2015届高三文科数学基础题训练2
2015届高三考试数学(文)试题word版含答案

高三数学试卷(文科)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集{1,2,3,4,5}U =,集合{2,3,4},{2,5}A B ==,则()U B C A 等于( )A .{}5B .{}1,2,5C .{}1,2,3,4,5D .φ2、复数(12)z i i =+,则复数z 的共轭复数z 在复平面内对应的点的坐标为( )A .()2,1-B .()2,1-C .()2,1D .()2,1--3、双曲线22221(0,0)x y a b a b-=>>的焦距为6,则其渐近线的方程为( ) A.2y x =± B.4y x =± C.5y x =± D.5y x =± 4、已知向量(1,),(1,)a n b n ==-,若2a b -与b 垂直,则2n 等于( )A .1B .2C .3D .45、在等差数列{}n a 中,2632a a π+=,则4sin(2)3a π-等于( ) A.2 B .12 C.2-.12- 6、为了了解某学校1500名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在70~78kg 的人数为( )A .240B .210C .180D .607、设不等式组22042x y x y -+≥⎧⎪≤⎨⎪≥-⎩表示的平面区域为D ,则区域D 的面积为( )A .10B .15C .20D .258、执行如图所示的程序框图所表述的算法,若输出的x 的值为48,则输入x 的值为( )A .3B .6C .8D .129、函数ln x xy x =的图象大致是( )10、某四面体的三视图如图所示,则该四面体的六条棱的长度中,最大值的是( )A ..C ..11、已知函数()211sin 2sin cos cos sin()(0)222f x x x πϕϕϕϕπ=+--<<,将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,且1()42g π=,则ϕ等于( ) A .6π B .4π C .3π D .23π 12、抛物线22(0)y px p =>的交点为F ,已知点,A B 为抛物线上的两个动点,且满足120AFB ∠=过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最小值为( )A .3B .3C .1D .第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
2015届高三下文科数学综合训练二参考答案

2015届高三(下)文科数学综合训练二参考答案一、选择题:(本大题共12小题,每小题5分,共60分)二、填空题:(本大题共4小题,每小题4分,共16分)13.8; 14. 15.1; 16.1(0,]3.三、解答题:(第22题14分,其他每题12分,共74分)17. 本题主要考等差数列、数列求和等基础知识;考查推理论证与运算求解能力,满分12分. 解:(I )∵点(,)n n S 在函数2()f x x =的图象上,∴2.n S n = ················································································································ 1分∴当1n =时,111a S ==, ······················································································· 2分 当2n ≥时,1n n n a S S -=- ··················································································· 3分22(1)21n n n =--=- ································································· 4分 又11a =满足21,n a n =- ························································································ 5分 ∴2 1.n a n =- ·········································································································· 6分(II) ∵111(21)(21)n n n b a a n n +==⋅-⋅+ ·································································· 7分111()22121n n =--+,············································································ 9分 ∴12n n T b b b =++⋅⋅⋅+111111[(1)()()]23352121n n =-+-+⋅⋅⋅+--+ ·················································· 11分 11(1)221n =-+.21nn =+ ················································································ 12分 18.本题主要考查概率、统计等基础知识,考查数据处理能力、抽象概括能力、运算求解 能力以及应用意识,考查或然与必然思想、化归与转化思想.满分12分. 解:(I )从统计的5年发电量中任取2年的基本事件为(7.4,7.0),(7.4,9.2),(7.4,7.9),(7.4,10.0),(7.0,9.2),(7.0,7.9),(7.0,10.0),(9.2,7.9),(9.2,10.0),(7.9,10.0) 共10个. ······························ 3分 (说明:若列出不足6个,不给分;若列出6个,不足10个且所列均正确者得1分) 其中2年发电量都低于8.0(亿千瓦时)的基本事件为 (7.4,7.0),(7.4,7.9),(7.0,7.9),共3个. ······························································· 5分所以这2年发电量都低于8.0(亿千瓦时)的概率3.10P = ·································· 6分(II )∵1500140019001600210085001700,55x ++++=== ································ 7分 7.47.09.27.910.041.58.3.55y ++++=== ····························································· 8分 又直线 0.004y x a =+ 过点(,)x y , ····································································· 9分 ∴8.30.0041700,a =⨯+ 解得 1.5a =,∴0.004 1.5y x =+. ······························································································· 10分 当1800x =时,0.0041800 1.58.79.0y =⨯+=<,··················································· 11分 所以不能完成发电任务,缺口量为0.3(亿千瓦时). ········································· 12分 19.本题主要考查空间线与线、线与面、面面的位置关系等基础知识;考查空间想象能力、推理论证能力,满分12分. 证法一:(I )连接1AC 交1A C 于点N ,则N 为1A C 的中点.……1分∵M 为AB 的中点,∴1//MN BC .……………………………………………3分又∵1MN ACM ⊂平面, ………………………………4分 11BC ACM ⊄平面, ……………………………………5分 ∴11//BC ACM 平面.……………………………………6分 (II )∵CA CB =,M 为AB 的中点,∴CM AB ⊥. …………………………………………7分 ∵1A 在平面ABC 的射影为M ,∴1A M ACB ⊥平面,……………………………………8分 ∴1A M AB ⊥,…………………………………………9分 又1CMA M M =,∴1AB ACM ⊥平面,…………………………………10分 又11AB ABB A ⊂平面,………………………………11分 ∴111.ACM ABB A ⊥平面平面 …………………………12分 证法二:(I )取11A B 中点N ,连结1,BN C N ,………1分∵M 为AB 的中点,∴1A N MB =,1A N //MB∴四边形1A MBN 为平行四边形,∴1//BN A M .…………………………………………2分 同理可得1//C N CM ,又11C N ACM ⊄平面,1CM ACM ⊂平面,…………3分 ∴11//C N ACM 平面.…………………………………4分 同理1//BN ACM 平面. ∵1C NBN N =,∴11//BC N ACM 平面平面,……………………………5分 ∵11BC BC N ⊂平面,A 1ABC 1CMB 1N证法二图B 1 A 1 ABC 1 C MN证法一图∴11//BC ACM 平面. …………………………………6分 (II )同解法一.20.