200MW汽轮机叶片断裂原因分析及处理
汽轮机叶片断裂原因分析及防范措施

汽轮机叶片断裂原因分析及防范措施伍爵技术协作信息技术推广与应用汽轮机叶片断裂原因分析及防范措施武有军李恒坤/蒙华泰热电厂摘要:由于汽轮机叶片工作务件恶劣,受力情况比较复杂,断裂事故较常发生,且后果又比较严重,所以对叶片断裂的原因进行分析, 同时提出相关防范措施就显得尤为重要,文章就此进行分析.关键词:汽轮机;叶片断裂一,引言在汽轮机发生的事故中,由于汽轮机叶片损坏而发生的占主要部分,而这其中汽轮机叶片的断裂,对机组的运行来说是一种危害甚大且较多发生的故障.叶片断裂事故的防止,又因单机容量日益增大,叶片长度增加,叶片的工作应力上升而变得13趋复杂.因此,找出叶片断裂的原因并提出预防措施,这对汽轮机的安全运行是很有必要的.二,汽轮机叶片的组成1.叶型:叶片的主要工作部分,汽流通过由相邻叶片的型线部分构成的通道,完成能量转换.2.叶根:将叶片固定在转子叶轮上的装配部分.3.围带,拉筋等:属于连接件,把几只或整圈叶片连成叶片组,并可调整叶片的自振频率和减少叶片所受的动应力.三,叶片断裂的主要现象分析1.汽轮机内或凝汽器内产生突然的声响.2.机组振动突然增大或抖动,轴向位移显示增大或摆动.3.叶片损坏较多时,同样负荷下蒸汽流量增加,监视段压力上升.4.断裂的叶片可能进入抽汽管道,造成逆止门卡涩等.5.停机惰走或盘车状态能听到金属摩擦声.6.可能引起轴瓦温度和回油温度升高,这是因转子平衡遭到破坏而造成的,同时推力瓦温度上升.7.停机过程经过临界转速区时振动明显增加.四,汽轮机叶片断裂的原因分析众所周知,热电厂汽轮机叶片,特别是动叶片,所处的工况条件及环境极为恶劣.主要表现在应力状态,工作温度,环境介质等方面.汽轮机在工作时,动叶片承受着最大的静应力及交变应力.静应力主要是转子旋转时作用在叶片上的离心力所引起的拉应力,叶片愈长, 转子的直径及转速愈大,其拉应力愈大.所以处于次末级的这两失效叶片,受到了相当大的拉应力.此外,由于蒸汽流的压力作用还产生弯曲应力和扭力,叶片受激振力的作用会产生强迫振动;当强迫振动的频率与叶片自振频率相同时即会引起共振,振幅进一步加大,交变应力急剧增加,会导致叶片发生疲劳断裂.汽轮机的每一级叶片工作温度都不相同,第一级叶片所处的温度最高,大约535~C左右;随后由于蒸汽逐级做功,温度逐级降低,直到末级叶片将降低到IO0~E以下.这两片次末级失效叶片所处的温度是95℃,在这个部位会有游离水分子存在,游离水分子由于过冷凝结成水滴,冲击动叶片进汽侧背弧面,造成水冲蚀.叶片在水蒸汽介质中工作,其中多数是在过热蒸汽中工作,末级叶片是在潮湿蒸汽中工作;过热蒸汽中含有氧,会造成高温氧化腐蚀,生成腐蚀性盐而影响叶片的疲劳强度;湿蒸汽区,可溶性盐垢(如钠盐)吸收水珠成为电解液,造成电化学腐蚀.汽轮机叶片的点蚀是一个电化学的过程.金属与电解质相互作用,阳极发生溶解,铁原子失去电子成为Fe.叶片表面钝化膜的不均匀或破裂,微区化学成分的差异,残余应力较高均为产生点蚀的原因,当介质中含有活性阴离子(c1]时,它们被吸附在金属表面某些点上,形成微电池.膜破坏处成为阳极,而未破坏处为阴极.由于阳极面积比阴极小得多,阳极电流密度大,很快被腐蚀成小孔,溶液中的cl—随着电流向小孔里迁移,使小孔内金属氯化物浓度升高.由于氯化物的水解,小孔内溶液的酸度增加,加上小孑L内氧的供应困难,阻碍孔内金属的再钝化,使孑L内金属处于活化状态,不断受到腐蚀.