基因工程综述

合集下载

基因工程综述

基因工程综述

基因工程综述第一篇:基因工程综述植物基因工程技术及其应用进展摘要:近几年来植物基因工程的研究进展十分迅速。

在植物抗病、抗虫、抗除草剂和改变植物的某些成份方面都巳得到不少转基因植株,有的巳经建成了品系。

为提高作物的产量、抗逆能力、改进它们的品质,进行快速、优质、稳产的良种选育提供了一条全新的诱人的途径,将给人类社会带来一场深刻的变革,我们有必要了解植物基因工程的概念、原理、技术程序,以及在农业、工业等方面的应用和进展情况。

关键词:植物基因工程原理技术程序应用进展正文(一)植物基因工程是近几年发展起来的分子生物技术。

基因工程是按照人们的意愿,把一种生物的有用基因提取或合成出来,在生物体外对DNA分子进行剪切、拼接、修饰和重新组合,然后转移到受体细胞内进行组织培养和无性繁殖,在受体细胞内复制并得到表达,产生受体细胞新的遗传性状,产出人类所需的基因产物。

利用植物基因工程技术,改良作物蛋白质成分,提高作物中必需的氨基酸含量,培育抗病毒、抗虫害、抗除草剂、抗盐、抗旱等抗逆境植株,有的已建立了品系,为快速培育优质、高产的良种开辟一条全新途径,并展示了植物基因工程在未来农业生产中的诱人前景。

1、目的基因的获取开展植物基因工程的工作,首先必须取得目的基因。

获取目的基因的途径有直接分离和人工合成法。

1.1目的基因的分离直接分离是用在核苷酸序列中具有特定切点的DNA限制性内切酶将供体细胞中含目的基因的DNA片段切取分离出来。

1.2人工合成基因目前人工合成基因的方法主要有:一是以目的基因转录成的mRNA 为模板,反转录成互补的单链DNA,然后在酶的催化下合成双链DNA,而获得所需要的基因。

另一条途径是根据已知的蛋白质的氨基酸序列,推测出相应mRNA序列,然后按照碱基互补配对的原则,推测出它的结构基因的核苷酸序列,再通过化学方法以四种脱氧核苷酸(dNTA)为原料合成目的基因。

三是通过DNA序列自动测序仪对提出的目的基因进行核苷酸序列分析,采用聚合酶链式反(PCR)技术,快速、简便地扩增目的基因的DNA片段。

基因工程综述

基因工程综述

基因工程综述班级:生物技术姓名:林治淮学号:1102021046 摘要:基因工程(genetic engineering)又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。

基因工程技术为基因的结构和功能的研究提供了有力的手段。

关键词:基因工程研究进展研究领域基因工程是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。

它克服了远缘杂交的不亲和障碍。

基因工程自20世纪70年代兴起之后,经过20多年的发展历程,取得了惊人的成绩,特别是近十年来,基因工程的发展更是突飞猛进。

基因转移、基因扩增等技术的应用不仅使生命科学的研究发生了前所未有的变化,而且在实际应用领域──医药卫生、农牧业、食品工业、环境保护等方面也展示出美好的应用前景。

1.基因工程与医药卫生目前,基因工程在医药卫生领域的应用非常广泛,主要包括以下两个方面。

在药品生产中,有些药品是直接从生物体的组织、细胞或血液中提取的。

由于受原料来源的限制,价格十分昂贵。

用基因工程方法制造的“工程菌①”,可以高效率地生产出各种高质量、低成本的药品。

如胰岛素、干扰素和乙肝疫苗等。

基因工程药品是制药工业上的重大突破。

胰岛素是治疗糖尿病的特效药。

一般临床上给病人注射用的胰岛素主要从猪、牛等家畜的胰腺中提取,每100 kg胰腺只能提取4~5 g胰岛素。

用这种方法生产的胰岛素产量低,价格昂贵,远远不能满足社会的需要。

1979年,科学家将动物体内能够产生胰岛素的基因与大肠杆菌的DNA分子重组,并且在大肠杆菌内表达获得成功。

基因工程文献综述

基因工程文献综述

摘要目前也来越多的转基因食品涌现,走向普通百姓的餐桌,民以食为天,其安全性评价显得至关重要。

本文主要对转基因食品的安全评价的原则和内容做一简要综述,并综述当前我国对转基因食品的安全管理及建议。

在加强研究评价的基础上,严格加强安全管理才是有效的解决途径。

关键字转基因食品安全,评价原则,管理,一、前言转基因食品(Genetically Modified Foods,GMF)是指利用现代分子生物技术,将某些生物的基因转移到其他物种中去,改造生物的遗传物质,使其在形状、营养品质、消费品质等方面向人们所需要的目标转变,以转基因生物为直接食品或为原料加工生产的食品就是“转基因食品”。

