(word完整版)2017年高考全国1卷理科数学和答案详解(word版本)

合集下载

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

(完整word版)2017年高考全国理科数学试题及答案(1卷WORD版),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

2017全国Ⅰ高考理科数学试题真题答案精编版

2017全国Ⅰ高考理科数学试题真题答案精编版

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则A. {|0}A B x x =<IB. A B =R UC. {|1}A B x x =>UD. A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A.14 B. π8 C. 12 D. π43.设有下面四个命题1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为 A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A.A >1000和n =n +1B.A >1000和n =n +2C.A ≤1000和n =n +1D.A ≤1000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是 A.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B.把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D.把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16 B .14 C .12 D .10 11.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。

2017全国1卷理科数学(含答案).docx

2017全国1卷理科数学(含答案).docx

2017 年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={ x|x<1} ,B={ x| 3x 1 },则()A .AB { x | x 0} B .A B R C.A B { x | x 1}D.A B2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A .1B .πC.1D.π84 423.设有下面四个命题p1:若复数 z 满足1R ,则z R ;p2:若复数 z 满足z2R ,则z R ;zp3:若复数 z1, z2满足 z1z2R,则z z;p4:若复数z R,则z R.12其中的真命题为()A.p1, p3 B .p1, p4C.p2, p3D.p2, p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n } 的公差为()A . 1B . 2C.4D. 85.函数f ( x)在(,) 递减,且为奇函数.若 f (1) 1 ,则满足 1 f ( x2)1的 x 的取值范围是()A.[2,2] B .[ 1,1]C.[0,4]D.[1,3]6.(116展开式中2的系数为()x2 )(1x)xA . 15B . 20C.30D. 35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A . 10B.12C.14 D .168.右面程序框是了求出足3n- 2n>1000 的最小偶数 n,那么在和两个空白框中,可以分填入(A . A>1000 和 n=n+1B .A>1000 和 n=n+2C.A 1000 和 n=n+1 D .A 1000 和 n=n+2: y=cos x, C: y=sin (2 x+2π)9.已知曲 C2),下面正确的是(3A.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向右平移π个位度,得到曲6C2B.把 C1上各点的横坐伸到原来的 2 倍,坐不,再把得到的曲向左平移π个位度,得到曲12C2C.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向右平移π个位度,得到曲26C2D.把 C1上各点的横坐短到原来的1倍,坐不,再把得到的曲向左平移π个位度,得到212曲 C210.已知 F 抛物2的焦点, F 作两条互相垂直的直l 1,l 2,直 l 1与 C 交于 A、B 两点,直C:y =4x与 C 交于 D、 E 两点, |AB |+|DE|的最小()A . 16B . 14C.12D. 10、、z 正数,且2x3y5z)11. x y,(A . 2x<3 y<5zB . 5z<2x<3y C.3y<5 z<2x D. 3y<2x<5z 12.几位大学生响国家的号召,开了一款用件.激大家学数学的趣,他推出了“解数学)l2取件激活”的活.款件的激活下面数学的答案:已知数列1, 1, 2, 1, 2, 4, 1,2, 4, 8, 1, 2,4, 8,16,⋯,其中第一是 20,接下来的两是 20, 21,再接下来的三是 20,21, 22,依此推.求足如下条件的最小整数 N:N>100 且数列的前 N 和 2 的整数.那么款件的激活是()A . 440B . 330C.220D. 110二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.已知向量 a , b 的夹角为 60°, |a |=2, |b |=1,则 | a +2 b |=.x 2 y 114.设 x ,y 满足约束条件2x y 1,则 z 3x 2 y 的最小值为.x y2215.已知双曲线 C :x2y 2 1( a>0,b>0)的右顶点为 A ,以 A 为圆心, b 为半径作圆 A ,圆 A 与双曲线 C 的 ab一条渐近线交于 M 、 N 两点.若∠ MAN =60°,则 C 的离心率为 ____ ____.16.如图,圆形纸片的圆心为O ,半径为 5 cm ,该纸片上的等边三角形ABC 的中心为 O .D 、E 、F 为圆 O 上的点,△ DBC ,△ ECA ,△ FAB 分别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、 E 、 F 重合,得到三棱锥.当△ ABC 的边长变化时,所得 三棱锥体积(单位:cm 3)的最大值为 _______.三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共60 分.a 2 17.(12 分)△ ABC 的内角 A , B , C 的对边分别为 a ,b ,c ,已知△ ABC 的面积为3sin A( 1)求 sinBsinC;( 2)若 6cosBcosC=1, a=3,求△ ABC 的周长.18.( 12 分)如图,在四棱锥 P-ABCD 中, AB//CD ,且BAP CDP 90 .( 1)证明:平面 PAB ⊥平面 PAD ;( 2)若 PA=PD=AB=DC ,APD 90 ,求二面角 A-PB-C 的余弦值.19.( 12 分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16 个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N ( , 2 ).( 1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在 ( 3 ,3 ) 之外的零件数,求P( X 1) 及X的数学期望;( 2)一天内抽检零件中,如果出现了尺寸在(3,3 ) 之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95116116( xi x )2116经计算得 x x i9.97 ,s(x i216x 2 ) 20.212,其中x i为抽取的第 i16 i 116 i 116i1个零件的尺寸,i1,2,,16 .用样本平均数x 作为的估计值 ?,用样本标准差s 作为的估计值? ,利用估计值判断是否需对当天的生产过程进行检查?剔除( ? 3 ?, ? 3 ?) 之外的数据,用剩下的数据估计和(精确到0.01).附:若随机变量Z 服从正态分布 N (,2 ) ,则 P(3Z3)0.9974 ,0.9974160.9592,0.0080.09.20.( 12 分)已知椭圆x2y23), P4( 1,3 C:22 =1 (a>b>0),四点P1(1,1),P2(0,1),P3(–1,)a b22中恰有三点在椭圆 C 上.( 1)求 C 的方程;( 2)设直线 l 不经过 P2点且与 C 相交于 A, B 两点.若直线P2A 与直线 P2B 的斜率的和为–1,证明: l 过定点.21.( 12 分)已知函数 f ( x) ae2x(a 2)e x x .( 1)讨论 f ( x) 的单调性;( 2)若f ( x)有两个零点,求 a 的取值范围.(二)选考题:共10 分.请考生在第22、 23 题中任选一题作答,如果多做,则按所做的第一题计分.22. [ 选修 4―4:坐标系与参数方程]( 10 分)x3cos x a4t 在直角坐标系 xOy 中,曲线 C 的参数方程为(θ为参数),直线 l 的参数方程为(为参数).y sin y1t( 1)若 a=-1 ,求 C 与 l 的交点坐标;( 2)若 C 上的点到 l 的距离的最大值为17 ,求 a.23. [ 选修 4—5:不等式选讲]( 10 分)已知函数f(x) = –x2+ax+4 , g(x)= │x+1│ +│x– 1│.(1)当 a=1 时,求不等式 f(x) ≥g(x)的解集;(2)若不等式 f(x) ≥g(x)的解集包含 [–1, 1],求 a 的取值范围.参考答案(理科数学)一、选择题123456789101112A B B C D C B D D A D A二、填空题13.2 314.52315.16.4 15 3三、解答题。

