12V10A开关电源设计论文

合集下载

开关电源的设计毕业论文

开关电源的设计毕业论文

开关电源的设计毕业论文开关电源是一种高效率、小体积、轻质化的电源,随着现代电子设备的发展,应用越来越广泛。

开关电源的设计是电子工程专业毕业设计中的一个热门方向,本文将介绍开关电源的基本工作原理及设计方法,并以一个实际开关电源的设计为例,进行详细说明。

一、开关电源的基本工作原理开关电源的基本工作原理是将交流电源转换为直流电源,其核心部分是开关管。

开关管工作时,会在电路中产生一个高频矩形波形。

再经过滤波电路、输出稳压电路等处理后,最终输出所需要的稳定直流电源。

在开关电源中,开关管的切换是关键,它的导通和截止决定程序的整个运行。

开关管的导通与截止又是由控制器控制的,所以控制器设计是非常重要的。

二、开关电源的设计方法1.功率计算开关电源的功率计算是设计的第一步。

功率 = 电流×电压,在设计前应要明确设备所需的电流和电压值并通过功率计算公式计算得出所需的功率。

2.电路设计电路设计是开关电源设计中较为复杂的一步。

主要包括直流输入电路、开关管、反馈电路、滤波电容、输出稳压电路等部分。

这些部分需要合理的组合和设计,并应通过电路仿真进行验证。

3.控制器设计在控制器设计中,主要有PWM控制器和开环控制器。

PWM控制器通常采用电流反馈控制方式,能够减少在输出处的纹波电压,提高稳定性。

开环控制器的设计要更为复杂,但是更容易实现。

4.保护电路设计保护电路是开关电源中非常重要的一部分,保护电路通常包括电流限制保护、过压保护、过载保护,以及温度保护等。

这些保护电路能够提高开关电源的使用寿命,避免因电路故障引起的安全事故。

三、开关电源设计实例以12V60W的开关电源设计为实例。

1.功率计算P = U × I = 12V × 5A = 60W。

2.电路设计直流输入电路:直流输入电路主要包括整流桥、电容滤波器和保险丝等。

整流桥需要选择合适的电流、电压值,电容滤波器应该选择合适的容量,保险丝则是起到安全保障作用。

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文

开关电源系统设计方案毕业论文目录摘要.......................................... 错误!未定义书签。

Abstract............................................ 错误!未定义书签。

1 绪言1.1课题背景 (2)1.2选题的国内外研究现状及水平、研究目标及意义 (2)1.3本课题主要的研究内容 (3)2 系统设计方案与论证2.1课题研究的基本要求 (4)2.2方案论证 (4)2.2.1 DC/DC电路模块方案 (4)2.2.2 MOSEFT驱动电路方案 (7)2.2.3 单片机选择方案 (7)2.2.4检测采样方案 (8)2.2.5系统框图 (8)3 硬件电路设计3.1变压整流滤波电路 (9)3.2辅助电源的设计 (11)3.3 Buck电路参数选择原理和计算 (12)3.3.1参数选择原理 (12)3.3.2 电感值的计算 (15)3.3.3 滤波电容的计算 (15)3.3.4开关管的选择和开关管保护电路设计 (16)3.4驱动电路的设计 (18)3.5采样电路设计 (19)3.6保护电路的设计 (20)4 软件部分设计4.1 A VR128简介 (21)4.2 PWM波的产生 (22)4.3 AD采样 (25)5系统调试及结果分析6 总结与展望6.1 总结 (30)6.2 展望 (30)致谢 (31)参考文献 (32)附录 (34)1 绪言开关电源具有效率高、体积小、重量轻等特点,应用越来越广泛,从70年代开始,并用轻量高频变压器替代笨重的工频变压器。

高效的开关电源飞速发展,逐步替代传统的的线性电源,开关电源不需要较大的散热器,开关电源自20世纪90年代问世以来,便显示出强大的生命力,并以其优良特性倍受人们的青睐。

近年来,开关电源在通信、工业自动化、航空、仪表仪器等领域的应用越来越广泛。

随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、模块化的方向发展,高效率的开关电源已经得到越来越广泛的应用。