转基因食品是利用新技术创造的产品,也是一种新生事物,人们自然对食用转基因食品的安全性有疑问。

目前,随着转基因食品的快速发展,转基因食品的安全性评价日益受到各国人们的广泛关注,科研人员也做出了很多的努力来进行安全性评价方面的研究,对转基因食品的安全管理逐渐形成了一些得到普遍认可的评价原则和评价内容。

二、研究内容世界上第一个商品化的转基因食品是1994年美国政府批准的转基因延熟西红柿。

美国科学家首先将一种能抑制西红柿体内软化酶的基因移植到西红柿细胞内,培育成了耐贮转基因延熟西红柿,它的生长期比普通西红柿长一周,可一直长到变红至成熟,达到必要的糖分和酸度再采摘,这样的西红柿可被运输到美国各地而不腐烂。

至此,转基因产品获得迅猛发展。

从转基因技术诞生时起,人们就对转基因食品引发的各种问题展开了旷日持久的争论,转基因作为一种新兴的生物技术手段,它的不成熟和不确定性,必然使得转基因食品的安全性成为人们关注的焦点。

转基因食品安全性生物安全,广义指在一个特定的时空内,由于自然或人类活动引起的外来物种迁入,由次对当地其他物种和生态系统造成改变和危害;而狭义生物安全主要是通过基因工程技术产生的遗传工程体及其产品所带来的种种有害影响。

转基因生物可以在农业产量、抗逆性(包括抗病、抗虫、抗寒、耐盐碱、抗除草剂等)和营养品质等方面较传统作物品种有显著改进,并且还能大大降低生产成本。

基因工程简答题综述.doc

基因工程简答题综述.doc

基因工程简答题综述基因工程原理回顾,思考问题5,简要描述同型尾酶和同型裂解酶的区别。

同尾酶:不同来源的鉴定序列是不同的,但是它们可以切掉相同的粘性末端,并且在连接后不能被相关酶同时切掉。

分解酶:识别序列相同,切割位点有些相同,有些不同。

部分异构酶和不完全异构酶(PS:完全均裂酶:识别位置和切点完全相同。

不完全异构酶:识别位置是相同的,但切割点不同。

)6.连接酶的主要类型有哪些?有什么相同点和不同点?影响连接酶连接效果的主要因素是什么?类型:脱氧核糖核酸连接酶和核糖核酸连接酶的异同;同样的一点:脱氧核糖核酸可以用作模板,进行从5’到3’的核苷酸或脱氧核苷酸聚合。

差异:DNA聚合酶识别脱氧核苷酸,并在DNA复制中发挥作用。

核糖核酸聚合酶聚合核糖核苷酸,并在转录中发挥作用。

7.试着分析提高平端连接效率的可能方法。

(在线答案图例)1.低温下的长期连接效率优于室温下的短期连接。

2.向系统中加入少量载体切割酶,只要连接后原始酶切割位点消失。

这样,可以避免载体的自连接,并且平端连接的效率应该大大提高。

3.足够的向量和插入是最重要的。

4.平端的连接对离子浓度非常敏感。

5.尽可能减少连接反应的体积6.建议把它放在四度冰箱里连接两天。

效率高于14度。

8.基因工程中常用的主要DNA聚合酶是什么?1)大肠杆菌脱氧核糖核酸聚合酶2)克氏片段3)T7脱氧核糖核酸聚合酶4)T4脱氧核糖核酸聚合酶5)修饰的T7脱氧核糖核酸聚合酶6)逆转录酶7)Taq脱氧核糖核酸聚合酶第4章基因克隆载体系统1、作为基因工程的载体,它应该具备哪些条件?对受体细胞具有亲和力或亲和力(可转移性);!有适当的筛选标志;!具有较高的外源DNA负载量;!具有多个克隆位点;!它具有适合特定受体细胞的复制位点或整合位点。