2017全国卷1理科数学试题解析纯word版(完美版)

2017全国卷1理科数学试题解析纯word版(完美版)

2017年普通高等学校招生全国统一考试(全国I卷)理科数学一、选择题:(本题共12小题,每小题5分,共60分)1、已知集合{<1},{3x<1},则( )A.A∩{<0}B.A∪ C.A∪{>1} D.A∩∅解析:{<1},{3x<1}={<0},∴A∩{<0},A∪{<1},选A.2、如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.解析:设正方形边长为2,则圆半径为1,则正方形的面积为2×2=4,圆的面积为π×12=π,图中黑色部分的概率为.则此点取自黑色部分的概率为=.故选B.3、设有下面四个命题,其中正确的是( )p1:若复数z满足∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3:若复数z1,z2满足z1z2∈R,则z1=;p4:若复数z∈R,则∈R.A.p1,p3B.p1,p4C.p2,p3D.p2,p4解析:p1:设,则==∈R,得到0,所以z∈R.故p1正确;p2:若z2=–1,满足z2∈R,而,不满足z2∈R,故p2不正确;p3:若z1=1,z2=2,则z1z2=2,满足z1z2,而它们实部不相等,不是共轭复数,故p3不正确;p4:实数没有虚部,所以它的共轭复数是它本身,也属于实数,故p4正确;故选B.4、记为等差数列{}的前n项和,若a45=24,S6=48,则{}的公差为( )A.1 B.2 C.4 D.8解析:a451+31+424,S6=6a1+48,联立求得错误!①×3–②得(21–15)24,∴624,∴4,∴选C.当然,我们在算的时候引用中间项更快更简单:a45=24→a4.5=12,S6=48→a3.5=8,∴4.5、函数f(x)在(–∞∞)单调递减,且为奇函数.若f(1)=–1,则满足–1≤f(x–2)≤1的x的取值范围是( )A.[–2,2] B.[–1,1] C.[0,4] D.[1,3]解析:因为f(x)为奇函数,所以f(–1)=–f(1)=1,于是–1≤f(x–2)≤1等价于f(1)≤f(x–2)≤f(–1).又f(x)在(–∞∞)单调递减,∴–1≤x–2≤1,∴1≤x≤3.故选D.6、(1+)(1)6展开式中x2的系数为( )A.15 B.20 C.30 D.35解析:(1+)(1)6=1·(1)6+·(1)6.对(1)6的x2项系数为C(2,6)==15,对·(1)6的x2项系数为C(4,6)=15,∴x2的系数为15+15=30.故选C.7、某多面体的三视图如图,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为( )A.10 B.12 C.14 D.16解析:由三视图可画出立体图该立体图平面内只有两个相同的梯形的面,∴S梯=(2+4)×2÷2=6,S全=6×2=12.故选B.8、右面程序框图是为了求出满足3n–2n>1000的最小偶数n,那么在和( )A.A>1000和1 B.A>1000和2 C.A≤1000和1D.A≤1000和2解析:因为要求A大于1000时输出,且框图中在“否”时输出,∴“”中不能输入A>1000,排除A、B.又要求n为偶数,且n初始值为0,“”中n依次加2可保证其为偶,故选D.9、已知曲线C1:,C2:(2),则下面结论正确的是( )A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2D.把C1上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2解析:C1:,C2:(2),首先曲线C1、C2统一为一三角函数名,可将C1:用诱导公式处理.(–)().横坐标变换需将ω=1变成ω=2,即()→(2)2()→(2)2().注意ω的系数,在右平移需将ω=2提到括号外面,这时平移至,根据“左加右减”原则,“”到“”需加上,即再向左平移.10、已知F为抛物线C:y2=4x的交点,过F作两条互相垂直l1,l2,直线l1与C交于A、B两点,直线l2与C交于D,E两点,的最小值为( ) A.16 B.14 C.12 D.10解析:设倾斜角为θ.作1垂直准线,2垂直x轴,易知错误!.∴·θ.同理,,∴=.又与垂直,即的倾斜角为+θ,=,而y2=4x,即2.∴2P()=4==≥16,当θ=取等号,即最小值为16,故选A.11、设x,y,z为正数,且235z,则( )A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 解析:取对数:235,=>,∴2x>3y.又∵25,则=<.∴2x<5z,∴3y<2x<5z,故选D.12、几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,在接下来的三项式26,21,22,依次类推,求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是( ) A.440 B.330 C.220 D.110解析:设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n组的项数为n,则n组的项数和为,由题,N>100,令>100→n≥14且n∈,即N出现在第13组之后.