毕业论文 开关电源设计

毕业论文 开关电源设计

摘要开关电源因其具有稳压输入范围宽、效率高、功耗低、体积小、重量轻等显著特点而得到了越来越广泛的应用,从家用电器设备到通信设施、数据处理设备、交通设施、仪器仪表以及工业设备等都有较多应用,尤其是作为便携式产品的电池提供高性能电源输出,比其他结构具有不可超越的优势.开关电源的稳定性直接影响着电子产品的工作性能,误差放大器是直流开关电源系统中电压控制环路的核心部分,其性能优劣直接影响着整个直流开关电源系统的稳定性,因而对高性能误差放大器的分析是本论文的主要研究目标。

本文误差放大器的分析基于Buck型DC-DC转换器,从系统稳定性、负载调整率及响应速度要求的角度出发,首先对该款Buck型DC-DC转换器的系统电压控制环路进行小信号分析,并对控制环路进行了零极点分布分析,确定环路补偿策略。

最后基于系统级来分析误差放大器.关键词:开关电源;Buck型DC—DC转换器;误差放大器。

AbstractDue to their merits of wide input range,high efficiency, small in size and light in weight ect, switching power supplies are gaining more and more application areas in today’s modern world,ranging from domestic equipments to sophisticated communication and data handling systems,especially in portable devices, they have unsurpassable advantages。

The rapid development of products in corresponding application areas requires the power supplies to have better performances. The robustness of switch—mode power supplies directly affect the performance of electronic devices。

毕业设计论文(开关电源)

毕业设计论文(开关电源)

6 结论................................................................. 28 谢辞 .................................................................... 29 参考文献 ............................................................... 30 附录 .................................................................... 31

3.2.2 四位数码显示电路设计 ............................................... 18 3.2.3 单片机与键盘接口电路设计 ........................................... 18
4 软件设计 ............................................................ 19


引言 ..................................................................... 1 1 概述.................................................................. 2
1.1 课题来源及意义 ........................................................ 2 1.2 课题基本要求 .......................................................... 2 1.3 课题相关背景 .......................................................... 2

开关电源毕业论文

开关电源毕业论文

开关电源毕业论文开关电源毕业论文一、引言近年来,由于电子产品的广泛应用,稳定的电源变得非常重要。

目前,开关电源已成为电子产品中最常用的电源之一。

开关电源具有体积小、重量轻、效率高、可靠性高等优点,是电子产品中广泛应用的电源。

本文旨在探讨开关电源的原理、特点、设计方法以及研究现状。

二、开关电源的原理开关电源是一种将直流电转换为稳定的直流电的电源。

一般情况下,开关电源由三个部分组成:变压器、整流电路和滤波电路。

1.变压器开关电源中的变压器是一个关键部件,它可以将输入电压变高或变低。

变压器通过变换输入电压的信号频率而实现电压变换。

交流输入电压经过变压器的初级线圈,进入变压器的磁性芯,再经过变压器的次级线圈输出。

因为变压器是通过变换输入电压的频率来实现电压变换的,所以变压器的次级电压可以高于或低于初级电压。

变压器的设计需要根据电源输入电压和输出电压来进行。

2.整流电路整流电路主要用于将变压器的次级电压转换为直流电压。

整流电路一般有半波整流电路或全波整流电路两种方式。

半波整流电路只对电压正半周期进行整流,而全波整流电路对整个电压周期进行整流。

3.滤波电路滤波电路用于削减整流电路输出的脉动电压,使输出电压更加稳定。

滤波电路通常使用电容和电感。

电容作为一个储存电荷的器件,在高频信号中可以起到滤波的作用。

电感则被用来解决低频噪声问题。

三、开关电源的特点1.高效由于开关电源是通过高速开关开关电流来控制输出电压的,所以开关电源具有高效率的特点。

开关电源通常可达到90%以上的效率,而传统的直接变压器、整流储能电源则只能达到60%-70%的效率。

2.体积小由于开关电源是由半导体元件构成的,体积小而轻便,而传统的直接变压器、整流储能电源体积大且重。

3.可靠性高由于开关电源采用了电子元件,其寿命长,故可靠性高。

4.成本低开关电源是用半导体元件制成的,故其成本低于其他电源。

四、开关电源的设计方法1.需求分析在设计开关电源之前,首先需要明确电源的工作电压、额定负载电流、输出电压波动率、输出电压纹波幅度和效率等需求。

开关电源设计论文

开关电源设计论文

《电子线路系统设计》课程论文题目:12V开关电源设计电路姓名: 陈婉如学号: 20134518同组姓名:彭树琴专业班级:2013 级电子信息工程二班指导老师:谢铁强老师评分标准:论文结构完整(20分)参数设计准确(20分)论文格式规范(20分)文字表述清楚(20分)摘要随着电子科技的不断发展,越来越多的电器设备走进了千家万户,要想让这些电器为我们服务,又离不开电源的驱动。