在交变应力的作用下,在点蚀坑底部会有应力集中而促进裂纹的萌生,形成微裂纹,继而扩展成宏观裂纹,当裂纹扩展到一定的程度时,叶片发生最终的断裂,整个过程是一个腐蚀疲劳断裂过程.此外,由于叶片根部松动,叶根参加振动,使叶根之间或叶片与叶轮机接触面产生往复微量相对摩擦运动而造成机械损坏.同时摩擦表面材料晶体滑移和硬化,使硬化区内产生许多平行的显微裂纹,并不断扩展,从而引起疲劳断裂.五,防范措施探讨1.机组启动前必须对来汽管道充分疏水,启动中蒸汽须保持较高的过热度,当启动或运行中蒸汽温度突然直线下降50%或lOmin内下降50~C时,应立即打闸停机或者发现汽温突然下降,并且来汽管道,主汽门,调节汽门冒白汽时,也应立即果断打闸停机.2.机组启动前应将轴向位移保护投入,运行中不得将轴向位移保护退出,特别是启动中,进行主汽门,调节汽门严密性试验时,轴向位移保护动作后不得以怀疑其误动为理由退出保护强行挂闸.在轴向位置指示达到定值,如保护不动作时,应立即打闸停机.3.并列运行的机组要有串联截止门,保证减温水管路切断可靠,以防止停机状态或启动给水泵后水漏入热态的汽轮机.锅炉打压时,要采取严密的措施阻隔水进入母管.4.采取防止加热器满水返人汽缸的措施,尤其是抽汽逆止门不严密或者加热器铜管易破裂的机组,要经常监控水位变化.5.完善调节各抽汽门等可能有水进入汽缸的温度测点,以便于及时监视汽缸进水或进冷汽并定期试验,确保抽汽逆止门动作可靠,严密不漏.6.改进疏水系统使其管道,联箱,容器的断面或容积适应疏水量的需要,并按压力合理布置进入联箱,容器的位置顺序,确保各级疏水畅通,不发生疏水压力升高返入汽缸.在机组整体布局设计上,一定要注意疏水联箱的底部标高应高于凝汽器热水井最高点的标高,必要时可开大级间疏水孔或取消疏水环,抽汽机组要保证抽汽口间的联络疏水常通.7.确保门杆漏汽管道和汽机溢汽管道上的逆止门动作可靠,截止门严密不漏,防止除氧器满水返入汽缸.8.新机组验收时应检查确定叶片经探伤,测频合格.投产后大修中应对叶片进行损伤检查,发现问题及时解决.9.经常保持系统频率在合格范围内运行,并尽可能减少机组在偏离正常频率下的运行时间.1O.机组运行中振动突然增加,听到甩脱叶片的撞击声,机组内部有摩擦声以及出现凝汽器铜管突然泄漏等情况,是掉叶片故障的征兆, 应按规程规定果断停运机组进行检查,切不可拖延时机,否则将造成设备严重损坏.l1.发生个别叶片断落故障后,可对断裂叶片采取对称切割叶片技术措施,还应对未断落的叶片全面进行探伤,测频检验,确认无问题后方可恢复机组运行.此外,应加强机组运行中的监视,尤其是在机组启,停,加减负荷过程中,必须加强对汽压,汽温,出力,真空,胀差,串轴,振动等的监视,精心调整,不允许这些参数剧烈变化,严格执行规程规定.启,停机过程应按照操作票和启,停机睦线逐步进行操作;同时还要加强汽,水品质的监督,防止叶片结垢,腐蚀;另外,若停机时间较长,应做好保养工作,现经常用的方法是真空干燥法,有效地防止了通流部分锈蚀.充分利用机组大修,小修机会对叶片进行重点检查和探伤,及时发现问题,从而把事故消灭在萌芽之中.参考文献【1】谢永慧,孟庆集:汽轮机叶片疲劳寿命预测方法的研究Uj,西安:西安交通大学,2002;【2】王江洪,齐琰,苏辉等:电站汽轮机叶片疲劳断裂失效综述01,汽轮机技术,2004;【3】程绍兵,刁伟辽:300MW汽轮机叶片点蚀损伤机理分析及预防措施UJ,热力发电,2003;【4】韩彦波:汽轮机叶片裂断事故剖析[1],黑龙江科技信息,2007.?l35?。
汽轮机断叶片事故现场处置方案

