矩阵理论-第五讲38页PPT

合集下载

矩阵理论(第三章矩阵的标准型)

矩阵理论(第三章矩阵的标准型)

100
2100 2 2101 2 0 100 101 2 1 2 1 0 2100 1 2101 2 1
第一节
矩阵的相似对角形
一、矩阵的特征值与特征向量 1、相似矩阵:设V是n维线性空间,T是线性变换, e1, e2,…,en与e'1,e'2,…,e' 是两组基,过渡矩阵 P,则T在这两组基下的矩阵A与B相似,
i
1
i Js
这些约当块构成的分块对角阵J,称为A的约当标准形。
J2
例5 Jordan标准形。
例5的初级因子为 ( 1),( 1),( 2) Jordan标准形为
1 J 1 2
2、k级行列式因子:特征矩阵A(λ)中所有非零的k 级子式的首项(最高次项)系数为1 的最大公因 式Dk(λ)称为 A(λ)的k级行列式因子。
A( ) E A
例5 求矩阵的特征矩阵的行列式因子 解:特征矩阵为
1 1 E A 2
若A能与对角形矩阵相似,对角阵是由特征值构 成的P是由对应特征值的特征向量构成的。
例3
解:
4 6 0 A 3 5 0 3 6 1
100 A ,计算:
4 A E 3 3
6
0
5 0 (1 )2 ( 2) 0 6 1
3级因子,因为
0 0 0 2 1 1 2 3 3 0
1
3
0 0 0, 2 0
2 2(( 1)3 ,( 1)2 ( 2), 2 2 7,0,...) 1
4级因子

TRIZ创新理论阿奇舒勒矛盾矩阵课件

TRIZ创新理论阿奇舒勒矛盾矩阵课件
• 3.矛盾元素是非工程参数,不同的工况条件对它有着不同的要求。 • 例如,冰箱的门既要经常打开,又要经常保持关闭; • 道路上既要有十字路口,又要没有十字路口; • 歌咏比赛的奖项既要设立得多,又要设立得少等。
TRIZ创新理论阿奇舒勒矛盾矩阵
12
例1:土地爷的哲学
• 这是古时候的一个神话故事。有一次土地爷外出,临行前嘱咐他的儿子替他在土地 庙“当值”,并且一定要把前来祈祷者的话记下来。他走后,前前后后来了四个祈 祷者——
TRIZ(萃智)理论
阿奇疏勒矛盾矩阵
创新操作方法
2012.7
TRIZ创新理论阿奇舒勒矛盾矩阵
1
物理矛盾与技术矛盾的解决原理
• 1.矛盾的概念及分类 • 2.物理矛盾及其解决原理 • 3.技术矛盾及其解决原理 • 4.矛盾矩阵及其应用
• 4.1矛盾矩阵的构造 • 4.2矛盾矩阵的应用 • 4.3技术矛盾解决方法实际应用举例
• 5.TRIZ法技术矛盾和物理矛盾解的基本思路 • 6.40条发明创新原理的使用窍门
TRIZ创新理论阿奇舒勒矛盾矩阵
2
1.矛盾的概念及其分类
矛盾普遍存在于各种产品或技术系统中。 技术系统进化过程就是不断解决系统所存在矛盾的
过程。
矛盾的类型:
TRIZ创新理论阿奇舒勒矛盾矩阵
3
2.物理矛盾及其解决原理
• 第j使,三用该步。矩,阵按元照素相值矛表盾示的40通条用发工明程创参新数原编理号的i序和号j,,在按矛照盾该矩序阵号中找找出到相相应应的的原矩理阵供元下素一M步i-
• 第四步,根据已找到的发明创新原理,结合专业知识,寻找解决问题的方案。一般情 况下,解决某技术矛盾的发明原理不止一条,应该对每一条相应的原理作解决技术矛 盾方案的尝试。

矩阵理论-第七讲

矩阵理论-第七讲
(3) (1):因为 P Cnn,所以对任意 0 x Cn ,Px 0 正定性 xH Ax xH PH Px (Px)H (Px) Px, Px 0
由内积的
兰州大学信息科学与工程学院
矩阵理论第5讲-5
Hermite矩阵的正定性
– 推论
Hermite正定矩阵的行列式大于零
由 det A 12 L n 0 易知
矩阵理论-第七讲
兰州大学信息科学与工程学院 2004年
兰州大学信息科学与工程学院
矩阵理论第5讲-1
上节内容回顾
• 酉矩阵
– n个列向量是一个标准正交基 AH A I
• 酉相似下的标准形
AH A1
– Schur定理:任一复数方阵均可酉相似于上三角矩阵
U Cnn U 1 U H
U 1AU U H AU T
是Cn
上的向量范数。如果
ACnn x Cn
都有:
Ax A x
v
m
vБайду номын сангаас
则称矩阵范数 g m 与向量范数 gv 是相容的
矩阵范数中的第4条是矩阵范数与向量范数相容的必要条件:
ABx A(Bx) A Bx
v
v
m
v
因为 T sup{ Tx x : x 0}
T Tx x (x 0)
所以 AB sup{ ABx x : x 0} sup{( A Bx ) x : x 0}
兰州大学信息科学与工程学院
矩阵理论第5讲-3
Hermite矩阵的正定性
使得
U H AU diag(1, 2 , L n )
上式右边同乘以列向量:
1
y
2
M
n
左边同乘以行向量 yH,可得