而开关电源因其高效率、低体积、低功耗、高可靠性等一系列的优点受到了人们的亲赖。

开关电源(电源适配器)实质上就是一个将高压交流电转换成低压直流电的装置。

本论文采用了反激式的拓扑结构,所谓反激式即在MOSFET管关断的时候次级的二极管才导通,这时候储存在变压器的能量才会传递到次级,供输出所用.本次设计UC3842作为核心芯片,它同时具备了过负载保护、过电压保护、过温保护等功能,在很大程度上简化了电路.在这些的基础上运用脉冲宽度调制(PWM)的原理来完成设计,脉宽调制是通过固定脉冲周期,改变占空比来控制MOSFET管导通和断开的比率从而控制输出。

使得电路更简单,精度更高,同时也能满足不同的电器对输入电范围,输出电压大小不同的要求. 为了实现电压输出的稳定,同时考虑到各国的市电电压和频率的不同,电路中集合了很多模块,比如EMI滤波电路、变压电路、输出整流滤波电路、光电耦合反馈回路、尖峰电压吸收回路等。

这样不但可以提高电路的精度和效率,同时也使得电路稳定性和安全性得到大幅度的提高.该电路具有宽电压输入,多路稳定输出、纹波和噪声可控制等优点.在完成电路的研究和焊接后进行了PCB板的测试,通过不断的改进与完善,最终得到的结果基本符合预期,效果比较理想。

关键词:反激式,开关电源,脉宽调制,拓扑结构,电源适配器目录摘要 ....................................................... 错误!未定义书签。

小功率电源开关设计论文

小功率电源开关设计论文

毕业设计题题:小功率开关电源技术的设计学校:烟台汽车工程职业技术学院系别:电子工程系专业:生产过程自动化班级: 08341 学号:学生:张克伟指导老师:何晓华2011年4月课题摘要随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。

开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。

电力电子技术的发展,特别是大功率器件IGBT和MOSFET的迅速发展,将开关电源的工作频率提高到相当高的水平,使其具有高稳定性和高性价比等特性。

开关电源技术的主要用途之一是为信息产业服务,信息技术的发展对电源技术又提出了更高的要求,从而促进了开关电源技术的发展。

本次设计采用典型的反激式开关电源结构设计形式,以UC3842作为控制核心器件,运用脉宽调制的基本原理,并采用辅助电源供电方式为其供电,有利于增大主电源的输出功率。

采用场效应管作为开关器件,其导通和截止速度很快,导通损耗小,这就为开关电源的高效性提供保障。

同时,电路中辅以过压过流保护电路,为系统的安全工作提供保障,本电路注意改善负载调整率,降低了电磁串扰,达到绿色环保的目的。

输出电压可调,使其可适用于不同场合。

目次1 引言 (1)2 系统方案选择和论证 (2)2.1 设计要求 (2)2.2系统基本方案 (2)2.3方案选择和论证 (3)2.3.1 主电路方案 (3)2.3.2 主电路功率模块 (6)2.3.3 控制电路的选择 (8)2.3.3 系统方案确定 (9)3 系统设计与实现 (10)3.1系统硬件的基本组成 (10)3.2 主要单元的电路设计 (10)3.2.1 主要电路部分电路设计 (10)3.2.2 控制回路单元的设计 (15)4 主要元件介绍 (17)4.1 光电耦合器 (17)4.2肖特基二极管 (18)4.3 基准电压 (19)4.4 UC3842介绍 (20)结论 (22)参考文献 (22)附录一元器件清单 (23)附录二总原理图 (24)1 引言电是工业的动力,是人类生活的源泉。