本题主要考查三角恒等变换、三角函数的图象与性质、解三角形等基础知识;考查运算求解能力,考查函数与方程思想、数形结合思想.满分12分. 解:(I )依题意得:1()2cos 222f x x x x ωωω=+- ····························································· 2分12cos 22x x ωω=+ ················································································· 3分 sin(2)6x πω=+, ···························································································· 4分 ∵0ω>,∴222T ππω==,∴12ω=, ··············································································································· 5分∴()sin()6f x x π=+. ······························································································ 6分(II )∵0A π<<, ∴7666A πππ<+<. ∵()sin()6f x x π=+在x A =时取得最值,∴,623A A πππ+==. ···························································································· 8分∵1sin 2ABC S bc A ∆===,∴6bc =. ··············································································································· 9分 ∵5b c +=,∴2222cos a b c bc A =+- ·························································································· 10分22b c bc =+- 2()3b c bc =+- 2518=-7=, ·································································································· 11分∴a = ················································································································· 12分 21.本题主要考查函数、导数、不等式等基本知识;考查运算求解能力、推理论证能力;考查化归转化思想、函数方程的思想、数形结合思想.满分12分.解法一:(I )()1,x f x e '=- ···················································································· 1分由()0f x '>可得0,x >;由()0f x '<可得0,x < ············································ 2分 ∴()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增. ······································ 3分(II) (),x g x e x '=- ································································································· 4分 由(I )知()g x '在(,0)-∞上单调递减,在(0,)+∞上单调递增, ∴()(0)10,g x g ''≥=> ······························································································ 5分∴()g x 在[0,)+∞上单调递增, ··············································································· 6分 ∴[0,)x ∈+∞时,min ()(0)0.g x g == ······································································· 7分 (III )由(II) 知当0x >时,()0,g x >即0x >时,211,2x e x >+ ····················································································· 8分设函数221311()1(ln )ln ,2222h x x x x x =+-+=--则211()(0),x h x x x x x-'=-=> ············································································· 9分 由()0h x '>可得1x >;由()0h x '<可得01,x <<∴()h x 在(0,1)上单调递减,在(1,)+∞上单调递增. ··········································· 10分 ∴()(1)0,h x h ≥=∴0x >时,2131ln ,22x x +≥+ ·············································································· 11分∴3ln .2x e x >+ ······································································································ 12分解法二:(I )(II)同解法一.(III )设3()ln ,2x h x e x =--则1()(0),x h x e x x '=-> ························································································· 8分∵1()x h x e x '=-在 (0,)+∞上单调递增,且121()20,(1)10,2h e h e ''=-<=-> ()h x 在1(,1)2上连续, ·································· 9分∴存在唯一01(,1)2x ∈,使得0()0h x '=,即00001,ln ,x e x x x ==-························· 10分∴0(0,)x x ∈时,()0,h x '<()h x 在0(0,)x 上单调递减,0(,)x x ∈+∞时,()0,h x '>()h x 在0(,)x +∞上单调递增, …………………………11分∴0000031331()()ln 20,2222x h x h x e x x x ≥=--=+->-=>∴()0h x >, 即3ln .2x e x >+················································································ 12分 22.本题主要考查直线、抛物线、椭圆等基础知识及直线与抛物线的位置关系;考查运算求解、抽象概括能力,化归与转化思想.满分14分.解法一:(I )∵抛物线22(0)x py p =>的焦点为(0,).2pF ···································· 1分椭圆22143y x +=的焦点为(0,1)± ············································································ 2分 ∴1,2,2pp == ∴抛物线的方程为24.x y = ····················································································· 3分(II )(ⅰ)联立21,4y kx x y=+⎧⎨=⎩得2440,x kx --=······················································ 4分 216160,k ∆=+>设1122(,),(,)A x y B x y则12124,4x x k x x +=⋅=-, ···················································································· 5分由24x y =,得2,,42x x y y '==所以过A 的切线PA 的方程为:1111(),2y y x x x -=- 整理得: 2111124y x x x =- ⋅⋅⋅① …………………………………6分 同理切线PB 的方程为:2221124y x x x =- ⋅⋅⋅②联立①②解得122,1,2P P x xx k y +===-即(2,1).P k - ········································ 7分当0k =时,(0,1),(0,1),P F -有.PF AB ⊥……………………………………………8分当0k ≠时,1(1)1,02PF k k k--==--有.PF AB ⊥所以0PF AB ⋅=为定值. ······················································································ 9分(ⅱ)由(ⅰ)可设直线PF 的方程为:11(0)y x k k=-+≠.