第n组的和为=2n–1.n组总共的和为–2n–2–n.若要使前N项和为2的整数幂,则N–项的和2k–1应与–2–n互为相反数,即2k–1=2(k∈,n≥14).∴2(3).∴29,5.∴+5=440,故选A.二、填空题:本题共4小题,每小题5分,共20分.1、已知向量a,b的夹角为60°,2,1,则2.解析:22=(2b)22+2·2·60°+(2)2=22+2×2×2×+22=4+4+4=12,∴2 =2.2、设x,y满足约束条件错误!,则3x–2y的最小值为.解析:不等式组错误!表示的平面区域如图.2x+y+1=0由3x–2y得x–,求z的最小值,即求直线x–的纵截距的最大值当直线x–过图中点A时,纵截距最大由错误!解得A点坐标为(–1,1),此时3×(–1)–2×1=–5.3、已知双曲线C:–=1,(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点,若∠60°,则C 的离心率为.解析:如图,,.∵∠60°,∴b,=,∴θ==,又∵θ=,∴=,解得a2=3b2,∴==.4、如图,圆形纸片的圆心为O,半径为5,该纸片上的等边三角形的中心为O,D、E、F为元O上的点,△,△,△分别是一,,为底边的等腰三角形,沿虚线剪开后,分别以,,为折痕折起△,△,△,使得D,E,F重合,得到三棱锥.当△的边长变化时,所得三棱锥体积(单位:3)的最大值为.解析:由题,连接,交与点G,由题,⊥,,即的长度与的长度或成正比.设,则2x,5–x.∴三棱锥的高==.又∵S△2·3x·=3x2,∴S△·x2·=·,令f(x)=25x4–10x3,x∈(0,),f'(x)=100x3–50x4.令f'(x)>0,即x4–2x3<0,x<2.∴f(x)≤f(2)=80,∴V≤×=4,体积最大值为43.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17–21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.1、△的内角A,B,C的对边分别为a,b,c,已知△的面积为.(1)求;(2)若61,3,求△的周长.解析:本题主要考查三角函数与其变换,正弦定理,余弦定理等基础知识的综合应用.(1)∵△面积且,∴=.∴a2=.∵由正弦定理得22A,由≠0得.(2)由(1)得,.∵π,∴(π–B–C)=–()–.又∵A∈(0,π),∴60°,∴,.由余弦定理得a222–9 ①由正弦定理得·,·,∴·8②由①②得.∴3+,即△的周长为3+.2、(12分)如图,在四棱锥P–中,∥中,且∠∠90°.(1)证明:平面⊥平面;(2)若,∠90°,求二面角A––C的余弦值.解析:(1)证明:∵∠∠90°,∴⊥,⊥.又∵∥,∴⊥.又∵∩,、⊂平面.∴⊥平面,又⊂平面.∴平面⊥平面.(2)取中点O,中点E,连接,,∵∥∴四边形为平行四边形,∴∥.由(1)知,⊥平面,∴⊥平面,又、⊂平面.∴⊥,⊥.又∵,∴⊥.∴、、两两垂直∴以O为坐标原点,建立如图所示的空间直角坐标系O–.设2,∴D(–,0,0)、B(,2,0)、P(0,0,)、C(–,2,0),∴(–,0,–)、(,2,–)、(–2,0,0)设()为平面的法向量由错误!,得错误!.令1,则错误!,0,可得平面的一个法向量(0,1, ).∵∠90°,∴⊥.又知⊥平面,⊂平面.∴⊥,又∩,∴⊥平面即是平面的一个法向量,(–,0,–).∴<>===–.由图知二面角A––C为钝角,所以它的余弦值为–.3、(12分)为了抽检某种零件的一条生产线的生产过程,实验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ–3σ,μ+3σ)之外的零件数,求P(X≥1)与X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ–3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性:②下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得,,其中为抽取的第i个零件的尺寸,1,2, (16)用样本平均数为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查,剔除(–3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ–3σ<Z<μ+3σ).0.997416≈0.9592,≈0.09.解析:(1)由题可知尺寸落在(μ–3σ,μ+3σ)之内的概率为0.9974,落在(μ–3σ,μ+3σ)之外的概率为0.0026.P(0)(0,16)(1–0.9974)0·0.997416≈0.9592,P(X≥1)=1–P(0)≈1–0.9592=0.0408,由题可知(16,0.0026),∴E(X)=16×0.0026=0.0416.