3.承运人的主要类型是什么?如何在基因工程操作中选择载体?基因工程中常用的载体主要包括质粒、噬菌体和病毒。

这些载体需要人工构建以去除致病基因并赋予一些新的功能,例如用于筛选的标记基因和单限制性内切酶。

基因工程论文

基因工程论文

基因工程论文基因工程的概述和应用进展摘要:基因工程是一种利用转基因技术对生物体的基因进行改造和编辑的科学领域。

本论文旨在阐述基因工程的原理、方法和工具,并重点探讨其在农业、医学和环境领域的应用。

基因工程为人类提供了改良农作物、研发新药和解决环境问题的新途径,同时也引发了一系列伦理和安全问题。

本文将综述基因工程的优势和挑战,并对其未来发展进行展望。

一、引言基因工程作为一项新兴的科学技术,已经在农业、医学和环境领域取得了显著的进展。

通过改良生物体的基因,基因工程可以实现对生物体性状的控制和调整,为人类社会带来了巨大的潜力和机遇。

二、基因工程的原理和方法基因工程的核心在于对生物体的基因进行编辑和改造。

其中,基因克隆、基因转染和基因编辑是主要的基因工程技术。

基因克隆通过将感兴趣的基因序列插入到载体中,如质粒,然后将其导入宿主细胞中,实现对外源基因的操控。

基因转染则是将外源基因转入目标细胞或生物体中,以达到改变其性状的目的。

基因编辑则通过使用诸如CRISPR-Cas9等技术,直接改变生物体的基因序列,以实现对特定基因的编辑、删除或替换。

三、基因工程在农业领域的应用基因工程在农业领域的应用主要集中在农作物的改良上。

通过转基因技术,科学家们能够改良作物的抗病性、耐逆性和产量等性状,实现对农作物整体性状的优化和提升。

此外,基因工程还可以解决传统农业面临的问题,如除草剂抗性、杂草控制和育种加速等。

四、基因工程在医学领域的应用基因工程在医学领域的应用主要涉及基因治疗和新药开发。

通过改变人体细胞的基因序列,基因治疗可以治疗一些难治性疾病,如癌症和遗传性疾病。

同时,基因工程也为新药的开发提供了新的途径,通过对疾病相关基因的研究和操控,研发出针对特定疾病的靶向药物。

五、基因工程在环境领域的应用基因工程在环境领域的应用主要涉及生物修复和生物能源开发。

基因工程可以改造微生物,使其具备降解有害污染物的能力,从而用于生物修复。

此外,基因工程还可以改造植物和微生物,使其能够高效生产生物燃料,为可再生能源的开发做出贡献。

酵母基因工程技术的综述与进展展望

酵母基因工程技术的综述与进展展望

酵母基因工程技术的综述与进展展望引言:酵母是一类常见的真核生物,广泛存在于自然界中。

由于酵母具有独特的细胞结构和代谢特性,成为许多科学研究的理想模型生物。

基因工程技术的发展使得研究者们能够通过编辑和改造酵母的基因组,来实现多种生物学和应用学的目标。

本文将对酵母基因工程技术的现状进行综述,并展望未来的发展前景。

一、酵母基因工程技术的发展历程酵母基因工程技术的研究始于20世纪70年代。

最早的酵母基因工程是通过改变酵母细胞的遗传背景,来研究基因功能。

而后,随着重组DNA技术的引入,酵母基因工程迅速发展起来。

1981年,科学家们成功地将人类基因插入到酵母细胞中,这是一个重大突破。

随后的几十年间,酵母基因组测序的完成以及基因敲除和基因重组技术的发展进一步推动了酵母基因工程技术的成熟。

二、酵母基因工程技术的应用领域1. 功能基因组学研究:通过酵母基因组的全面敲除和突变,可以研究基因的功能和相互作用。

这有助于更好地理解酵母细胞的生物学过程,也有助于揭示生物学中的一些基本原理。

2. 药物筛选和开发:酵母作为模型生物,在药物筛选和开发领域具有重要地位。

通过构建酵母表达外源蛋白的系统,可以进行大规模的化合物筛选,以寻找新的药物靶点和治疗方法。

3. 工业应用:酵母在生物技术和食品工业中具有广泛的应用。

例如,酵母可以被用于生产酒精、酵母提取物和酵母蛋白等。

通过基因工程技术改造酵母菌株,可以增加产量和改良产品的品质。

三、酵母基因工程技术的挑战与限制尽管酵母基因工程技术在许多领域中取得了显著进展,但仍然面临一些挑战和限制。

1. 基因组稳定性:酵母细胞往往会发生基因组重排和位点突变等现象,这导致基因敲除和基因重组等操作的结果不一致。

因此,在酵母基因工程中,确保基因组的稳定性仍然是一个关键问题。

2. 效率和选择性:目前的酵母基因工程技术中,基因敲除和基因重组等操作的效率相对较低,并且选择性也较差,这限制了其在实际应用中的广泛推广。

基因工程知识点总结

基因工程知识点总结

基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。

下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。

一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。

其实现的基本原理包括基因定位、基因克隆和基因传递。

1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。

常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。