…………………10分由211,4y x k x y ⎧=-+⎪⎨⎪=⎩得2440,x x k +-= 设223434(,),(,)44x x C x D x则34344,4,x x x x k+=-⋅=-…………………11分∵(2,1)P k -,(0,1).F∴PC FD PD CF ⋅-⋅2222334444331111(2,1)(,1)(2,1)(,1)4444x k x x x x k x x x =-+⋅---+⋅--2222343443431111(2)(1)(1)(2)(1)(1)4444x k x x x x k x x x =-⋅++⋅-+-++⋅-………12分22343434122()28x x k x x x x =-++-24182()(4)28k k =---+⋅--=0∴PC FD PD CF ⋅=⋅, ·························································································· 13分 又,,,P C F D 共线,∴||||||||.PC FD PD CF ⋅=⋅ ···················································································· 14分。
2015年高考文科数学真题及答案16套

福建卷---------------------------------------------------2-18页新课标1-------------------------------------------------18-33 新课标2-------------------------------------------------33-47 重庆卷-------------------------------------------------47-62湖北卷-------------------------------------------------62-75天津卷-------------------------------------------------75-85安徽卷------------------------------------------------86-98北京卷-------------------------------------------------98-111 广东卷-------------------------------------------------111-121 湖南卷-------------------------------------------------121-136 江苏卷-------------------------------------------------136-152 山东卷-------------------------------------------------152-168 陕西卷-------------------------------------------------168-184 四川卷-------------------------------------------------184-195 上海卷-------------------------------------------------195-204 浙江卷-------------------------------------------------205-216第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D .考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为 2+2+4+22=8+22,所以该几何体的表面积为1122+,故选B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C 【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4C .3[,1)2 D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC =,045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=, 所以232232BC ⨯==.考点:正弦定理.15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=.(II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+.又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262+.【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C 222+''O =OE +E =+=, 亦即C E +OE 的最小值为262+. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,22112PB =+=.同理C 2P =.所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示. 当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 12212cos 4560'O =+-⨯⨯⨯+212312222222⎛⎫=+-⨯-⨯ ⎪ ⎪⎝⎭23=+. 从而26C 232+'O =+=. 所以C E +OE 的最小值为262+. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分) 已知函数()2103sincos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 150,2⎛⎫+ ⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得1502x +<<.故()f x 的单调递增区间是150,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得()2111402k k x ---+=<,()2211412k k x -+-+=>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A考点:向量运算3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 考点:复数运算4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )120【答案】C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 考点:古典概型5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )12【答案】B考点:抛物线性质;椭圆标准方程与性质6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:本题主要考查圆锥的性质与圆锥的体积公式7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 【答案】D【解析】 试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12【答案】C考点:程序框图10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54- (C )34- (D )14- 【答案】A【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C. 考点:函数对称;对数的定义与运算二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式14. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.考点:简单线性规划解法 16. 已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126考点:双曲线的定义;直线与双曲线的位置关系;最值问题 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且2,a =求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =, 由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得2c a ==.所以D ABC 的面积为1. 考点:正弦定理;余弦定理;运算求解能力18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ^BD ,因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED.又AC Ì平面AEC ,所以平面AEC ^平面BED(II )设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ^EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2 从而可得AE=EC=ED=6.