(2)①尺寸落在(μ–3σ,μ+3σ)之外的概率为0.0026,由正态分布知尺寸落在(μ–3σ,μ+3σ)之外为小概率事件,因此上述监控生产过程的方法合理.②(μ–3σ=9.97–3×0.212=9.334,μ+3σ=9.97+3×0.212=10.606,∴(μ–3σ,μ+3σ)=(9.334,10.606)∵9.22∉(9.334,10606),∴需对当天的生产过程检查,因此剔除9.22.剔除数据之后:μ==10.02.σ2=[(9.95–10.02)2+(10.12–10.02)2+(9.96–10.02)2+(9.96–10.02)2+(10.01–10.02)2+(9.92–10.02)2+(9.98–10.02)2+(10.04–10.02)2+(10.26–10.02)2+(9.91–10.02)2+(10.13–10.02)2+(10.02–10.02)2+(10.04–10.02)2+(10.05–10.02)2+(9.95–10.02)2]×,∴σ=≈0.09.4、(12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A、B两点,若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.解析:(1)根据椭圆对称性,必过P3、P4.又P4横坐标为1,椭圆必不过P1,所以过P2、P3、P4三点将P2(0,1)、P3(–1,)代入椭圆方程得错误!,解得a2=4,b2=1.∴椭圆C的方程为:2=1.(2)①当斜率不存在时,设l:,A(),B(m,–),22+=–=–1得2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:(b≠1),A(x11),B(x22),联立错误!,整理得(1+4k2)x2+84b2–4=0.∴x12=错误!,x1x2=错误!.则22+====–1.又b≠1,∴–2k–1,此时△=–64k,存在k使得△>0成立.∴直线l的方程为–2k–1.当2时,–1.所以l过定点(2,–1).5、(12分)已知函数f(x)2(a–2)–x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解析:(1)由于f(x)2(a–2)–x,故f'(x)=22(a–2)–1=(–1)(21)①当a≤0时,–1<0,21>0.从而f'(x)<0恒成立.f(x)在R上单调递减②当a>0时,令综上,当a≤0在(–∞,–)上单调递减,在(–∞)上单调递增(2)由(1)知,当a≤0时,f(x)在R上单调减,故f(x)在R上至多一个零点,不满足条件.当a>0时,(–)=1–.令g(a)= 1–(a>0),则g'(a)=+>0.从而g(a)在(0∞)上单调增,而g(1)=0.故当0<a<1时,g(a)<0.当1时g(a)=0.当a>1时g(a)>0.若a>1,则1–(a)>0,故f(x)>0恒成立,从而f(x)无零点,不满足条件.若1,则1–0,故f(x)=0仅有一个实根–0,不满足条件.若0<a<1,则1–<0,注意到–>0.f(–1)=++1–>0.故f(x)在(–1,–)上有一个实根,而又(–1)>=–.且f((–1))的(–1)次方·(a·e的(–1)次方–2)–(–1)=(–1)·(3––2)–(–1)=(–1)–(–1)>0.故f(x)在(–(–1))上有一个实根.又f(x)在(–∞,–)上单调减,在(–∞)单调增,故f(x)在R上至多两个实根.又f(x)在(–1,–)与(–(–1))上均至少有一个实数根,故f(x)在R上恰有两个实根.综上,0<a<1.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.1、[选修4–4:坐标系与参考方程]在直角坐标系中,曲线C的参数方程为错误!(θ为参数),直线l的参数方程为错误!(t为参数).2017全国卷1理科数学试题解析纯word版(完美版)(1)若–1,求C与l的交点坐标;(2)若C上的点到l距离的最大值为,求a.解析:(1)–1时,直线l的方程为4y–3=0.曲线C的标准方程是2=1,联立方程错误!,解得:错误!或错误!,则C与l交点坐标是(3,0)和(–错误! ).(2)直线l一般式方程是4y–4–0.设曲线C上点P(3θθ).则P到l距离=,其中φ=.依题意得:,解得–16或8.2、[选修4–5:不等式选讲]已知函数f(x)=–x24,g(x)1–1|.(1)当1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.解析:(1)当1时,f(x)=–x24,是开口向下,对称轴的二次函数.g(x)1–1错误!,当x∈(1∞)时,令–x24=2x,解得.g(x)在(1∞)上单调递增,f(x)在(1∞)上单调递减.∴此时f(x)≥g(x)解集为(1,].当x∈[–1,1]时,g(x)=2,f(x)≥f(–1)=2;当x∈(–∞,–1)时,g(x)单调递减,f(x)单调递增,且g(–1)(–1)=2.综上所述,f(x)≥g(x)解集[–1,].(2)依题意得:–x24≥2在[–1,1]恒成立.即x2––2≤0在[–1,1]恒成立.则只须错误!,解出:–1≤a≤1.故a取值范围是[–1,1].11 / 11。