预案编号:版本号:0版汽轮机断叶片现场处置方案编制单位名称:新项目发电部编制:李平棋初审:季晓勇审核:郝晓东批准:祝康平陶建国发布日期:2012年08月15日实施日期:2013年01月01日中电神头发电有限责任公司编制汽轮机断叶片现场处置方案发布令为保证汽轮机断叶片事故发生时,能科学、合理、有序、有备地进行事故处理,减少人财物的损失,最大限度地减轻汽轮机断叶片事故后次生灾害所造成的损失。
根据《发电企业人身伤亡事故应急总体方案》及《防止电力生产重大事故的二十五项重点要求》的要求,制定《中电神头发电有限责任公司汽轮机断叶片现场处置方案》,现予以发布实施。
批准人:(签字)(盖章)××××年××月××日汽轮机断叶片现场处置方案1事故特征1.1特征1.1.11.1.21.1.3汽轮机中间几级的蒸汽压力升高,但负荷没有变化或反而1.1.4未几级掉叶片时,如果打破凝汽器铜管,则热水井水1.1.5由于蒸汽压力的重新分配以及转子平衡发生变化,推1.2 主要的危险因素汽轮机叶片工作在高温、高压、高转速或湿蒸汽区等恶劣环境中,经受着离心力、蒸汽力、蒸汽激振力、腐蚀和振动以及湿蒸汽区高速水滴冲蚀的共同作用,再加上难以避免的设计、制造、安装质量及运行工况、检修工艺不佳等因素的影响,常会出现损伤或损坏。
叶片损伤形式:蜂窝状、开焊、麻点、锈蚀、擦伤;叶片损坏形式:折断、裂纹、扭弯、二次损坏及其它。
上述损伤或损坏轻则引起汽轮发电机组振动,重则造成飞车事故。
因此,汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全。
一旦发生汽轮机叶片断损事故,势必被迫进行停机检修处理,对电厂损失极大。
1.3事故发生的区域、地点或装置的名称:事故最容易发生在汽轮机高、中、低压转子。
1.3事故的危害程度:事故可能造成重大设备损坏和财产损失。
1.4事故可能出现的征兆:汽轮机断叶片发生前征兆:1.4.1停机惰走期间或盘车状态,轴振动都比原始值增大,惰走时间缩短;1.4.2机组振动时大时小,转子振动和轴承振动不符合成倍增加的规律。
汽轮机末级叶片断裂的调查分析和运行建议

汽轮机末级叶片断裂的调查分析和运行建议发表时间:2017-06-14T13:43:25.067Z 来源:《电力设备》2017年第6期作者:夏敏[导读] 摘要:亚齐火电项目的2#汽轮发电机组,总承包方在质保期结束后按照合同要求完成了一次检查性大修,然后交给业主方。
(中国水利水电第八工程局有限公司浙江杭州 41000)摘要:亚齐火电项目的2#汽轮发电机组,总承包方在质保期结束后按照合同要求完成了一次检查性大修,然后交给业主方。
其运行人员在2016年9月 20 日运行中发现锅炉水质钠离子浓度、电导度、PH值急剧增大,判断为凝汽器钛管破损,海水进入凝结水系统所致,停机检查发现发电机侧凝汽器钛管有23根损坏漏水,维修人员进行堵管处理后未做深入检查就安排启机,但是随后多次冲转因振动大未能成功,停机再次进入凝汽器汽室检查,发现低压转子第22级末级叶片(发电机侧)多片断裂。
关键词:钠离子浓度;泄漏;叶片断裂;低频运行一、概述亚齐火电项目的2#汽轮发电机组,质保期结束,总承包方按照合同要求进行了一次检查性大修,然后交给业主方。
2016 年 9 月 20 日凌晨,机组负荷85MW,主汽压力7.4MPa,主汽温度525℃,5:00时刻,发现汽轮机振动变大(2X 振动157.1um,5X振动达到188.7um),10:00 左右,锅炉水的水质化验出现了急剧变化:钠离子浓度(1340 ppb), 导电率( 4410 us/cm),pH (4.36),运行人员立即采取炉水加药对水质进行调整,但水质状况无法改变,此情况下又采取降负荷方式,在20日17:05 降负荷到60MW,但水质等问题一直未能解决,直到22日08:28采取停机检查处理。