所以D EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 21()n i i x x =-∑ 21()n i i w w =-∑ 1()()n i i i x x y y =--∑ 1()()n i i i w w y y =--∑ 46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 =x 1, ,w =181n i i w =∑(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()ni ii n ii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-+琪琪桫(II )2 【解析】试题分析:(I )设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(II )设1122M(,y ),N(,y )x x ,将直线l 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积的坐标公式及12OM ON ⋅=列出关于k 方程,解出k ,即可求出|MN|.试题解析:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以2|231|11k k -+<+. 解得474733k -+<<. 所以k 的取值范围是4747,33骣-+琪琪桫. (II )设1122M(,y ),N(,y )x x .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k ++==++ ()()21212121224(1)OM ONy 1181k k x x y k x x k x x k +?+=++++=++, 由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以|MN |2=.考点:直线与圆的位置关系;设而不求思想;运算求解能力21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x ¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是O 直径,AC 是O 切线,BC 交O 与点E.(I )若D 为AC 中点,求证:DE 是O 切线;(II )若3OA CE = ,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE =得,AB=23,设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-, 由射影定理可得,2AE CE BE =,∴2212x x =-,解得x =3,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). ……10分考点:含绝对值不等式解法;分段函数;一元二次不等式解法一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分。
2015届高三数学(文)试卷Word版含答案

2014—2015学年度第二学期3月月考高 三 数 学(文)试 卷(考试时间120分钟 满分150分)第I 卷 (选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分. 在每小题列出的的四个选项中,选出符合题目要求的一项)1.设全集,R =U 集合{}21≤≤-=x x A ,{}10≤≤=x x B ,则=B C A U ( ) A .{}10><x x x 或 B .{}2101≤<<≤-x x x 或 C .{}2101≤≤≤≤-x x x 或 D .{}21>-<x x x 或2.命题:p ∀R ∈x ,012>+x ,命题:q R ∈∃θ,5.1cos sin 22=+θθ,则下列命题中真命题是( )A .q p ∧B .q p ∧⌝C .q p ∨⌝D .)(q p ⌝∧ 3.某一棱锥的三视图如右图,则其侧面积为( ) A.8+ B .20 C. D.8+4.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是 ( )A .1y x=- B .||e x y = C .23y x =-+ D .cos y x =5.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最小值为( )A .6-B .29- C .3- D .96.阅读下边程序框图,为使输出的数据为31,则判断框中 应填入的条件为 ( ) A .≤i 4 B .≤i 5 C .≤i 6 D .≤i 7 7.已知双曲线122=-myx 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为 ( ) A .02=±y x B .02=±y x C .03=±y x D .03=±y x 8.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 ( ) A .3 B .4 C .29 D .2119.函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且]1,1[-∈x 时,21)(x x f -=,函数⎪⎩⎪⎨⎧<->=)0(1)0(1)(x xx gx x g ,则函数)()()(x g x f x h -=在区间]5,5[-内的零点的个数为( ) A .8B .9C .7D .610.设集合W 由满足下列两个条件的数列{}n a 构成: ①21;2n n n a a a +++< ②存在实数M ,使n a M ≤.(n 为正整数).在以下数列 ⑴{}21n +;(2)29211n n +⎧⎫⎨⎬+⎩⎭; (3)42n ⎧⎫+⎨⎬⎩⎭;(4)1{1}2n -中属于集合W 的数列编号为 ( )A .(1)(2)B .(3)(4)C .(2)(3)D .(2)(4) 二、填空题11.i 是虚数单位,则=+i12___. 12.过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为 . 13.已知函数()ϕω+=x x f sin )((ω>0, 20πϕ<<)的图象如图所示,则ω=____,ϕ=___.14.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为___千米时,运费与仓储费之和最小,最小值为__万元.15.设函数20()1f x x =-,101()|()|2f x f x =-,11()|()|2n n n f x f x -=-,(1,n n N ≥∈),则方程31)(1=x f 有___个实数根,方程1()3nn f x ⎛⎫= ⎪⎝⎭有___个实数根.三、解答题 (本大题共6小题,共80分. 解答应写出文字说明、演算步骤或证明过程) 16.(本小题13分)已知函数2()sin(2)2cos 16f x x x π=-+-,x R ∈(1)求)(x f 的最小正周期和单调递增区间;(2)在ABC ∆中,三内角C B A ,,的对边分别为c b a ,,,已知()12f A =, c a b ,,成等差数列,且9AB AC ⋅=,求ABC S ∆ 及 a 的值.17.(本小题13 分)已知数列{}n a 是等差数列,12a =,且2a ,4a ,8a 成等比数列. (1)求等差数列{}n a 的通项公式;(2)如果数列{}n b 是等比数列,且1b =2a ,2b =4a ,求{}n b 的前n 项和n S .18.(本小题13 分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天。
山东省潍坊市2015届高三高考模拟训练(二)数学(文)试题(附答案)

2015年高考模拟训练试题文科数学(二)本试卷分第I 卷和第Ⅱ卷两部分,共5页,满分为150分,考试用时120分钟,考试结束后将答题卡交回.注意事项:1.答卷前,考生务必用0.5毫米规格黑色签字笔将自己的姓名、准考证号、考试科目填写在规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II 卷必须用0.5毫米规格黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置;如需改动,先划掉原来的答案,然后写上新的答案,不得使用涂改液、胶带纸、修正带和其他笔.4.不按以上要求作答以及将答案写在试题卷上的,答案无效.第I 卷(选择题,共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.设集合{}{}21,0,=A x x B x x A B =≤=>⋃则 A. {}01x x <≤ B. {}1x x -≤<0 C. {}1x x ≥- D. {}1x x ≤ 2.设i 是虚数单位,复数2cos45sin 45z i z =-⋅=,则A. i -B.iC. 1-D.13.已知等比数列{}n a 的公比为正数,且2395212,1a a a a a ⋅===,则A. 12B. 2C.D.24.下列函数中,最小正周期为π,且图象关于直线3x π=对称的是 A. sin 23y x π⎛⎫=- ⎪⎝⎭ B. sin 26y x π⎛⎫=- ⎪⎝⎭C. sin 26y x π⎛⎫=+ ⎪⎝⎭ D. sin 23x y π⎛⎫=+ ⎪⎝⎭5.已知,αβ是两个不同的平面,,m n 是两条不同的直线,则下列命题不正确的是A.若//,,//m n m n ααβ⋂=则B.若,,m m αβαβ⊥⊂⊥则C.若//,,m n m αα⊥⊥则nD.若,,//m m βααβ⊥⊥则6.已知a b 与均为单位向量,其夹角为θ,则命题1p a b ->:是命题526q ππθ⎡⎫∈⎪⎢⎣⎭:,的A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 7.