开关电源设计毕业论文

开关电源设计毕业论文

开关电源设计毕业论文一、内容综述随着科技的飞速发展,开关电源设计已成为现代电子设备不可或缺的一环。

本文将带你走进开关电源设计的世界,一探其奥妙和实用之处。

在这里我们不仅仅是研究技术,更是在寻找实用性和性能之间的平衡。

我们所关心的不仅是理论数据,更是其在现实应用中的表现。

首先我们要了解开关电源设计的基本概念和原理,了解电源在电子设备中的角色和功能后,我们就会知道电源不仅仅是设备运行的能源供应者,更是整个设备稳定性的关键。

开关电源设计就是在这个基础上,通过技术和创新来提升电源的性能和效率。

1. 开关电源的背景和意义开关电源在我们的日常生活中可以说是无处不在,从家庭电器的使用到工业设备的运行,再到数据中心的高效运作,开关电源都是不可或缺的重要角色。

为什么我们会对开关电源的研究这么重视呢?这里面可是有深意的,听我慢慢道来。

2. 开关电源设计的研究现状和发展趋势开关电源设计在现代电子领域可是风头正劲的话题,大家都知道,开关电源是我们生活中电子产品的心脏,它不断地为我们身边的电子设备输送“能量”。

那么现在开关电源设计的研究现状是怎样的呢?随着科技的飞速发展,开关电源设计技术也在不断进步。

虽然传统的开关电源设计已经能满足一些基本需求,但随着人们对电子设备性能要求的提高,新的技术和方法也在不断涌现。

例如智能化、小型化、高效化已成为当下开关电源设计的重要方向。

3. 论文研究的目的、内容和方法首先写这篇论文的目的,就是想通过研究和设计开关电源,解决现实中遇到的一些问题,比如电源效率不高、稳定性不好等等。

毕竟开关电源在我们的日常生活中应用广泛,涉及到很多领域,比如计算机、通信、家电等等。

所以研究开关电源设计,不仅具有理论价值,还有很大的实际意义。

那么我们研究的内容是什么呢?简单来说就是分析开关电源的工作原理,研究其设计过程,然后设计出一个既实用又高效的开关电源。

在这个过程中,我们还要研究不同材料的选用、电路设计、散热方案等等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业综合实践题目:开关电源的设计(12V/10A)系别:电气电子工程系专业:电子信息工程技术班级:电子0901 学号: 09034106作者:胡虎指导老师:谢树林专业技术职务:教授2011年3月浙江温州温州职业技术学院毕业综合实践课题申报表温州职业技术学院毕业综合实践开题报告姓名:胡虎学号: 09034106 专业:电子信息工程技术课题名称:开关电源的设计(12V/10A)指导教师:谢树林2010年12月 20日目次1 引言 (1)2 系统方案选择和论证 (2)2.1 设计要求 (2)2.2系统基本方案 (2)2.3方案选择和论证 (3)2.3.1 主电路方案 (3)2.3.2 主电路功率模块 (6)2.3.3 控制电路的选择 (8)2.3.3 系统方案确定 (9)3 系统设计与实现 (10)3.1系统硬件的基本组成 (10)3.2 主要单元的电路设计 (10)3.2.1 主要电路部分电路设计 (10)3.2.2 控制回路单元的设计 (15)4 主要元件介绍 (17)4.1 光电耦合器 (17)4.2肖特基二极管 (18)4.3 基准电压 (19)4.4 UC3842介绍 (20)结论 (22)致谢 (23)参考文献 (24)附录一元器件清单 (25)附录二总原理图 (26)附录三 PCB板图 (27)1 引言电是工业的动力,是人类生活的源泉。

电源是生产电的装置,表示电源特性的参数有功率、电压、电流、频率等;在同一参数要求下,又有重量、体积、效率和可靠性等指标。

我们用的电,一般都需经过转换才能适合使用的需要,例如交流转换成直流,高电压变成低电压,大功率变换为小功率等。

按照电子理论,所谓AC/DC就是交流转化为直流;AC/AC称为交流变交流,即为改变频率;DC/AC称为逆变;DC/DC为直流变交流后再变为直流。

为了达到转换的目的,电源变换的方法是多样的。

自20世纪60年代,人们研发出了二极管、三极管半导体器件后,就用半导体器件进行转换。

所以,凡是用半导体功率器件作开关,将一种电源形态转换成另一种形态的电路,叫做开关变换电路。

在转换时,以自动控制稳压输出并有各种保护环节的电路,称为开关电源(Switching Power Supply)。

2 系统方案选择和论证2.1 设计要求在电压220V、50H Z,电压变化范围+15% ~ -20%条件下:(1)输出电压可调范围:+12V(2)最大输出电流:10A2.2系统基本方案开关电源通常由:输入电路、功率转换、输出电路、控制电路、频率振荡发生器五大部分组成。