由于锅炉水质钠离子浓度、电导度、PH值是在运行中急剧增大,运行人员判断是凝汽器钛管破损,海水进入凝结水系统所致,于是停机后对凝汽器钛管进行了检查,发现发电机侧凝汽器钛管有23根损坏漏水,维修人员简单进行堵管处理后未继续做深入检查就安排启机,但是汽轮机在随后多次冲转过程中因振动大未能成功。
汽轮机叶片断裂故障诊断及处理分析

汽轮机叶片断裂故障诊断及处理分析摘要:在工业生产中,汽轮机作为重要设备,与工业生产有着密切的关系。
为了保障工业良好生产,需要保障汽轮机稳定运行,本文以汽轮机叶片为例,分析汽轮机叶片断裂的故障和原因,然后根据具体原因提出建设性防治措施,降低汽轮机叶片断裂发生的概率,从而保证汽轮机稳定运行。
关键词:汽轮机;断裂;故障诊断;处理引言汽轮机在工业生产中占有重要的地位,直接关系着工业是否能够稳定生产,因此在实际生产中需要保证汽轮机稳定运行。
但在实际中,由于工作环境等因素,汽轮机在运行过程中经常会出现叶片断裂的情况,严重影响了汽轮机正常运行,给工业生产带来了不良的影响。
基于此,需要对汽轮机叶片断裂问题展开探究,分析叶片断裂出现的原因,然后制定有效的解决措施。
1汽轮机叶片发生断裂故障的现象及原因1.1汽轮机叶片发生断裂故障的现象当汽轮机叶片发生断裂故障时,会伴随着以下一些现象发生,技术人员可以根据这些现象来判断汽轮机叶片是否出现断裂,其中具体内容有以下几点:①当听到汽轮机内部或凝汽器内部出现金属碰撞的声音,则表明有异物进入到汽轮机内部或者凝汽器内部,而汽轮机一般都有做密封处理,因此外来异物进入可能性比较低,很有可能就是汽轮机叶片发生断裂;②机组突然出现激烈的振动或者振幅突然增加,则可以检查汽轮机叶片情况,观察其是否出现断裂的问题;③当出现倒止门卡涩的情况,可以检查是否是汽轮机断裂的叶片进入到抽气管中引起的[1];④当在盘车时,听到设备里面有金属摩擦声音,这也有可能是汽轮机叶片发生断裂引起的;⑤当汽轮机叶片出现损伤时,相同载荷下,蒸汽流量会变大,而且监控区段的压力也会增大。
1.2汽轮机叶片发生断裂故障出现原因工业汽轮机叶片发生断裂故障是多方面因素引起的,因此在对汽轮机叶片断裂故障进行处理,需要确定故障发生的原因,其中比较常见的原因有以下几点。
第一,机械损伤。
在汽轮机运行时,如果有外来的杂质随蒸汽进入汽轮机内,就会给叶片造成损伤。
汽轮机叶片断裂故障及处理

运行与维护Operation And Maintenance电力系统装备Electric Power System Equipment2020年第24期2020 No.241 汽轮机设备概况某电力有限公司#5、6两台汽轮机是由哈尔滨汽轮机厂生产的引进型号为N300—16.7/537/537的亚临界、一次中间再热、反动式、单轴、双缸双排汽凝汽式汽轮机组,机组额定负荷为300 MW 。
机组高、中压汽缸采用合缸且为内、外双层汽缸结构,低压缸为对称分流式结构,主要由1层外缸、2层内缸组成。
高、中压转子和低压转至之间采用刚性联轴器联接。
汽轮机共有5个轴承,分别为4个径向支持轴承、1个推力轴承,其中1#为组合式支持推力轴承。
为了平衡轴向推力,本机除了采取对称布置外,同时还设有平衡阀,余下的由组合式支持推力轴承平衡。
汽轮机还设有一套5 %串级疏水旁路系统。
其结构示意图如图1所示。