在线段AB 上任取一点P 、以P 为顶点,B 为焦点作抛物线,则该抛物线的准线与线段AB 有交点的概率是 A. 13 B. 12 C. 23 D. 348.若实数,x y 满足不等式组250,270,0,0,x y x y x y +->⎧⎪+->⎨⎪≥≥⎩且,x y 为整数,则34x y +的最小值为A.14B.16C.17D.199.若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是 A. 0a <<1B. 01a a <<2≠,C. a 1<<2D. 2a ≥10.已知双曲线2222:1x y C a b-=的左、右焦点分别是12F F ,,正三角形12AF F 的一边1AF 与双曲线左支交于点B ,且114AF BF =,则双曲线C 的离心率的值是A. 1B.C. 13+D. 13第II 卷(非选择题,共100分)二、填空题:本大题共5个小题,每小题5分,共25分.将答案填在题中横线上.11.函数y =的定义域是__________.12.已知数列{}111,n n n a a a a n +==+中,,若利用如图所示的程序框图计算该数列的第10项的值S ,则判断框内的条件是_________.13.某几何体的三视图如图所示,则该几何体的体积为__________.14.若函数()()y f x x R =∈满足()()[]()21,1,11f x f x x f x x +=-∈-=-且时,,函数()()()lg 0,10,x x g x x x>⎧⎪=⎨-<⎪⎩则函数()()()h x f x g x =-在区间[]5,5-内的零点的个数为__________.15.给出以下四个结论:①函数()211x f x x -=+的对称中心是()1,2-; ②若关于x 的方程()100,1x k x x -+=∈在没有实数根,则k 的取值范围是2k ≥; ③在ABC ∆中,“cos cos b A a B =”是“ABC ∆为等边三角形”的必要不充分条件; ④若将函数()sin 23f x x π⎛⎫=-⎪⎝⎭的图象向右平移()0ϕϕ>个单位后变为偶函数,则ϕ的最小值是12π.其中正确的结论是__________.三、解答题:本大题共6个小题,共75分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分12分)某校夏令营有3名男同学A,B,C 和3名女同学X,Y ,Z ,其年级情况如下表;现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(I )用表中字母列举出所有可能的结果;(II )设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.17. (本小题满分12分)ABC ∆中,三个内角A,B,C 所对的边分别为),,,60,1a b c B a c ==. (I )求角A 的大小;(II )已知6ABC S ∆=+()cos2sin f x x a x =+的最大值.18. (本小题满分12分)在三棱柱111ABC A B C -中 ,侧棱垂直于底面,1,2,1AB BC AA AC BC ⊥===,E,F 分别是11,AC BC 的中点.(I )求证平面ABE ⊥平面11B BCC ;(II )求证1//C F 平面ABE ;(III )求三棱锥E ABC -的体积..19. (本小题满分12分)设公差为()0d d ≠的等差数列{}n a 与公比为()0q q >的等比数列{}n b 有如下关系;311332,,5b a b a b a ====.(I )求{}n a 和{}n b 的通项公式;(II )记{}{}1232012320,,,,,,,,,,A a a a aB b b b bC A B =⋅⋅⋅=⋅⋅⋅=⋃,求集合C 中的各元素之合.20. (本小题满分13分)设椭圆()2222:10x y C a b a b+=>>的一个顶点与抛物线:2x =的焦点重合,12,F F 分别是椭圆的左、右焦点,离心率e =2F 的直线l 与椭圆C 交于M,N 两点.(I )求椭圆C 的方程; (II )是否存在直线l ,使得1OM ON ⋅=-uuu r uuu r ,若存在,求出直线l 的方程;若不存在,说明理由;(III )若AB 是椭圆C 经过原点O 的弦,MN//AB ,求是否存在λ,使AB =在,求出的值;若不存在,请说明理由.21. (本小题满分14分)已知()()2ln ,3f x x x g x x ax ==-+-. (I )求函数()[](),20f x t t t +>在上的最小值;(II )对一切()()()0,,2x f x g x ∈+∞≥恒成立,求实数a 的取值范围;(III )证明:对一切()0,x ∈+∞,都有12ln x x e ex>-成立.。
【恒心】2015届山东省滕州市第五中学高三第二次月考数学(文科)试题及参考答案【word版】

山东省滕州市第五中学2015届高三第二次月考数学(文)试题一、选择题(10×5分=50分)1.已知全集U=R ,集合A={x||x ﹣2|<1},B={x|y=x 24-},则A∩B=( )A .(1,2)B .(2,3)C .[2,3)D .(1,2]2.已知i 是虚数单位,且复数2121,21,3z z i z bi z 若-=-=是实数,则实数b 的值为 A .6B .6-C .0D .61 3.设n S 为等比数列}{n a 的前n 项和,已知342332,32S a S a =-=-,则公比q =A .3B .4C .5D .64.知函数()f x 的定义域是(0,1),则(2)xf 的定义域是( )A .(0,1)B .(1,2)C .(,0)-∞D .(0,)+∞5.设2(log )2(0)x x f x =>,则(2)f 的值是( )A .128B .16C .8D .2566.若幂函数()322233-+++=m m x m m y 的图像不过原点,且关于原点对称,则m 的取值是( ) A .2-=mB .1-=mC .12-=-=m m 或D .13-≤≤-m7.设c b a ,,均为正数,且a a21log 2=,b b21log 21=⎪⎭⎫⎝⎛,则( )A .c b a <<B .a b c <<C .b a c <<D .c a b <<8.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( )A .6+2 3B .7+2 3C .7+4 3D .6+4 39.函数2()xf x x a=+的图象不可能是 ( )10.对于函数2()3f x x k =-+,当实数k 属于下列选项中的哪一个区间时,才能确保一定存在实数对,a b (0)a b <<,使得当函数()f x 的定义域为[],a b 时,其值域也恰好是[],a b ( )A .[)2,0-B .1(2,)12--C .1(,0)12-D .1(,)12-+∞ 二、填空题(5×5分=25分)11.“a R ∃∈,使函数2()f x x ax =-是偶函数”的否定是____________________ 12.集合{}220M x x x a =-+=有8个子集,则实数a 的值为 13.若不等式x 2+ax +1>0对于一切x ∈(0,12]成立,则a 的取值范围是14.已知函数xx x f 2ln )(+=, 若2)4(2<-x f , 则实数x 的取值范围为 . 15.函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =______三、解答题16.(12分)已知函数222()2(log )2(log )f x x a x b =-+,当12x =时有最小值-8,(1)求,a b 的值;(2)当1,84x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最值.17.(12分)已知定义在R 上函数2()1x bf x x ax +=++为奇函数.(1)求a b +的值;(2)求函数()f x 的值域.18.(12分)已知函数()y f x =和()y g x =的图象关于y 轴对称,且2()242f x x x =+-.(1)求函数()y g x =的解析式;(2)当12k <时,解不等式4()()1k f x g x x <+-. 19.(12分)已知p :关于x 的方程210x m +-=有实数解;q :函数()1f x x m =-+在),(2∞-上为减函数.若p 或q 为真,p 且q 为假,求实数m 的取值范围.20.(13分)设二次函数2()(,,)f x ax bx c a b c R =++∈满足下列条件: ①当x ∈R 时,()f x 的最小值为0,且f (x -1)=f (-x -1)成立; ②当x ∈(0,5)时,x ≤()f x ≤21x -+1恒成立。
重庆市2014—2015学年高三上期期末文科数学试题(二)(含答案)