2017全国Ⅰ高考理科数学试题真题答案精编版

2017全国Ⅰ高考理科数学试题真题答案精编版

2017全国Ⅰ高考理科数学试题真题答案精编版绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={x|x<1},B={x|31x<},则A. {|0}A B x x=< B. A B=R C. {|1}A B x x=> D. A B=∅2.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. 14B. π8C. 12D. π43.设有下面四个命题1:p 若复数z 满足1z∈R ,则z ∈R ; 2:p 若复数z 满足2z∈R ,则z ∈R ; 3:p 若复数12,z z 满足12z z ∈R ,则12z z =; 4:p 若复数z ∈R ,则z ∈R .其中的真命题为A.13,p pB.14,p pC.23,p pD.24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}na 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 6.621(1)(1)x x ++展开式中2x 的系数为 A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10B.12C.14D.168.右面程序框图是为了求出满足3n-2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+2),则下面结正9.已知曲线C1:y=cos x,C2:y=sin (2x+2π3确的是A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向右平移π6B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,个单位长度,得到曲线C2再把得到的曲线向左平移π12C.把C1上各点的横坐标缩短到原来的1倍,纵坐标不变,2个单位长度,得到曲线C2再把得到的曲线向右平移π6倍,纵坐标不变,D.把C1上各点的横坐标缩短到原来的12再把得到的曲线向右平移π个单位长度,得到曲线C21210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.1011.设xyz为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16 ,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440B.330C.220D.110二、填空题:本题共4小题,每小题5分,共20分。

2017年高考全国卷Ⅰ理科数学试题后附详细解析

2017年高考全国卷Ⅰ理科数学试题后附详细解析

绝密★启用前2017年普通高等学校招生全国统一考试(全国I 卷)理科数学一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .A B =RC .{}1=>A B x xD .AB =∅2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π43. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为()A .1B .2C .4D .85. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是()A .[]22-,B .[]11-,C .[]04,D .[]13,6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为A .15B .20C .30D .357. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .168. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为()A .16B .14C .12D .1011. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x<< D .325y x z <<12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是() A .440 B .330 C .220 D .110 二、 填空题:本题共4小题,每小题5分,共20分。

【真题】2017年高考全国1卷数学理科试题含答案(Word版)

【真题】2017年高考全国1卷数学理科试题含答案(Word版)