2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。

常用的方法有限制酶切、连接酶切和DNA合成等。

3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。

常用的方法有基因枪、电穿孔和冷冻贮存等。

二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。

1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。

通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。

2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。

通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。

基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。

此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。

3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。

通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。

此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。

三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。

基因工程知识点总结

基因工程知识点总结

基因工程知识点总结基因工程,这个在现代生物学中熠熠生辉的领域,正以惊人的速度改变着我们的生活和对生命的认知。

它就像是一把神奇的钥匙,开启了无数未知的大门,为解决人类面临的诸多问题带来了前所未有的希望和可能。

一、基因工程的定义与基本原理基因工程,简单来说,就是按照人们的意愿,将一种生物的基因在体外进行切割、拼接和重组,然后导入另一种生物的细胞内,使之稳定遗传并表达出相应产物的技术。

其基本原理基于三个重要的步骤:首先是获取目的基因,这就像是在茫茫基因海洋中找到我们想要的那一颗珍珠;其次是构建基因表达载体,相当于给这颗珍珠打造一个合适的盒子,使其能够安全、有效地传递;最后是将重组 DNA 分子导入受体细胞,并使其在受体细胞中稳定存在和表达。

二、获取目的基因的方法1、从基因文库中获取基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。

我们可以根据已知的信息,从这个文库中筛选出我们需要的目的基因。

2、利用 PCR 技术扩增目的基因PCR 技术就像是一个基因的复印机,能够以极少量的基因片段为模板,快速大量地复制出我们想要的基因。

3、人工合成法如果已知目的基因的核苷酸序列,或者其氨基酸序列,我们可以通过化学方法直接人工合成目的基因。

三、基因表达载体的构建基因表达载体是基因工程的核心部分,它就像是一辆专门运输基因的列车,需要具备多个关键组件。

1、启动子启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。

2、终止子终止子则是基因表达的“刹车”,告诉基因在何处停止表达。

3、标记基因标记基因就像是一个个小标签,帮助我们筛选出成功导入目的基因的受体细胞。

4、目的基因这是我们最终想要表达的基因片段。

四、将目的基因导入受体细胞1、导入植物细胞(1)农杆菌转化法农杆菌就像是一个天然的基因运输工具,能够将其携带的基因转移到植物细胞中。

(2)基因枪法通过高速的微粒将目的基因直接打入植物细胞。

(3)花粉管通道法利用花粉管通道将目的基因导入植物的受精卵中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因工程综述基因工程(genetic engineering)又称基因拼接技术和DNA重组技术。

所谓基因工程是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。

基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。

所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术。

它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。

它克服了远缘杂交的不亲和障碍。

1974年,波兰遗传学家斯吉巴尔斯基(Waclaw Szybalski)称基因重组技术为合成生物学概念,1978年,诺贝尔医生奖颁给发现DNA限制酶的纳森斯(Daniel Nathans)、亚伯(Werner Arber)与史密斯(Hamilton Smith)时,斯吉巴尔斯基在《基因》期刊中写道:限制酶将带领我们进入合成生物学的新时代。

