偶然荷载本合同段区内50年超越概率10%的地震动峰值加速度小于0。
05g,地震动反应谱特征周期小于0.35s,对应地震基本烈度小于Ⅵ度,故地震力可不进行计算.1.1。
3 上部荷载总算据《公路桥涵设计通用规范》JTCD-60—2004;(1-4)其中:γ0=1。
1;γQj=1.2;S Q1=1。
4;竖向荷载P V=1。
1×(1.2×4862。
07+1.4×(651+148。
43+322))=8144.94KN横向荷载P H=322×1.4=450.80KN弯矩=2690.625表1-3桩顶上部荷载总算表竖向荷载(KN)水平荷载(KN)弯矩()8144.94450。
802690.6252.1 方案一:单排墩柱式桩基础(1)2。
1.1 工程地质介绍总体上桥位区内地形变化较大,相差高度大,桥位覆盖层厚度小,下伏基岩为花岗岩,岩石风化强烈,全风化层厚度大,最大厚度将近30米,该层在水的作用下岗地边坡坡面抗冲刷能力差,洼地内上部承载力偏低,桥位中风化基岩埋深大,且受地域地质影响,中风化花岗岩岩体破碎,桥位洼地内地下水位埋深浅,中风化基岩虽破碎,但饱和单轴抗压强度高,可作为桩基的持力层.2。
1.2 基础类型的选择选择桩基础是,根据设计要求和现场的条件,并考虑各种不同情况,包括荷载的大小和性质、地质和水文地质条件、料具的用量价格(包括料具的数量)、施工难易程度、物质供应和交通运输条件以及施工条件等等,经过综合考虑后对以下四个可能的基础类型,进行比较选择,采用最佳方案高承台桩基础。
本设计桩基础,因为有很好的承载力的持力层,按柱桩进行设计计算。
浅基础:建筑物的浅平基多用砖、石、混凝土或钢筋混凝土等材料组成,因为材料的抗拉性能差,截面强度要求较高,埋深较小,用料省,无需复杂的施工设备,因而工期短,造价低,但只适宜于上部荷载较小的建筑物。
低承台:稳定性较好,但水中施工难度较大,故多用于季节性河流或冲刷深度较小的河流,航运繁忙或有强烈流水的河流。
位于旱地、浅水滩或季节性河流的墩台,当冲刷不深,施工排水不太困难时,选用低承台桩基有利于提高基础的稳定性。
高承台:由于承台位置较高或设在施工水位以上,可减少墩台的坞工数量,可避免或减少水下施工,施工较为方便,且经济.高桩承台基础刚度较小,在水平力的作用下,由于承台及桩基露出地面的一段自由长度周围无土来共同承担水平外力,桩基的受力情况较为不利,桩身的内力和位移都将大于低承台桩基,在稳定性方面也不如低承台桩基。
沉井:沉井基础占地面积小,施工方便,对邻近建筑物影响小,沉井内部空间还可得到充分利用。
沉井法适用于地基深层土的承载力大,而上部土层比较松软,易于开挖的地层。
根据《公路桥涵地基与基础设计规范》(JTJ024-85)的规定,选钻孔桩、钻(挖)孔桩适用于各类土层(包括碎石类土层和岩石层)。
一般情况下桩基础设计需经过以下步骤:(1)通过环境条件、结构荷载条件、地质施工条件、经济条件等确定桩型;(2)确定基桩几何尺寸;(3)确定桩数及平面布置;(4)验算桩身结构强度。
本设计根据实际情况做出以下计算。
2。
1.3桩基础的设计(1)桩身设计1。
桩材选择:根据本工程的特点,选择钢筋混凝土钻孔灌注桩。
2。
桩径:初步选定桩径为1。
80m.3。
桩长:由于设计桩为端承桩,根据(JTJ024-85.《公路桥涵与基础设计规范》第4。
3。
5条);当河床岩层有冲刷时,桩基须嵌入基岩,按桩底嵌固设计,其应嵌入基岩的深度按下式计算;圆形桩:(2-1)——在基岩顶面处的弯矩();--桩嵌入基岩中(不计风化层)的有效深度不得小于0。
5m;-—天然湿度的岩石单轴极限抗压强度(kpa);——钻孔桩的设计直径(m);——系数,根据岩层侧面构造而定,节理发达的取小值,节理发达的取大值;h==1.6m故设计嵌入深度h=1。