高三上期数学期末巩固训练(二)命题人 蒋红伟 一、选择题(5×10=50分)1.已知集合{10}{lg(1)}M x x N x y x =+>==-,,则M N =( )A .{11}x x -<<B .{1}x x >C .{11}x x -≤<D .{1}x x ≥-2.等比数列{}n a 中,44a =,则26a a ⋅等于( )A .4B .8C .16D .323.已知:1231,:(3)0p x q x x -<-<-<, 则p 是q 的什么条件( ) A .必要不充分 B .充分不必要 C .充要 D .既不充分也不必要 4.若点(cos ,sin )P αα在直线2y x =-上,则sin 22cos 2αα+=( ) A .145-B .75- C .2- D .455.圆0222=++x y x 和0422=-+y y x 的公共弦所在直线方程为( ) A .02=-y x B .02=+y x C .02=-y x D .02=+y x 6. 已知函数()22xf x =-,则函数()y f x =的图象可能是( )7.函数()sin2f x x x =-的单调减区间为( )A .2[,]63k k ππππ++,k Z ∈ B .7[,]1212k k ππππ--,k Z ∈ C .7[2,2]1212k k ππππ--,k Z ∈ D .5[,]1212k k ππππ-+,k Z ∈ 8.设11321log 2,log 3,()2a b c ===0.3,则( )A .c b a <<B .b c a <<C .a c b <<D .c a b <<9.在复平面内,复数211)i (i-+对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限10.已知某几何体的三视图如右图所示,则该几何体的体积是( )A .21 B .61 C . 121 D . 181二、填空题(5×5=25分)11.向量b a ,的夹角为120°,|5|,3||,1||-==则= 12.不等式0)1)(3(1<+--x x x 的解集为13.已知圆C 的圆心是直线01=+-y x 与x 轴的交点,且圆C 与直线03=++y x 相切.则圆C 的方程为14.已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是______ 15.已知向量(,1)x =-a ,(3,)y =b ,其中x 随机选自集合{1,1,3}-,y 随机选自集合{1,3},那么⊥a b 的概率是_____. 三、解答题(75分)16.设集合A ={x |x 2<4},B ={x |1<4x +3} (1)求集合B A(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值17.已知向量)2,(sin -=θ与)cos ,1(θ=互相垂直,其中(0,)2πθ∈(1)求θsin 和θcos 的值(2)求函数x x x f sin 22cos )(+=的值域18. 将一颗均匀的四面分别标有1,2,3,4点的正四面体骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)以第一次向上点数为横坐标x ,第二次向上的点数为纵坐标y 的点(),x y在区域Ω:0020x y x y >⎧⎪>⎨⎪-->⎩内的概率.19.已知数列{}n a 的前n 项和为22n n nS +=, (1)求数列{}n a 的通项公式 (2)求数列1{}n n a x -的前n 项和(其中0x >)20.如图,正三棱柱111C B A ABC -中,D AA AB ,3,21==为B C 1的中点,P 为AB 边上的动点. (1)当点P 为AB 边上的中点,证明DP //平面11A ACC (2)若,3PB AP =求三棱锥CDP B -的体积.21.若椭圆1C :)20( 14222<<=+b b y x 的离心率等于23,抛物线2C :)0( 22>=p py x 的焦点在椭圆的顶点上。
2015届文科数学高三第二次月考试卷
2015届高三第二次月考试卷(文史类)(时间:120分钟,总分:150分)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={-1,0,1},N={x|x 2=x},则()M C MN =A.{-1,0,1}B.{0,1}C.{ -1}D.{1} 2.复数z=i (i+1)(i 为虚数单位)的共轭复数是A.1i --B. 1i -+C. 1i -D. 1i + 3.命题“若4πα=,则tan 1α=”的逆否命题是A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π4.容量为20的样本数据,分组后的频数如下表则样本数据落在区间[10,40]的频率为A 0.35B 0.45C 0.55D 0.65 5.函数f(x)=xcos2x 在区间[0,2]π上的零点个数为A 2B 3C 4D 5 6.命题“存在一个无理数,它的平方是有理数”的否定是 A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数7 . sin cos αα-=,α∈(0,π),则sin 2α=A -1BCD 1 8. 设 a >b >0 ,C <0 ,给出下列三个结论① c a >cb② c a <c b ③ log b (a-c )>log a (b-c) 其中所有的正确结论的序号是A ①B ① ②C ② ③D ① ②③ 9. 将函数y =cos(21x +6π)的图象经过怎样的平移,可以得到函数y =cos 21x 的图象A 向左平移6π个单位长度 B 向右平移6π个单位长度 C 向右平移3π个单位长度 D 向左平移3π个单位长度10.函数y=12x 2-㏑x 的单调递减区间为A (-1,1]B (0,1]C [1,+∞)D (0,+∞) 二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡上对应题号的横上.11. 已知向量a=(1,0),b=(1,1),则与2a b +为____________;12. 阅读如图所示的程序框图,运行相应的程序,输出的结果s=_________;(第12题) (第13题)13. 若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则 ϕ的取值是______________ 14. 已知12cos(),(0)13πθθπ+=<<,则cos 2θ的值为_______________.15. 已知函数sin y x x =,它的图象的对称轴方程是 __________________.三.解答题:本大题共6小题,共75分. 解答应写出文字说明,证明过程或演算步骤.16. 在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .角A ,B ,C 成等差数列。
2015届高三年第二次阶段考试(文科数学)试卷- 副本
石光中学2015届高三年第二次阶段考试(文科数学)(满分:150分;考试时间:120分钟)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求.请将答案填写在答题卡相应位置上,否则答案无效.)1.已知集合{}sin,,M y y x x R==∈{}0,1,2N=,则M N=() A.{}1,0,1-B.[]0,1C.{}0,1D.{}0,1,22.复数11i+在复平面上对应的点的在( )A.第一象限 B.第二象限 C.第三象限D.第四象限3.设命题p:函数cos2y x=的最小正周期为2π,命题q:函数siny x=的图象关于直线2xπ=对称,则下列判断正确的是()A.p为真B.为真C.p q∧为真D.p q∨为真4.函数51(1)y og x=-的大致图象是()5.若是等差数列{}n a的前n项和,2104,a a+=则的值为( )A.12B.22C.18D.446.函数125)(-+-=xxxf的零点所在的区间是()A。
)1,0( B.)2,1(C。
)3,2( D.)4,3(7.已知ml,为两条不同直线,βα,为两个不同平面,则下列命题中不正确...的是()A。
若αα⊂ml,//,则ml//B。
若αβα⊥l,//,则β⊥lC。
若αβα⊂l,//,则β//l D.若lmml⊥⊂=⊥,,,αβαβα ,则β⊥m8.若不等式组02,.x yyx a+ ≤2,⎧⎪≤≤⎨⎪≥⎩表示的平面区域是一个三角形,则实数的取值范围是( ) A.0a≤B.0a≤〈C.02a≤≤D.〉9.已知m 〉0,n>0,向量()()111a m b n ==-,,,,且a //b ,则12m n+的最小值是( )A 。
B 。
C 。
D 。
10。
将函数f (x )=2sin(2)6x π-的图象向左平移m 个单位(m >0),若所得的图象关于直线x =6π对称,则m 的最小值为( ) A 。
丰台区2015年高三年级第二学期统一练习(二)高三数学(文科)
丰台区2015年高三年级第二学期统一练习(二) 2015.5高三数学 (文科)第一部分 (选择题 共40分)选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1. 复数i(1i)-对应的点在(A) 第一象限(B) 第二象限(C) 第三象限(D) 第四象限2. 已知0a >且1a ≠,命题“∃x >1,log 0a x >”的否定是(A) ∃x ≤1,log 0a x > (B) ∃x >1,log 0a x ≤ (C) ∀x ≤1,log 0a x >(D) ∀x >1,log 0a x ≤3.已知函数()sin f x x =,[2,2]x ππ∈-,则方程1()2f x =的所有根的和等于 (A) 0(B) π(C) -π(D) - 2π4. 如图所示,某三棱锥的正视图、俯视图均为边长为2的正三角形,则其左视图面积为(A) 2(B)3(C)23 (D)23俯视图正视图5.执行如图所示的程序框图,如果输入的x R ∈,则输出的h (x )的最小值是(A) 34(B) 3 (C) 4 (D) 76.设O 是坐标原点,F 是抛物线2y x =的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为6π,则 ||AF =(A)12(B)34(C) 1(D) 27.某工厂生产甲、乙两种产品,已知生产每吨甲种产品要用A 原料3吨,B 原料2吨;生产每吨乙种产品要用A 原料1吨,B 原料3吨.该工厂每天生产甲、乙两种产品的总量不少于2吨,且每天消耗的A 原料不能超过10吨,B 原料不能超过9吨.如果设每天甲种产品的产量为x 吨,乙种产品的产量为y 吨,则在坐标系xOy 中,满足上述条件的x ,y 的可行域用阴影部分表示正确的是(A)(B)(C)(D)8.对于集合A ,B ,定义{,}A B x y x A y B +=+∈∈,下列命题:①A B B A +=+;②()()A B C A B C ++=++;③若A A B B +=+,则A B =;④若A C B C +=+,则A B =.其中正确的命题是 (A) ① (B) ①② (C) ②③(D) ①④第二部分 (非选择题 共110分)一、填空题共6小题,每小题5分,共30分.9.