2000年,国际上重新提出合成生物学概念,并定义为基于系统生物学原理的基因工程。

重组DNA技术的基本定义重组DNA技术是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA 体外操作程序,也称为分子克隆技术。

因此,供体、受体、载体是重组DNA技术的三大基本元件。

基因工程的基本定义狭义上仅指基因工程。

是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传,表达出新产物或新性状。

重组DNA分子需在受体细胞中复制扩增,故还可将基因工程表征为分子克隆(Molecular Cloning)或基因克隆(Gene Cloning)。

广义上包括传统遗传操作中的杂交技术、现代遗传操作中的基因工程和细胞工程。

是指DNA重组技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。

上游技术:基因重组、克隆和表达的设计与构建(即DNA重组技术);下游技术:基因工程菌(细胞)的大规模培养、外源基因表达产物的分离纯化过程。

广义的基因工程概念更倾向于工程学的范畴。

广义的基因工程是一个高度的统一体:上游重组DNA的设计必须以简化下游操作工艺和装备为指导思想;下游过程则是上游重组蓝图的体现与保证。

---基因工程产业化的基本原则。

基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。

上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞或基因工程生物体的大规模培养以及基因产物的分离纯化过程。

基因工程是利用重组技术,在体外通过人工“剪切”和“拼接”等方法,对各种生物的核酸(基因)进行改造和重新组合,然后导入微生物或真核细胞内,使重组基因在细胞内表达,产生出人类需要的基因产物,或者改造、创造新特性的生物类型。

从实质上讲,基因工程的定义强调了外源DNA分子的新组合被引入到一种新的寄主生物中进行繁殖。

这种DNA分子的新组合是按工程学的方法进行设计和操作的,这就赋予基因工程跨越天然物种屏障的能力,克服了固有的生物种(species)间限制,扩大和带来了定向改造生物的可能性,这是基因工程的最大特点。

基因工程包括把来自不同生物的基因同有自主复制能力的载体DNA在体外人工连接,构成新的重组的DNA,然后送到受体生物中去表达,从而产生遗传物质的转移和重新组合。

基因工程要素:包括外源DNA,载体分子,工具酶和受体细胞等。

一个完整的、用于生产目的的基因工程技术程序包括的基本内容有:(1)外源目标基因的分离、克隆以及目标基因的结构与功能研究。

这一部分的工作是整个基因工程的基础,因此又称为基因工程的上游部分。

(2)适合转移、表达载体的构建或目标基因的表达调控结构重组。

(3)外源基因的导入。

(4)外源基因在宿主基因组上的整合、表达及检测与转基因生物的筛选。

(5)外源基因表达产物的生理功能的核实。

(6)转基因新品系的选育和建立,以及转基因新品系的效益分析。

(7)生态与进化安全保障机制的建立。

(8)消费安全评价。

近年来出现了一大批利用基因工程改造生物改造自然的实例。

1.环糊精葡萄糖基转移酶( CGTase,EC 2. 4. 1. 19) 是一种多功能酶,主要用于生产环糊精( CD) 、糖基化碳水化合物,同时在食品行业也有重要作用。

自然界中产CGTase 的微生物主要为Bacillus、Paenibacillus、Klebsiella、Thermoanaerobacterium、Thermoanaerobacter 等[3]。

不同来源的CGTase,由于宿主的蛋白质合成、修饰和转运过程各自不同,其性质差别很大。

已发现的CGTase 仍不能达到工业化生产的条件,人们仍需努力探索,筛选出性状新和特性优的CGTase。

最近研究人员利用基因改造和异源表达策略发现新CGTase 基因序列及它们表现出的一些新性质。

Lee 等[4]在Pyrococcus furiosus 中发现新CGTase 基因序列,然后把该基因转入Escherichia coli 表达,得到热稳定性高的CGTase ( 最适温度: 90℃) ; Go 等[5]从Alkalophilic Bacillus sp. BL-31 分离得到的新β-CGTase,具有专一性强的分子间类黄酮转糖基作用; Atanasov等[6]、Kitayska 等[7]从Bacillus pseudalcaliphilus 8SB 分离得到一种新CGTase,可高收率转化淀粉为β-CD 和γ-CD[6-7]。