如下图所示:图2-1开关电源系统框架图2.3方案选择和论证2.3.1 主电路方案根据高频变换器的工作方式,可分为正激式和反激式等多种。

高频变换器工作时是利用一功率开关器件的高速通断,从而使变换器进行能量传输。

当功率开关器件导通时,变换器进行能量传输,称为正激式;反之,即电子开关截止时,变换器进行能量传输,称为反激式。

方案一:采用正激式变换器开关电源正激式变换器开关电源输出电压的瞬态控制特性和输出电压负载特性,相对来说比较好,因此,工作比较稳定,输出电压不容易产生抖动,在一些对输出电压参数要求比较高的场合,经常使用。

图2-2正激式变换器工作原理图正激式变换器开关电源工作原理:所谓正激式变换器开关电源,是指当变压器的初级线圈正在被直流电压激励时,变压器的次级线圈正好有功率输出。

图2-2是正激式变换器开关电源的简单工作原理图,图2-2中Ui是开关电源的输入电压,T是高频变压器,K是控制开关,L是储能滤波电感,C是储能滤波电容,D2是续流二极管,D3是削反峰二极管,R是负载电阻。

需要特别注意的是高频变压器初、次级线圈的同名端。

如果把高频变压器初线圈或次级线圈的同名端弄反,图2-2就不再是正激式变换器开关电源了。

正激式变换器开关电源有一个最大的缺点,就是在控制开关K关断的瞬间开关高频变压器的初、次线圈绕组都会产生很高的反电动势,这个反电动势是由流过变压器初线圈绕组的励磁电流存储的磁能量产生的。

因此,在图2-2中,为了防止在控制开关K关断瞬间产生反电动势击穿开关器件,在开关电源变换器中增加一个反电动势能量吸收反馈线圈N3绕组,以及增加了一个削反峰二极管D3。

方案二:采用反激式变换器开关电源反激式变换器开关电源工作原理比较简单,输出电压控制范围比较大,因此,在一般电器设备中应用广泛。

所谓反激式变换器开关电源,是指当变换器的初级线圈被直流电压激励时,变换器的次级线圈没有向负载提供功率输出,而仅在变换器初级线圈的激励电压被关断后,才向负载提供功率输出,这种变换器开关电源称为反激式开关电源。