已知正实数x ,y 满足xy =3,则2x +y 的最小值是 . 10.曲线321y x x x =--+在点(0,1)处的切线方程是 .11.在锐角△ABC 中,AB =AC =2,△ABC 的面积是4,则sin A = ,BC = .12.如图所示,分别以A ,B ,C 为圆心,在△ABC 内作半径为2的扇形(图中的阴影部分),在△ABC 内任取一点P ,如果点P 落在阴影内的概率为13,那么△ABC 的面积是 . 13.已知两点(,0)A m -,(,0)B m (0m >),如果在直线34250x y ++=上存在点P ,使得90APB ︒∠=,则m 的取值范围是_____.14.已知梯形A B C D 中,12A D D CC B A B ===,P 是BC 边上一点,且AP xAB yAD =+.当P 是BC 中点时,x y += ;当P 在BC 边上运动时,x y +的最大值是______.二、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)已知函数2()2cos ()12f x x ωπ=+(其中0>ω,∈x R )的最小正周期为2π.(Ⅰ)求ω的值;(Ⅱ)如果[0,]2απ∈,且58)(=αf ,求αcos 的值.16.(本小题共13分)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 满足111a b ==,332S b =+,551S b =-.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)如果数列{}n b 为递增数列,求数列{}n n a b 的前n 项和n T .17.(本小题共13分)长时间用手机上网严重影响着学生的身体健康,某校为了解A ,B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长;(Ⅱ)从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求a >b 的概率.18.(本小题共14分) 如图所示,四棱锥P ABCD -的底面ABCD 是直角梯形,AD BC //,AB AD ⊥,AD BC AB 21==,PA ⊥D底面ABCD ,过BC 的平面交PD 于M ,交PA 于N (M 与D 不重合).(Ⅰ)求证:BC MN //; (Ⅱ)求证:CD PC ⊥;(Ⅲ)如果BM AC ⊥,求此时PMPD的值.19.(本小题共13分)已知函数2()e x f x x =. (Ⅰ)求()f x 的单调区间;(Ⅱ)证明:1x ∀,2(,0]x ∈-∞,1224()()e f x f x -≤; (Ⅲ)写出集合{()0}x f x b ∈-=R (b 为常数且b ∈R )中元素的个数(只需写出结论).20.(本小题共14分)已知椭圆C :22221x y a b+=(0)a b >>的右焦点为F ,上下两个顶点与点F 恰好是正三角形的三个顶点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)过原点O 的直线l 与椭圆交于A ,B 两点,如果△FAB 为直角三角形,求直线l 的方程.(考生务必将答案答在答题卡上,在试卷上作答无效)丰台区2015年高三年级第二学期数学统一练习(二)数 学(文科)参考答案选择题:本大题共8小题,每小题5分,共40分.一、填空题:本大题共6小题,每小题5分,共30分.9. 10.10x y +-= 11.5;4 12.6π 13.[5,)+∞ 14.54;32注:第11, 14题第一个空填对得3分,第二个空填对得2分.二、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共13分)解:(Ⅰ)因为 )12(cos 2)(2πω+=x x f 1)62cos(++=πωx .所以πωπ222==T , 因为>ω,所以21=ω. ……………………5分 (Ⅱ)由(1)可知581)6cos()(=++=πααf ,所以53)6cos(=+πα,因为[0,]2πα∈,所以2[,]663πππα+∈, 所以54)6sin(=+πα.因为cos cos[()]66ππαα=+-cos()cossin()sin6666ππππαα=+++3415252=⨯+⨯410=. ……………………13分所以4cos 10α=. 16.(本小题共13分)解:(Ⅰ)设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则由题意得243325101d q d q ⎧+=+⎨+=-⎩. 代入得29450d d --=,解得1d =或59d =-(舍). 所以2q =±.所以n a n= ;12n n b -=或1(2)n n b -=-. ……………………7分(Ⅱ)因为数列{}n b 为递增数列,所以12n n b -=.所以0121122232...2n n T n -=⨯+⨯+⨯++⨯,12321222322n n T n =⨯+⨯+⨯++⨯ ,相减得012122222n n n T n --=++++-⨯ ,所以1(1)2n n T n =+-. ……………………13分17.(本小题共13分)解:(Ⅰ)A 班样本数据的平均值为1(911142031)175++++=,B 班样本数据的平均值为1(1112212526)195++++=,据此估计B 班学生平均每周上网时间较长. ……………………5分(Ⅱ)依题意,从A 班的样本数据中随机抽取一个不超过21的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b 的取法共有12种,分别为: (9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),(20,11),(20,12),(20,21). 其中满足条件“a >b ”的共有4种,分别为: (14,11),(14,12),(20,11),(20,12).设“a >b ”为事件D , 则31124)(==D P . ……………………13分 答:a >b 的概率为31.18.(本小题共14分)证明:(Ⅰ)因为梯形ABCD ,且AD BC //,又因为⊄BC 平面PAD ,⊂AD 平面PAD ,所以//BC 平面PAD . 因为平面 BCNM 平面PAD =MN , 所以BC MN //. ……………………4分(Ⅱ)取AD 的中点Q ,连结CQ .因为AD BC //,AD BC 21=, 所以AQ BC //,且AQ BC =. 因为AB BC =,且AB AD ⊥, 所以ABCQ 是正方形. 所以BQ AC ⊥.又因为BCDQ 为平行四边形,所以且//CD BQ 所以⊥CD AC . 又因为PA ⊥底面ABCD ,所以PA ⊥CD . 因为A AC PA = ,所以⊥CD 平面PAC , 因为PC ⊂平面PAC , 所以⊥CD PC . ……………………10分(Ⅲ)过M 作//MK PA 交AD 于K ,连结BK .因为PA ⊥底面ABCD , 所以MK ⊥底面ABCD . 所以MK AC ⊥.又因为BM AC ⊥,BM MK M = , 所以⊥AC 平面BM K ,KA DPMQABDPMC所以AC BK ⊥.由(Ⅱ)知AC CD ⊥,所以在平面ABCD 中可得BCDK 是平行四边形. 所以BC DK AK ==, 因为K 是AD 中点,所以M 为PD 中点. 所以12PM PD =. ……………………14分19.(本小题共13分)解:(Ⅰ)()(2)x f x x x e '=+.令()(2)0x f x x x e '=+=,则12x =-,20x =.所以函数()f x 的单调递减区间为(2,0)-,单调递增区间为(,2)-∞-,(0,)+∞.……………………4分(Ⅱ)证明:由(Ⅰ)知()f x 的单调递增区间为(,2)-∞-,单调递减区间为(2,0)-,所以当(,0]x ∈-∞时,()=f x 最大值24(2)f e -=. 因为当(,2]x ∈-∞-时,()0f x >,(0)0f =,所以当(,0]x ∈-∞时,()=f x 最小值(0)0f =. 所以()f x 最大值-()=f x 最小值24e . 所以对1x ∀,2(,0]x ∈-∞,都有12()()f x f x -≤()f x 最大值-()=f x 最小值24e. ……………………10分(Ⅲ)当0b <时,集合{()0}x f x b ∈-=R 的元素个数为0;当0b =或24b e>时,集合{()0}x f x b ∈-=R 的元素个数为1; 当24b e =时,集合{()0}x f x b ∈-=R 的元素个数为2; 当240b e<<时,集合{()0}x f x b ∈-=R 的元素个数为3. ……………………13分20.(本小题共14分)解:(Ⅰ)因为椭圆C 的右焦点为F ,则c =因为上下两个顶点与F 恰好是正三角形的三个顶点,所以1b =,2a ==. 所以椭圆C的标准方程为2214x y +=. ……………………4分 (Ⅱ)依题意,当△FAB 为直角三角形时,显然直线l 斜率存在,可设直线l 方程为y kx =,设11(,)A x y ,22(,)B x y .(ⅰ)当FA FB ⊥时,11()FA x y = ,22()FB x y =. 2244y kxx y =⎧⎨+=⎩,消y 得22(41)40k x +-=. 所以120x x +=,122441x x k =-+.212121212((1))3FA FB x x y y k x x x x ⋅=+=+++224(1)3041k k -=+⋅+=+.解得4k =±. ……………………9分此时直线l 的方程为y x =. (ⅱ)当FA 与FB 不垂直时,根据椭圆的对称性,不妨设2FAB π∠=.也就是点A 既在椭圆上,又在以OF 为直径的圆上.所以22112221114(x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得1x =,1y =所以112y k x ==± 此时直线l的方程为y x =.