图1 某电力公司汽轮机结构示意图本机组轴封系统是自动密封系统,在机组启动、空载及低负荷时,缸内出现真空,为防止空气漏入,需向轴封系统提供低压蒸汽。
在高负荷时,为防止高、中压缸轴端漏气,设有定压轴封供汽母管,母管蒸汽气源共有3路,分别来自于主蒸汽、再热蒸汽和辅汽联箱。
2 故障概况在2017年3月、2017年5月采用阿尔斯通(GE )技术进行了汽轮机进行通流改造,改造后运行2年有余,期间运行一直稳定,各轴承振动及其他参数运行状况良好,如表1所示。
表1 汽轮机通流改造后轴承振动情况机组负荷/MW 01503001瓦振动/μm 26.533.130.82瓦振动/μm 35.814.322.53瓦振动/μm30.219.342.4但在2019年3月25日、5月24日,#5、6两台汽轮机在运行过程中1瓦相对轴振开始缓慢增大,且随着机组负荷变化而发生波动。
当#5机组负荷294 MW 时,1瓦振动从42 μm 突然上升至130 μm ;当#6机组负荷229 MW 时,1瓦振动从40 μm 突然上升至116 μm (机组最大轴振数据情况如表2所示)。
汽轮机叶片断裂故障诊断及处理分析

汽轮机叶片断裂故障诊断及处理分析摘要:由于机组设计、制造精度和正常运行等技术问题,汽轮机组在运行过程中,叶片断裂等事故时有发生。
叶片本身的断裂和二次损坏直接威胁到汽轮发电机组的安全稳定运行。
基于此本文就汽轮机叶片断裂故障诊断及处理进行阐述,以供参考。
关键词:汽轮机组;叶片故障;故障诊断;故障诊断系统;1汽轮机叶片断裂机理1.1工作温度对汽轮机叶片的影响在汽轮机叶片处于工作状态中,叶片特别是动叶片,一般会工作在非常恶劣的条件里,例如,温度和热应力,就会导致叶片受到电化学腐蚀和水珠的侵蚀,正如人们都知道的电化学腐蚀是这些腐蚀中最严重的,电化学腐蚀甚至会损害汽轮机叶片,使叶片会出现裂纹。
有时候,汽轮机叶片需要在特定的高温环境下工作,这对于汽轮机叶片来说是最需要克服的困难。
汽轮机各阶段的叶片在运行过程中的温度不同,首先,前一阶段的叶片处于高温状态,随后的各个阶段叶片的温度会逐渐下降,直至最后一阶段的温度也会下降,最后一阶段的叶片中会有大量的水分,这些水分凝结成水珠,然后撞击汽轮机的动叶片,导致严重水蚀现象发生。
1.2应力状态对汽轮机叶片的影响汽轮机启动时,其下方的风机叶片通常会受到一些大面积的热静应力和热交变应力。
高静应力是因为发电机转子叶片在旋转操作期间需要在叶片方向上承受较大的机械离心力而旋转。
汽轮机旋转叶片旋转越长,转子叶片的最大速度应力变化越大,承受的离心力越大,产生的拉应力越大。
此外,在实际工作或循环使用期间,汽轮机转子上总会有一定量的高温蒸汽流。
在这些巨大高压蒸汽流的强烈作用下,将带来汽轮机巨大的高温压力流,叶片表面也将承受自然运动产生的具有一定强度的径向弯曲应力场和径向扭转。
当该振动的波频与汽轮机叶片上产生的固有振动波频完全一致时,叶片将在该径向激振力场产生的强大作用下被迫弯曲和振动,一定频率振幅变化的电磁共振现象会自动发生,振幅会增加,交变应力会逐渐增加,导致汽轮机叶片因过度疲劳而断裂。
某电厂汽轮机叶片断裂事故分析

某电厂汽轮机叶片断裂事故分析摘要:本文通过对某电厂汽轮机叶片断裂事故的分析,找出失效的原因,为汽轮机的安全运行提出可行性的建议,为电厂排除安全隐患。
希望结合该电厂的此次事故,为其它电厂提供借鉴。
关键词:汽轮机;叶片;失效事故1.概述汽轮机是发电厂主设备之一,而叶片是其最关键的部件,运行中若稍有不慎则极易对叶片造成损害,轻则造成汽轮机振动过大使机组效率降低,重则造成叶片的断裂让整台机组因事故停机造成更大的经济损失。