2017年普通高等学校招生全国统一考试(全国I 卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合{}{}131x A x x B x =<=<,,则() A .{}0=<A B x x B .A B =R C .{}1=>A B x xD .A B =∅I【答案】A【解析】{}1A x x =<,{}{}310xB x x x =<=<∴{}0A B x x =<,{}1AB x x =<,选A2. 如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分位于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A .14B .π8C .12D .π4【答案】B【解析】设正方形边长为2,则圆半径为1则正方形的面积为224⨯=,圆的面积为2π1π⨯=,图中黑色部分的概率为π2则此点取自黑色部分的概率为ππ248=故选B3. 设有下面四个命题()1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12z z ,满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .A .13p p ,B .14p p ,C .23p p ,D .24p p ,【答案】B【解析】1:p 设z a bi =+,则2211a bi z a bi a b -==∈++R ,得到0b =,所以z ∈R .故1P 正确; 2:p 若z =-21,满足2z ∈R ,而z i =,不满足2z ∈R ,故2p 不正确;3:p 若1z 1=,2z 2=,则12z z 2=,满足12z z ∈R ,而它们实部不相等,不是共轭复数,故3p 不正确;4:p 实数没有虚部,所以它的共轭复数是它本身,也属于实数,故4p 正确;4. 记n S 为等差数列{}n a 的前n 项和,若4562448a a S +==,,则{}n a 的公差为() A .1 B .2C .4D .8【答案】C【解析】45113424a a a d a d +=+++=61656482S a d ⨯=+= 联立求得11272461548a d a d +=⎧⎪⎨+=⎪⎩①②3⨯-①②得()211524-=d624d =4d =∴ 选C5. 函数()f x 在()-∞+∞,单调递减,且为奇函数.若()11f =-,则满足()121f x --≤≤的x 的取值范围是() A .[]22-, B .[]11-, C .[]04, D .[]13,【答案】D【解析】因为()f x 为奇函数,所以()()111f f -=-=,于是()121f x --≤≤等价于()()()121f f x f --≤≤| 又()f x 在()-∞+∞,单调递减121x ∴--≤≤3x ∴1≤≤ 故选D6.()62111x x ⎛⎫++ ⎪⎝⎭展开式中2x 的系数为 A .15 B .20 C .30 D .35【答案】C.【解析】()()()66622111+1111x x x x x ⎛⎫+=⋅++⋅+ ⎪⎝⎭对()61x +的2x 项系数为2665C 152⨯== 对()6211x x⋅+的2x 项系数为46C =15, ∴2x 的系数为151530+= 故选C7. 某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形、该多面体的各个面中有若干是梯形,这些梯形的面积之和为A .10B .12C .14D .16【答案】B【解析】由三视图可画出立体图该立体图平面内只有两个相同的梯形的面 ()24226S =+⨯÷=梯6212S =⨯=全梯 故选B8. 右面程序框图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+ 【答案】D【答案】因为要求A 大于1000时输出,且框图中在“否”时输出∴“”中不能输入A 1000> 排除A 、B又要求n 为偶数,且n 初始值为0, “”中n 依次加2可保证其为偶 故选D9. 已知曲线1:cos C y x =,22π:sin 23C y x ⎛⎫=+ ⎪⎝⎭,则下面结论正确的是()A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 【答案】D【解析】1:cos C y x =,22π:sin 23⎛⎫=+ ⎪⎝⎭C y x首先曲线1C 、2C 统一为一三角函数名,可将1:cos C y x =用诱导公式处理.πππcos cos sin 222⎛⎫⎛⎫==+-=+ ⎪ ⎪⎝⎭⎝⎭y x x x .横坐标变换需将1=ω变成2=ω,即112πππsin sin 2sin 2224⎛⎫⎛⎫⎛⎫=+−−−−−−−−−→=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C 上各坐短它原y x y x x 点横标缩来 2ππsin 2sin 233⎛⎫⎛⎫−−→=+=+ ⎪ ⎪⎝⎭⎝⎭y x x .