图2-3反激式变换器工作原理图Ui是开关电源的输入电压,T是高频变压器,K是控制开关,C是储能滤波电容,R是负载电阻。

图2-3(b)是反激式变换器开关电源的电压输出波形。

方案三:采用半桥式变换器为了减小开关三极管的电压承受电压,可以采用半桥式变换器,它是开关电源比较好的拓扑结构。

电容C1、C2与开关晶体管VT1、VT2组成变换器,如图2-4所示。

桥的对角线接高频变压器TR的初级绕组。

如果C1、C2容量、耐压均相等,在某一只开关晶体管导通时,绕组上的电压只有电源电压V in的一半。

在稳定的条件下,VT1导通,C1上的电压1/2 V in加在变压器的初级线圈上。

由于初级绕组和漏感的作用,电流继续流入初级绕组黑点标示端。

如果变压器初级绕组漏感储存的电能足够大,二极管VD6导通,钳位电压进一步变负。

在VD6导通的过程中,反激能量对C2进行充电。

连结点A的电压在阻尼电阻的作用下,以振荡形式最后回到中间值。

如果这时VT2的基极有触发脉冲,则VT2导通,初级绕组黑点标示端电压变负,Ip电流加上磁化电流流经初级绕组和VT2,然后重复前面的过程。

不同的是Ip变换了方向。

二极管VD5对三极管VT1的导通钳位,反激能量再对电容C1进行充电。

图2-4半桥式变换器工作原理图方案四:采用桥式变换器开关电源桥式变换器由4只开关晶体管组成,与半桥式变换器相比多了两只晶体管,如下图所示。

在一个电子开关周期中,4只晶体管中每一条对角线上的两只管子为一组。

它们的“开”和“关”与占空比有关。

当给VT1、VT3以等量触发脉冲时,两只晶体管同时导通,等到触发脉冲消失后,两只晶体管又同时截止。

电源电压经VT1流入变压器初级绕组Np,并经VT3到电源负极。

在这一过程中,变压器初级电流Ip逐渐升高。

这时,变压器的次级得到感应电压,使整流二极管VD1的电压上升,VD2的电压下降。

这一变化的快慢是由次级绕组Ns的漏感及二极管VD1、VD2的性能决定的。

输出大电流、低电压时,工作频率的影响更大。

由于变压器初级电压增加,次级绕组的感应电流也跟着上升,二极管VD2慢慢进入反向偏置状态,二极管VD1却进入正向导通,电感L的电压紧跟着上升。

L上的电感在反向电势的作用下,对变压器的初级绕组进行“磁化”,“磁化”的结果是使VT1、VT3截止。

VT2、VT4在V in电压的作用下趋向导通,又开始了新一轮的“开”和“关”工作循环。

桥式变换器和正激式变换器的输出电压相同。

图2-5桥式变压器2.3.2 主电路功率模块功率开关器的选择开关电源中的功率开关器件是影响电源可靠性的关键器件。

开关电源所出现的故障中约60%是功率开关器件损坏引起的。

用作开关的器件主要有大功率晶体管、MOSFET管与IGBT等。

方案一:MOSFET在开关电源中,用作开关功率管的MOSFET几乎全部都是N沟道增强型器件。

这是因为MOSFET是一种依靠多数载流子工作的单极性器件,不存在二次击穿和少数载流子的储存时间问题,所以具有较大的安全工作区、良好的散热稳定性和非常快的开关速度。

MOSFET在大功率开关电源中用作开关,比双极性功率晶体管具有明显的优势。

所有类型的有源功率因数矫正器都是为驱动功率MOSFET而设计的。

MOSFET功率管的特点(1)MOSFET 是电压控制型器件因此在驱动大电流时无需推动级,电路较简单;(2)输入阻抗高,可达 108Ω以上;(3)工作频率范围宽,开关速度快 ( 开关时间为几十纳秒到几百秒 ) 开关损耗小;(4)有较优良的线性区,并且 MOSFET 的输入电容比双极型的输入电容小得多,所以它的交流输入阻抗极高;噪声也小,最合适制作 Hi-Fi 音响;(5)功率 MOSFET 可以多个并联使用,增加输出电流而无需均流电阻。

方案二:绝缘栅双极性晶体管绝缘栅双极性晶体管(IGBT)是一种大电流密度、高电压激励的场控制器件,是高压、高速新型大功率器件。

它的耐压能力为600~1800V,电流容量为100~400A,关断时间低至0.2μs,在开关电源中作功率开关用,具有MOSFET与之不可比拟的优点。

IGBT的特点:(1)IGBT是一种电压控制的功率开关器件:IGBT等效于用MOSFET做驱动级的一种压控功率开关器件。

(2)IGBT比MOSFET的耐压高,电流容量大:IGBT导通时正载流子从P+层流人N型区并在N型区积蓄,加强了电导调制效应,这就使IGBT在导通时呈现的电阻比高压(300V以上)MOSFET低得多,因而IGBT容易实现高压大电流。

前级是个电流较小的MOSFET,允许导通电阻较大,Nˉ层可以适当地加厚,耐压可以提高。

(3)开通速度比MOSFET快:由于IGBT中小电流MOSFET的开通速度很快,在开通之初后级PNP型晶体管的基极电流上升很快,使IGBT的开通速度不但比双极性晶体管快,而且开通延迟时间td(on)比同容量的MOSFET还短。

(4)关断速度比MOSFET慢:虽然IGBT中前级MOSFET的关断速度很快,但后级PNP型晶体管是少子功率的开关器件,少数载流子要有复合、扩散和消失的时间,在电流迅速下降到约1/3时,下降速度明显变慢,俗称“拖尾”。

后级PNP 型管的集一射极之间有基一射极PN结压降和MOSFET的压降,故集一射极不进入深饱和状态,关断速度较快。

随着生产工艺的改进,关断速度也有明显的提高。

2.3.3 控制电路的选择方案一:TL494集成控制器TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。

TL494管脚配置及其功能:TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。

图2-6是它的管脚图,其中1、2脚是误差放大器I的同相和反相输入端;3脚是相位校正和增益控制;4脚为间歇期调理,其上加0~3.3V电压时可使截止时间从2%线怀变化到100%;5、6脚分别用于外接振荡电阻和振荡电容;7脚为接地端;8、9脚和11、10脚分别为TL494内部两个末级输出三极管集电极和发射极;12脚为电源供电端;13脚为输出控制端,该脚接地时为并联单端输出方式,接14脚时为推挽输出方式;14脚为5V基准电压输出端,最大输出电流10mA;15、16脚是误差放大器II的反相和同相输入端。

相关文档
最新文档