叶片断裂发生在某电站,事故当天凌晨1点20分,该电站1号机组正常运行,集控系统上突然显示#1~#6轴瓦的振动异常增大。
值班员发现情况后立即降低负荷,但轴瓦振动值无明显下降,只能停机检查。
2.现场情况机组停机后在低压缸内发现叶片残骸,随后起吊低压缸发现低压转子的反向次末级(编号T1-42)的叶片从距离根部1/3处横向断裂如图1所示,相邻的两叶片的叶顶处有不同程度的损伤。
图1 次末级叶片图2 上半部分的残骸合影从现场情况可以判断首先破坏件是T1-42叶片,其上半部分在断裂后由于离心力的作用,甩向末级叶片处,与末级叶片相互撞击,分解成若干体积不等的部分,它们已变形严重如图2所示。
3.理化检验为了掌握断裂叶片材质属性,对其进行化学成分分析,力学性能检测、显微金相组织观察等,了解叶片失效前的属性,为分析叶片断裂提供帮助。
3.1.化学成分分析化学成分分析是验证材料是否符合规定牌号。
而错用材料、成分偏差、合金含量在下限等都会影响钢材的性能,可能造成零件的失效。
该叶片材质是0Cr17Ni4Cu4Nb,根据标准中对成分的要求,进行化学成分分析,结果如表1所列。
经过检验主要合金元素含量均在标准要求范围内。
表1 叶片化学成分分析对比(%)3.2.力学性能检验叶片应具有高的力学强度,良好的冲击韧性。
对失效件进行力学性能测试,了解其在失效前的力学性能是否已不能满足其工作要求。
3.2.1.硬度检测硬度是材料在外力作用下抵抗变形和破坏能力的反映,硬度和强度存在一种类似的线性关系。
汽轮机末级叶片损坏的分析及对策

汽轮机末级叶片损坏的分析及对策摘要:汽轮机叶片的安全可靠直接关系到汽轮机和整个电厂的安全、满发。
鹤矿集团热电厂在大修过程中,曾发现过末级叶片断裂、汽蚀现象。
通过对鹤矿集团热电厂四台机组末级叶片损坏的形式进行分析,认为末级叶片型线下部普遍存在出汽边水冲蚀损伤,外来硬质异物击伤和固体粒子侵蚀,叶片断裂、结垢及其它损伤,分析了其损伤机理,介绍防范措施。
关键词:汽轮机;叶片损伤;损伤机理;断裂前言:叶片是汽轮机最精细、最重要的零件之一。
其运行状况对机组的安全可靠起决定性的影响。
如果叶片发生断裂,将引起机组振动、通流部分动、静摩擦,同时损失效率;若没有及时发现或及时处理,将引起事故扩大,可能导致整台机组毁坏,其经济损失数以万计。
因此,很有必要及时调查研究、分析、总结叶片尤其是末级叶片发生的各种损伤及寻找规律,以期制定防范、改进措施,避免发生大的损失。
1 汽轮机叶片损伤概况鹤矿集团热电厂1#机为武汉汽轮机厂生产的型号为FC25-3.43/0.35型汽轮机,在近几年的大修过程中也曾发现叶片根部出汽边水冲蚀、顶部进汽边水冲蚀、异物击伤叶片等。
我厂2#机为武汉汽轮机厂生产的型号为C25-35/3型汽轮机,在今年的大修中,发现叶片问题比较严重:围带飞脱、断裂、个别拉金断裂、腐蚀麻坑等。
我厂3#机为哈尔滨汽轮机厂生产的C50-8.83/0.118型汽轮机,2006年6月15日按照小修计划对末级叶片进行检查时,发现19级叶片有一处断裂,随即揭缸检查,并对末级叶片进行了探伤检查,发现存在以下问题:第19级30#、80#叶片损伤严重,70#叶片断裂,同时拉筋、围带均断裂,有9处拉筋套开焊(其中有3处是去年补焊过的)。
出汽边汽蚀:有30个叶片出汽边有汽蚀现象,其中5处比较严重,有1处细小裂纹,有22个叶片有叶根腐蚀现象,其中5处比较严重。