(第五讲)模糊理论PPT课件

(第五讲)模糊理论PPT课件

2021/3/12
6
模糊集与隶属函数(3)
例2.8 论域U={高山,刘水,秦声},用模糊集A表 示“学习好”这个概念。
解:先给出三人的平均成绩:
高山:98分,刘水:90分,秦声:86分 上述成绩除以100后,就分别得到了各自对“学
习好”的隶属度:
μA(高山)=0.98,μA(刘水)=0.90 ,μA(秦声)=0.86 则模糊集A为:
则A:B A(u) B (u) / u
uU
1/u
[1 (u 25)2]1 / u
[1 ( 5 )2]1 / u
0u25
25uu
5
uu100
u 50
A B A(u) B (u) / u uU
[1 ( 5 )2]1 / u
[1 (u 25)2]1 / u
50uu
u 50
]1
当50 u 100
9
模糊集的表示方法(3)
• 无论论域U有限还是无限,离散还是连续, 扎德用如下记号作为模糊集A的一般表示 形式:
A A(u)/u uU
• U上的全体模糊集,记为:
F(U)={A|μA:U→[0,1]}
2021/3/12
10
模糊集的运算(1)
模糊集上的运算主要有:包含、交、并、补等等。
uu100
5
A 1/u
1[1 ( 5 )2]1 / u
2021/3/120u50
50u100
u 50
13
模糊集的运算(4)
其它的模糊集运算:
• 有界和算子 和有界积算子
A B:m in{1,A(u)B(u)} AB:m ax{0,A(u)B(u)1 }
• 概率和算子ˆ 与实数积算子·

矩阵低秩分解理论课件

矩阵低秩分解理论课件

多媒体技术与小学语文教学的有效融合【摘要】本文旨在探讨多媒体技术与小学语文教学的有效融合。

在介绍了这一主题的重要性。

在分别从多媒体技术在小学语文教学中的应用、提升教学效果、促进学生学习兴趣、缓解教学难点以及实践案例等方面进行了分析。

随后在总结了多媒体技术与小学语文教学融合的重要性,并探讨了未来多媒体技术在小学语文教学中的发展方向,倡导了深度融合的观点。

通过本文的研究,可以清晰地看到多媒体技术在小学语文教学中的价值和潜力,为提升教学质量和学生学习效果提供了新的思路和方法。

【关键词】多媒体技术、小学语文教学、融合、应用、提升效果、提高兴趣、缓解难点、实践案例、重要性、发展方向、深度融合1. 引言1.1 多媒体技术与小学语文教学的有效融合多媒体技术与小学语文教学的有效融合,是当前教育领域中备受关注的话题。

随着科技的发展和普及,多媒体技术在教育教学中的运用逐渐广泛,而在小学语文教学中,充分利用多媒体技术,将会对学生的语文学习起到积极的促进作用。

语文教学是小学教育的重要组成部分,而多媒体技术的引入使得传统的语文教学方式得到了革新和提升。

通过多媒体技术,教师可以呈现丰富多彩的教学内容,如图文并茂的课件、生动有趣的动画等,这不仅可以激发学生的学习兴趣,还能提升教学效果。

多媒体技术还能够帮助教师解决小学语文教学中的难点和问题,比如词语解释、生字认读等。

通过多媒体技术,这些看似抽象难懂的知识可以被生动形象地呈现出来,使学生更容易理解和掌握。

多媒体技术与小学语文教学的有效融合是一种创新、高效的教学方式,它不仅提升了教学效果,还帮助学生增加学习兴趣,促进了语文素养的提高。

在未来,随着多媒体技术的进一步发展,它将在小学语文教学中发挥出更大的作用,倡导多媒体技术与小学语文教学的深度融合将成为当前教育改革的重要方向。

2. 正文2.1 多媒体技术在小学语文教学中的应用多媒体技术在小学语文教学中的应用是指利用计算机、视频、音频、图像等多种媒体形式,结合教学内容和教学目标,为小学生提供多样化的学习方式和资源。