注意ω的系数,在右平移需将2=ω提到括号外面,这时π4+x 平移至π3+x , 根据“左加右减”原则,“π4+x ”到“π3+x ”需加上π12,即再向左平移π12.10. 已知F 为抛物线C :24y x =的交点,过F 作两条互相垂直1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D ,E 两点,AB DE +的最小值为() A .16B .14C .12D .10【答案】A 【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性)cos AF P AF θ⋅+=∴ 同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当π4θ=取等号 即AB DE +最小值为16,故选A11. 设x ,y ,z 为正数,且235x y z ==,则()A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<【答案】D【答案】取对数:ln 2ln3ln5x y ==.ln33ln 22x y => ∴23x y > ln2ln5x z = 则ln55ln 22x z =< ∴25x z <∴325y x z <<,故选D12. 几位大学生响应国家的创业号召,开发了一款应用软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是02,接下来的两项是02,12,在接下来的三项式62,12,22,依次类推,求满足如下条件的最小整数N :100N >且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( ) A .440 B .330 C .220 D .110 【答案】A【解析】设首项为第1组,接下来两项为第2组,再接下来三项为第3组,以此类推.设第n 组的项数为n ,则n 组的项数和为()12n n +由题,100N >,令()11002n n +>→14n ≥且*n ∈N ,即N 出现在第13组之后第n 组的和为122112nn -=--n 组总共的和为()2122212n nn n --=---若要使前N 项和为2的整数幂,则()12n n N +-项的和21k -应与2n --互为相反数即()*21214k n k n -=+∈N ,≥ ()2log 3k n =+→295n k ==,则()2912954402N ⨯+=+=故选A二、 填空题:本题共4小题,每小题5分,共20分。

2017年全国1卷理科数学详细讲解详析

2017年全国1卷理科数学详细讲解详析

2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页.23 小题 . 满分 150 分。

考试用时 120 分钟。

注意事项: 1.答卷前 .考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型( B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时 .选出每小题答案后 .用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑; 如需要改动 . 用橡皮擦干净后 . 再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答 . 答案必须写在答题卡各题目指定区域内相应位置上;如需改动 . 先划掉原来的答案 .然后再写上新答案;不准使用铅笔和涂改液。

不按以 上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后 . 将试卷和答题卡一并交回。

一、选择题:本题共 12 小题.每小题 5分.共 60 分。

在每小题给出的四个选项中 .只有一项是符合题目要 求的。

1.已知集合 A ={x | x <1}. B ={x | 3x 1}. 则A .AB {x|x 0}B . A B RC .A B {x|x 1}D .A B【考点】:集合的简单运算 . 指数函数【思路】:利用指数函数的性质可以将集合 B 求解出来 . 之后利用集合的计算求解即可。

【解析】:由 3x 1 x 0. 解得 Bx x 0 . 故而 A B B x x 0 ,A B A x x 1 . 选A 。

2.如图 . 正方形 ABCD 内的图形来自中国古代的太极图 . 正方形内切圆中的黑色部分和白色部分关于正方形考点】:几何概型绝密★启用前的中心成中心对称 . 在正方形内随机取一点 .则此点取自黑色部分的概率是A .B .8πD .思路】 几何概型的面积问题. P=基本事件所包含的面积总面积C.12S r 【解析】:P= S1 22.故而选B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。