这几台机组低压级叶片在实际运行过程中,由于种种原因在叶片、叶根、拉筋、围带及司太立合金片等部位经常发生故障,末级叶片的水冲蚀损伤相当普遍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉裂拉断,70 号断叶片从出汽边滑出打伤 31,32, 33,59,60 号叶片。
2 叶片断裂原因分析
2.1 化学成分分析 叶片材质为2Cr13,对叶片进行化学成分分析,
试验结果符合 GB/T 14203-93,GB 8732-2004 标 准要求,具体数据如表 1 所示。
表 1 叶片化学成分
见图 1-c,d;同时可见夹杂物,见图 1-e,为 D2
级(球状氧化物类),符合有关要求。对叶片最后断
裂区沿断口处取样,其金相组织为回火索氏体,组
织未见异常,见图 1-f;对距断口向下 15 cm 处取
样,其金相组织为回火索氏体,组织未见异常,见
图 1-g。另外又对正常运行的 69 号叶片相同于 70
封堵,不留小动物栖息之地。 (3) 在户内大面积立体交叉布置敷设渔网,实
践证明效果显著。 (4) 在户内外裸母排和小动物活动频繁地区的
主变 35 kV 母线桥包扎绝缘热缩护套,进行综合绝 缘防护,可减少该类事故的发生。
(5) 了解小动物的生活习性和活动规律,有针 对性的采取预防措施。
(6) 在全公司进行变电站防小动物 3 项措施的 全面检查,对变电站特别是对高压室地面所有孔 洞、穿墙套管、电容器间、电缆夹层、电缆沟、排 水管道、门窗、分电箱等位置进行彻底检查封堵,发
a 合金附近叶片金相组织
b 叶片合金附近孔洞
c 孔洞处组织
d 孔洞处组织
e 夹杂物
f 金相组织
g 金相组织
h 金相组织
图 1 微观金相组织检验
2.3 小负荷硬度检验 对钎焊区附近进行了小负荷硬度检验,试验结
果见表 2。对比试验结果表明,硬度分布情况相似, 认为司太立合金钎焊对叶片材料的性能无大的影 响,材质无明显变化。
S 事 故 分 析 higufenxi
电力安全技术
第11 卷 (2009 年第 4 期)
200 MW 汽轮机叶片断裂原因分析及处理
吴立民,张晓昱 (河北省电力研究院,河北 石家庄 050021)
某发电公司汽轮机采用东方汽轮机厂生产的 N200-12.5/535/535 型、单轴、三缸三排汽、一次 中间再热、凝汽式汽轮机。2005-03-09T15:39,机 组运行负荷 170 MW,3 号瓦振动突然增大,振动最 大幅度达 920μm,随即紧急停机检查,发现机组中 压转子末级 70 号叶片在距叶片顶部 155 mm 司太立 合金片钎焊处,沿叶片横截面发生断裂,65~66 号 及 69~71 号间的围带断裂。
C
Si
Mn
S
P
Cr
0.20 0.40
0.39
0.006 0.024 14.0
2.2 金相分析
沿叶片断口出汽边和进汽边取样进行了微观金
相组织检验,结果如图 1 所示。断口叶片司太立合
金钎焊侧金相组织为带有马氏体位向的回火索氏
体,见图 1-a;在叶片基体与钎料结合处的叶片侧,
发现大量孔洞,见图 1-b;孔洞附近可见组织变形,
节径 m 0 1 2
3
4
5
6
频率/ H z 80 115 140 155 174 183 190
表 5 更换叶片后第 27 级叶片振动频率测试(2005-03-14)
节径 m 0 1 2
3
4
5
6
频率/ H z 83 116 141 155 175 185 192
综合上述分析运行要求的门锁结构)必须予以 彻底解决。