多项式矩阵理论

多项式矩阵理论

如何求gcd 以gcrd为例.
Why:
04级研究生《线性系统理论》教案
Gcd 的性质 以gcrd为例 gcrd不唯一. 若R(s)是D(s)和N(s)的gcrd,W(s)是单模矩阵, 则W(s)R(s)也是D(s)和N(s)的gcrd. Why:
(2)D(s),N(s)的所有gcrd在非奇异性和单模性上相同,即 若R1(s)是D(s),N(s)的一个gcrd R2(s)也是D(s),N(s)的一个gcrd 则R1(s)非奇异R2(s)非奇异 R1(s)单模R2(s)单模 (3) (4)gcrd R(s)可表示为R(s)=X(s)D(s)+Y(s)N(s) (5)gcrd的多项式元的次数可以高于D(s),N(s)元多项式的次数.
04级研究生《线性系统理论》教案
非既约矩阵的既约化
1
通过左乘或右乘单模矩阵,即行(列)初等变换实现既约化。
2
实质:降低行或列的次数
3
含义:在初等运算下,degdetM(s)不变。
4
实现既约化以后,次数不能被降低了。
5
6.12 Smith形
史密斯形的特征
04级研究生《线性系统理论》教案
特征: Smith形的求法 见书。 对Smith形的一些讨论 对给定的多项式矩阵Q(s),其Smith形唯一。 (变换U(s),V(s)不唯一)
次数
6.10 列次数和行次数
03
01
02
04级研究生《线性系统理论》教案

多项式矩阵的列(行)次表示式
列次表示式 上例中的M(s)可表示为 一般地,
1
2
行次表示式
6.11 既约性
一. 既约性的定义 此处是对非奇异多项式矩阵定义的,方阵(可推广至非方)。 M(s)列既约: M(s)行既约: 注: 列既约和行既约之间无必然的联系; M(s)为对角阵时,列既约等价于行既约。 二. 既约性判据 如果已求出detM(s),则可利用定义判断; 利用列(行)次表示式

矩阵理论-第三章-矩阵的Jordan标准型.ppt

矩阵理论-第三章-矩阵的Jordan标准型.ppt
因此 A10 A6 8A A6(A4 E4 ) 8A 8A
初等变换和初等矩阵都是可逆的
定理 3.2 对任意一个 m n 型的 –矩阵 A() , 作一次某种初等行(列)变换,相当于给 A() 左(右)乘一个相应的 m 阶( n 阶)初等矩阵.
定义 3.2 设 A() 、 B() 是两个同型的 –矩阵, 如果 A() 可以经过有限次初等变换化为 B() , 则称 A() 与 B() 是等价的,记作 A() B() .
推论 2 可逆 -矩阵可表示为若干个初等矩阵之积.
定义 3.3 n阶 -矩阵 A( ) 中所有非零 k 阶子式的 首项系数为 1 的最大公因式称为 A( ) 的 k 阶行列 式因子,记为 Dk () .
由定义知 Dn() 即为 A( ) 的行列式的值,显然 Dk () | Dk1() (称为依次相除性), k 1, 2, , n 1 .
( 1)2
1
Hale Waihona Puke 1c1c3 c2 c3
( 1)
( 1)2
化为 Smith 标准形,其不变因子为 d1() 1 , d2() ( 1) , d3() ( 1)2 .
方法二 用定义计算 根据最大公因式的计算,知行列式因子为
D1() 1 D2() ( 1) D3() 2( 1)3
以上 i 1, 2, , r ; j 1, 2, , s .
定义 3.5 di (), i 1,2, , r 的如上因式分解式中, 所有幂指数不为 0 的因式
( j )kij
( i 1, 2, , r ; j 1, 2, , s ),称为 A( ) 的初等因子. 全体初等因子的集合称为初等因子组.
解 A( ) 虽然是对角形,但对角元素不满足依次相除性,

矩阵论第一章

矩阵论第一章

定义 1. 具有某种特定性质的事物的总体称为 集合. 组成集合的事物称为元素. 不含任何元素的集合称为空集 , 记作 .
元素 a 属于集合 M , 记作 a M .
元素 a 不属于集合 M , 记作
a M
(或
a M ) .
表示法:
(1) 列举法: 按某种方式列出集合中的全体元素 .
例: 有限集合 A a1 , a2 , , an
实质:二元关系是描述两个集合之间元素与元素 的关系或者是一个集合内部两个元素之间的关系, 它是满足某种规律的有序对全体。
例 1:
A与B之间是一个住宿关系。
设A {甲,乙,丙,丁}(四个人),B {1, 2,3} (三套房间),
显然,R {(甲,1),(乙,3),(丁,3),(丙,2)} A B
逆映射与复合映射
1.1.8 逆映射的定义
定义: 设有映射 使 称此映射 g为 f 的逆映射 , 习惯上 计为 f 1. 若f有逆映射,则称f可逆. 例如, 映射
A
f
f 1
若存在一新映射
B
其逆映射为
机动
目录
上页
下页
返回
结束
定理1.1.4 设映射f :A→B是可逆的,则f 的逆 映射 f 1 是唯一的。
实数集合
R x x 为有理数或无理数
机动 目录 上页 下页 返回 结束
2. 集合之间的关系及运算
定义2 . 设有集合 A , B , 若 x A 必有 x B , 则称 A 是 B 的子集 , 或称 B 包含 A , 记作 A B
若 A B 且 B A 则称 A 与 B 相等, 记作 A B . 例如 , , ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档