2.利用基因工程技术表达能够促使肿瘤细胞DU145 凋亡的肿瘤坏死因子α(TNFα)的衍生物TRSP10,并在体外研究其对DU145 细胞的抑制效应。

以重叠延伸PCR 方法合成TRSP10 基因序列,并插入高效表达的质粒载体pKYB-MCS 的NdeⅠ和SapⅠ酶切位点之间,优化融合蛋白诱导表达的条件,建立了从载体构建到重组菌表达、制备的工艺技术条件。

3.里氏木霉( Trichoderma reesei) 被认为是最合适联合生物加工( consolidated bioprocessing) 的微生物之一。

原始里氏木霉菌株产乙醇能力太低,需要进一步提高其产酒量。

我们通过基因组重排技术提高了里氏木霉菌株产乙醇能力和乙醇耐受力。

首先对CICC40360 菌株孢子进行NTG诱变得到正向突变菌株,再以此为出发菌株进行基因组重排。

进行基因组重排后,重组菌株在含不同乙醇浓度的原生质体再生培养基上进行筛选。

突变菌株和原始菌株一起做摇瓶发酵实验进行比较以确定产乙醇能力的提高。

经过两轮基因组重排后,筛选获得表现最优异的重组菌S2-254。

该菌株能在利用50g /l 葡萄糖发酵出6. 2g /l 乙醇,同时能耐受3. 5% ( v /v) 浓度乙醇。

上述结果表明,本实验采用的基因组重排技术能够有效而且快速获得具有目的性状的优良菌株。

4. 随着低温灾害发生频率增加,水稻耐冷育种研究已经成为保障水稻生产的一个重要内容,利用基因工程技术提高水稻耐冷性是一条优于传统育种的有效途径。

根据低温信号转导途径,将耐冷基因分为三类:蛋白激酶( CDPK,MAPK 等) 基因、转录因子( ICE1 /ICE-like,CBF/DREB,MYB 等) 基因、功能基因( 合成渗透调节物质基因、脂肪酸去饱和代谢关键酶基因等) 植物耐冷性大多是受多基因控制的复杂性状,而且还会与其他环境胁迫因子发生交叉作用,耐冷机理复杂,从而导致传统育种方法在良植物耐冷性方面受到限制。

利用现代分子生物技术发掘利用优异的基因资源来改良植物的耐冷性,是提高植物耐冷丰产能力最为有效的途径。

目前,低温信号转导途径主要分为依赖CBF( CRT /DRE binding factor) 的信号转导途径和不依赖CBF 的信号转导途径。

在依赖CBF 的信号转导途径中,细胞首先通过改变膜的流动性和蛋白构象接受冷信号,并且激活Ca2 + 通道,Ca2 + 受到低温诱导浓度瞬时增加,使信号转导途径中的CBF 上调表达,进而调控其下游低温胁迫相关功能基因表达上调[2 - 3]。

在不依赖CBF 的信号转导途径中,下游低温胁迫相关功能基因的表达受到CBF 之外的转录因子( MYB,SNAC 等) 或其他因素( 例如ABA) 的诱导,对该途径的研究没有依赖CBF 的信号转导途径系统、全面、深入。

根据低温信号转导途径,本文从蛋白激酶( CDPK,MAPK 等) 基因、转录因子( ICE1 /ICE-like,CBFDREB,MYB 等) 基因、功能基因( 合成渗透调节物质基因、脂肪酸去饱和代谢关键酶基因等) 三方面详细阐述耐冷基因在水稻耐冷基因工程育种中的最新研究进展,以期为耐冷基因的利用及农作物耐冷遗传改良和育种提供参考。

小结基因工程的现状与展望。

一、基因工程应用于植物方面农业领域是目前转基因技术应用最为广泛的领域之一。

农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。

基因工程在这些领域已取得了令人瞩目的成就。

由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。

自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。

在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。

植物对逆境的抗性一直是植物生物学家关心的问题。

由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。

植物的抗寒性对其生长发育尤为重要。

科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。

将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。

随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。

实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。

相关文档
最新文档