(7) 制定防止小动物进入高压室的管理措施, 采取“堵、隔、驱、灭”等多种手段,切实落实“防 小动物侵害”措施。
(8) 加强运行基础管理工作,提高工作质量,加 强设备巡视,进一步落实运行人员岗位责任制,尽 职尽责地做好本职工作。
(9) 落实公司《关于防止因小动物造成电气设 备事故的紧急通知》要求,采取有效措施降低主变 压器出口突发性短路的几率。
编号
表 2 钎焊区附近硬度分布 1 2 3 4 5 6 7 8 9 10
硬度(HV) 243 242 235 251 243 247 247 253 233 236
2.4 围带试验情况 对围带进行金相分析,其组织为回火索氏体和
δ铁素体,其中δ铁素体含量偏高,如图 2 所示。δ 铁素体在一定程度上可能引起材料脆性增大。 2.5 叶片频率测试
(收稿日期:2008-08-30)
29
为了检查断裂叶片的中压转子第 27 级其他叶 片频率是否会在共振范围内,并且评价其运行的安
图 2 围带试验结果
表 3 大修中第 27 级叶片振动频率测试(2004-11-10)
节径 m 0 1 2
3
4
5
6
频率/ H z 82 117 143 157 175 186 192
表 4 更换叶片前第 27 级叶片振动频率测试(2005-03-13)
(收稿日期:2008-09-01)
第11 卷 (2009 年第 4 期)
电力安全技术
S 事 故 分 析 higufenxi
号叶片断裂位置处取样进行了金相分析,其金相组 织为回火索氏体,见图 1-h,断裂叶片金相组织与 其他叶片相比无太大差异。
全性,有针对性地测试第 27 级更换叶片前、更换叶 片后整圈叶片 - 叶轮系统的振动频率,并且与上次 大修第27级叶片频率测试数据进行对比分析,见表 3~5。发现更换叶片前叶片振动频率由于叶片及围 带断裂,叶片连接刚性降低而略微降低;更换叶片 后第27级叶片-叶轮系统的振动频率与上次大修测 试数据相一致,均避开厂家给定3个重点共振转速 范围。
1 断口宏观检查分析
检查第 27 级 70 号断叶片的断口发现,叶片断 口处钎焊侧断口较为平齐,初步判断为断口始源 区,叶片开裂位置为合金接口处;在断口扩展区可 见疲劳辉纹特征。初步分析认为,叶片先从位于叶 片进汽边背弧从下部数第2个合金片处开裂(每只叶 片共钎焊有6片合金片),紧接着叶片开裂部位高频 振动、上下研磨,有光亮部分出现,约占断口横断 面 1/3;发展过程中后部有晶粒状灰色出现,叶片 出汽边有撕拉剪切形状,为裂纹最后断裂区。70 号 断叶片挣脱 69,71 号围带的束缚,同时由于叶轮的 转动,69 号叶片撞击 70 号叶片接着又撞击 71 号叶 片,致使65~70号叶片之间发生强烈的外部激振力 和不均匀的气流扰动力的作用,使围带薄弱的地方
是司太立合金片下面叶片处发现大量孔洞,该孔洞
为叶片因水蚀所形成的疏松孔穴,所以贴司太立合
金片时水蚀部位打磨不彻底;另一方面是司太立合
金片接口处存在较大程度的应力集中,因而在司太
立合金片接口处产生裂纹始源点,叶片在各种交变
应力的作用下裂纹扩展到整个叶片,致使叶片疲劳
断裂。
3 改进处理
通过对围带进行金相分析,发现围带金相组织 内δ铁素体含量偏高,可能在一定程度上引起材料 脆性增大;同时围带和叶片的铆钉链接,存在铆钉 应力不均现象,致使叶片运行可靠性差,建议对拱 形围带连接的叶片级改为目前新型的自带冠进汽侧 防水蚀处理的整圈连接形式叶片,提高机组运行状 态下叶片的连接刚性和减振性能。该发电公司在机 组大修中更换了新型的自带冠整圈连接形式叶片, 保证了机组的运行安全。