考试用时120分钟。

注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =<I B .A B =R U C .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。

13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2 b |= .14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 .15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

若∠MAN =60°,则C 的离心率为________。

16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O 。

D 、E 、F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形。

沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥。

当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______。

三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23题为选考题,考生根据要求作答。

(一)必考题:共60分。

17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A -PB -C 的余弦值. 19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.969.9610.01 9.929.9810.04 10.269.9110.13 10.02 9.2210.04 10.059.95经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅.用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的学科网数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 21.(12分)已知函数)f x =(a e 2x+(a ﹣2) e x ﹣x .(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第一题计分。

22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la. 23.[选修4—5:不等式选讲](10分)已知函数f (x )=–x 2+ax +4,g (x )=│x +1│+│x –1│. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[–1,1],求a 的取值范围.2017高考全国Ⅰ卷数学答案及解析1 正确答案及相关解析 正确答案A解析由{}{}{}{},,所以,即,则可得由0|0|1|0|033130<=<<=<=<<<x x x x x x B A x x B x x x I I{}{}{}1|0|1|<=<<=x x x x x x B A Y Y故选A.考查方向(1)集合的运算(2)指数运算性质.解题思路应先把集合化简再计算,再直接进行交、并集的定义运算.易错点集合的交、并集运算灵活运用2 正确答案及相关解析 正确答案B解析几何概型解题思路黑白部分面积相等,再由几何概型概率的计算公式得出结果易错点几何概型中事件A 区域的几何度量3 正确答案及相关解析 正确答案B解析由R i R i ∉∈-=,12知,2P 不正确; 由不正确;知321211,P R z z i z z ∈-=⋅==4P 显然正确,故选B.考查方向(1)命题及其关系;(2)复数的概念及几何意义.解题思路根据复数的分类,复数运算性质依次对每一个进行验证命题的真假,可得答案易错点真假命题的判断4 正确答案及相关解析 正确答案C解析设公差为,247243,11154=+=+++=+d a d a d a a a d481562566116=+=⨯+=d a d a S ,联立,48156a 2472a 11{=+=+d d 解得d =4,故选C.考查方向等差数列的基本量求解解题思路设公差为d ,由题意列出两个方程,联立,48156a 2472a11{=+=+d d 求解得出答案易错点数列的基本量方程组的求解5 正确答案及相关解析 正确答案D解析成立,单调递减,要使为奇函数且在因为1)(1),()(≤≤-+∞-∞x f x f 12111≤-≤-≤≤-x x x ,从而由满足则[]311)2(131,取值范围为成立的,即满足得x x f x ≤-≤-≤≤,选D.考查方向(1)函数的奇偶性;(2)函数的单调性解题思路由函数为奇函数且在)(∞+-∞,单调递减,单调递减.若1)(1≤≤-x f ,满足11≤≤-x ,从而由121≤-≤-x 得出结果 易错点函数的奇偶性与单调性的综合应用6 正确答案及相关解析 正确答案C解析因为()()()626621111111x xx x x +⋅++⋅=+⎪⎭⎫ ⎝⎛+,则()61x +展开式中含2x 的项为2226151x x C =⋅,()6211x x +⋅展开式中含2x 的项为24462151x x C x=⋅,故2x 的系数为15+15=30,选C.考查方向二项式定理解题思路将第一个二项式中的每项乘以第二个二项式的每项,再分析好2x 的项的系数,两项进行加和即可求出答案易错点准确分析清楚构成2x 这一项的不同情况7 正确答案及相关解析 正确答案B解析由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为()12212422=⨯⨯+⨯,故选B.考查方向简单几何体的三视图解题思路由题意该几何体的直观图是由一个三棱锥和三棱柱构成,则该几何体各面内只有两个相同的梯形,由边的关系计算出梯形的面积之和易错点根据三视图判断几何体的形状及数据所对应的几何量8 正确答案及相关解析 正确答案D解析由题意,因为100023>-nn ,且框图中在“否”时输出,所以判定框内不能输入1000>A ,故填1000≤A ,又要求n 为偶数且初始值为0,所以矩形框内填2+=n n ,故选D.考查方向程序框图的应用。

相关文档
最新文档