综上所述,直线l 的方程为y x =或2y x =±. ……………………14分(若用其他方法解题,请酌情给分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015届高三文科数学基础题训练27月14日 星期一1.设平面向量()()3,5,2,1a b ==-,则2a b += 52 .2.若直线l 与幂函数n y x =的图象相切于点A (2,8),则直线l 的方程为12160x y --=.3.已知函数cos (0)()(1)1(0)x x f x f x x π⎧=⎨-+>⎩≤,则44()()33f f +-= 1 .4.已知公差不为零的等差数列{}n a 的前4项和为10,且237,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n S .4.解:(1)设数列}{n a 的首项为1a ,公差为d ,由题意知⎩⎨⎧++=+=+).6)(()2(,106411211d a d a d a d a解得123a d =-⎧⎨=⎩, 35n a n ∴=-. (2)35112284--===⋅ na n n nb ∴数列{}n b 是首项为41,公比为8的等比数列,1(18)814.1828n n n S --∴==-7月15日 星期二1.已知数列{}n a 的前n 项和22n S n n =-,则218a a +=34.2. 已知命题p :1x ∃>,210x ->,那么p ⌝是1x ∀>,210x -≤.3. 设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号 是 ① .①.若 n m //,β⊥m , 则 β⊥n ; ②.若n m //,β//m , 则 β//n ; ③.若α//m ,β//m ,则βα//; ④.若α⊥n ,β⊥n ,则βα⊥. 4.函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的部分图像如图所示.(1)求)(x f 的最小正周期及解析式;(2)设x x f x g 2cos )()(-=,求函数)(x g 在区间]2,0[π上的最小值.4.解:(1)由图可得263221πππ=-==TA ,,.2T πω∴==. 当6π=x 时,1)(=x f ,可得1)62sin(=+⨯ϕπ,)62sin()(.6,2||ππϕπϕ+=∴=∴<x x f .(2)x x x x x x x f x g 2cos 6sin2cos 6cos2sin 2cos )62sin(2cos )()(-+=-+=-=πππ)62sin(2cos 212sin 23π-=-=x x x . 65626,20ππππ≤-≤-∴≤≤x x . 当662ππ-=-x 即0=x 时,)(x g 有最小值为21-.7月16日 星期三 1.在复平面内,复数12ii+-(其中i 为虚数单位)对应的点位于第 一 象限. 2.已知集合{},0M a =,{}2230,N x x x x =-<∈Z ,如果M N ≠∅ ,则a = 1 .3.已知)0,2(πα-∈,53cos =α,则=+)4tan(πα 71- . 4.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且()2cossin()22A Af A π=- 22sin cos 22A A+-. (Ⅰ)求函数()f A 的最大值;(Ⅱ)若()0f A =,512C π=,6a =,求b 的值.4.解(Ⅰ)=.因为0<A <π,所以.则所以当,即时,f (A )取得最大值,且最大值为. (Ⅱ)由题意知,所以. 又知,所以,则.因为,所以,则.由得,.7月17日 星期四1.函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,则将()y f x =的图象向右平移6π个 单位后,得到的图像解析式为_)62sin(π-=x y .2.已知0y x π<<<,且tan tan 2x y =,1sin sin 3x y =,则x y -=___3π__.3.求“方程34()()155x x +=的解”有如下解题思路:设34()()()55x xf x =+,则()f x 在R上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,方程623(2)2x x x x +=+++的解集为 {﹣1,2} .4.已知集合233|1,[,2]24A y y x x x ⎧⎫==-+∈⎨⎬⎩⎭,{}2|1B x x m =+≥.命题:p x A ∈,命题:q x B ∈,且命题p 是命题q 的充分条件,求实数m 的取值范围.4.解:223371()2416y x x x =-+=-+ ,3[,2]4x ∈,7[,2].16y ∴∈ 7|216A y y ⎧⎫∴=≤≤⎨⎬⎩⎭. 由21x m +≥得21x m ≥-,{}2|1B x x m ∴=≥-.∵命题p 是命题q 的充分条件,∴A B ⊆,即27116m -≤,解得34m ≤-或3.4m ≥∴实数m 的取值范围是33(,][,).44-∞-+∞7月18日 星期五1. 若直线y x m =+与圆22420x y x +++=有两个不同的公共点,则实数m 的取值范围是(0,4).2.设集合{}|41|9,A x x x R =-≥∈, |0,3x B x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则=B A 5(,3)[,)2-∞-+∞ .3.设函数22(0)()log (0)x x f x x x ⎧≤=⎨>⎩,函数[()]1y f f x =-的零点个数为 2 .4.如图,点P 是半径为2的砂轮边缘上的一个质点,且(2,0)A ,03P OA π∠=,P 从初始位置0P 开始,按逆时针方向以2/rad s 的角速度做圆周运动,动点P 的纵坐标y 是时间t (单位:s )的函数,即().y f t =(1)求()y f t =的解析式,并指出它的周期、频率; (2)设()()2sin2,[0,]2g x f x xx π=-∈,求()g x 的最大值、最小值.xyOAP 0P2015届高三文科数学基础题训练27月14日 星期一1.设平面向量()()3,5,2,1a b ==-,则2a b += .2.若直线l 与幂函数n y x =的图象相切于点A (2,8),则直线l 的方程为 .3.已知函数cos (0)()(1)1(0)x x f x f x x π⎧=⎨-+>⎩≤,则44()()33f f +-= .4.已知公差不为零的等差数列{}n a 的前4项和为10,且237,,a a a 成等比数列. (1)求数列{}n a 的通项公式;(2)设2n an b =,求数列{}n b 的前n 项和n S .7月15日 星期二1.已知数列{}n a 的前n 项和22n S n n =-,则218a a += .2. 已知命题p :1x ∃>,210x ->,那么p ⌝是 .3. 设m ,n 是两条不同的直线,α,β是两个不同的平面,则下列正确命题的序号 是 .①.若 n m //,β⊥m , 则 β⊥n ; ②.若n m //,β//m , 则 β//n ; ③.若α//m ,β//m ,则βα//; ④.若α⊥n ,β⊥n ,则βα⊥.4.函数)2||,0,0)(sin()(πϕωϕω<>>+=A x A x f 的部分图像如图所示.(1)求)(x f 的最小正周期及解析式;(2)设x x f x g 2cos )()(-=,求函数)(x g 在区间]2,0[π上的最小值.7月16日 星期三 1.在复平面内,复数12ii+-(其中i 为虚数单位)对应的点位于第 象限.2.已知集合{},0M a =,{}2230,N x x x x =-<∈Z ,如果M N ≠∅ ,则a = .3.已知)0,2(πα-∈,53cos =α,则=+)4tan(πα .4.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且()2cossin()22A Af A π=- 22sin cos 22A A+-. (Ⅰ)求函数()f A 的最大值;(Ⅱ)若()0f A =,512C π=,6a =,求b 的值.7月17日 星期四1.函数)2||,0,0)(sin()(πφωφω<>>+=A x A x f 的部分图像如图所示,则将()y f x =的图象向右平移6π个 单位后,得到的图像解析式为 .2.已知0y x π<<<,且tan tan 2x y =,1sin sin 3x y =,则x y -=_____.3.求“方程34()()155xx +=的解”有如下解题思路:设34()()()55x x f x =+,则()f x 在R上单调递减,且(2)1f =,所以原方程有唯一解2x =.类比上述解题思路,方程623(2)2x x x x +=+++的解集为 .4.已知集合233|1,[,2]24A y y x x x ⎧⎫==-+∈⎨⎬⎩⎭,{}2|1B x x m =+≥.命题:p x A ∈,命题:q x B ∈,且命题p 是命题q 的充分条件,求实数m 的取值范围.7月18日 星期五1. 若直线y x m =+与圆22420x y x +++=有两个不同的公共点,则实数m 的取值范围是 .2.设集合{}|41|9,A x x x R =-≥∈, |0,3x B x x R x ⎧⎫=≥∈⎨⎬+⎩⎭,则=B A .3.设函数22(0)()log (0)x x f x x x ⎧≤=⎨>⎩,函数[()]1y f f x =-的零点个数为 .4.如图,点P 是半径为2的砂轮边缘上的一个质点,且(2,0)A ,03P OA π∠=,P 从初始位置0P 开始,按逆时针方向以2/rad s 的角速度做圆周运动,动点P 的纵坐标y 是时间t (单位:s )的函数,即().y f t =(1)求()y f t =的解析式,并指出它的周期、频率; (2)设()()2sin 2,[0,]2g x f x x x π=-∈,求()g x 的最大值、最小值.xyOAP 0P。