2017年高考理科数学(全国卷1)试题与答案(word版)
2017新课标全国卷1理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{<1},{31x<},则A.{|0}=<B.A B=RA B x xC.{|1}=>D.A B=∅A B x x2.如图,正方形内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为A .13,p pB .14,p pC .23,p pD .24,p p 4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8 5.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3] 6.621(1)(1)x x++展开式中2x 的系数为A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000和1B.A>1 000和2C.A≤1 000和1D.A≤1 000和29.已知曲线C1:x,C2: (22π),则下面结论正确的是3A.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π个单位长度,得到曲线C26B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再个单位长度,得到曲线C2 把得到的曲线向左平移π12倍,纵坐标不变,再C.把C1上各点的横坐标缩短到原来的12把得到的曲线向右平移π个单位长度,得到曲线C26倍,纵坐标不变,再D.把C1上各点的横坐标缩短到原来的12个单位长度,得到曲线C2把得到的曲线向左平移π1210.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则的最小值为A.16 B.14 C.12 D.10 11.设为正数,且235x y z==,则A.2x<3y<5z B.5z<2x<3y C.3y<5z<2xD.3y<2x<5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是A.440 B.330 C.220D.110二、填空题:本题共4小题,每小题5分,共20分。
2017年高考全国1卷理科数学试题和答案解析

2017 年普通高等学校招生全国统一考试理科数学本试卷 5页,23 小题,满分 150分。
考试用时 120分钟。
注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型( B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应 位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按 以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目 要求的。
x1.已知集合 A={ x|x<1} ,B={x|3x 1},则A . AIB {x|x 0} B .AUB RC . AUB {x|x 1}D . AI B2.如图,正方形 ABCD 内的图形来自中国古代的太极图 .正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称 .在正方形内随机取一点,则此点取自黑色部分的概率是πB .8πD .43.设有下面四个命题1p 1 :若复数 z 满足 R ,则 z R ;z 2p 2 :若复数 z 满足 z 2 R ,则 z R ; p 3 :若复数 z 1, z 2满足 z 1z 2 R ,则 z 1 z 2 ;绝密★启用前A .C .p4 :若复数z R ,则z R. 其中的真命题为A.p1,p3 B.p1,p4 C.p2,p3 D.p2,p4 4.记S n为等差数列{a n}的前n项和.若a4 a5 24,S6 48,则{ a n}的公差为A .1B.2C.4D.85.函数f(x) 在(, ) 单调递减,且为奇函数.若 f (1) 1 ,则满足1 f (x 2) 1的x 的取值范围是A.[ 2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(112 )(1 x)6x展开式中x2的系数为A.15B.20C.30D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.A>1 000 和n=n+1B.A>1 000和n=n+2C.A 1 000和n=n+1D.A 1 000和n=n+22πC 1:y=cos x, C 2:y=sin (2x+ ),则下面结论正确的是2,俯视图为等腰直角三角形A .10B .128.右面程序框图是为了求出满足3n- 2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入9.已知曲线C.163到曲线 C 2得到曲线 C 2学题获取软件激活码 ”的活动 .这款软件的激活码为下面数学问题的答案:已知数列 1, 1,2,1,2,4,1,2,4,8,1,2,4,8,16, ⋯,其中第一项是 20,接下来的两项是 20, 21,再接下来的三项是 20, 21,22,依此类推.求满足如下条件的最小整数 N :N>100且该数列的前 N 项和为 2的整数幂.那么该款软件的激活码是以 BC ,CA ,AB 为折痕折起△ DBC ,△ ECA ,△ FAB ,使得 D 、E 、F 重合,得到三棱锥。
2017年全国卷一 理科数学(精品解析版)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}1<=x x A ,{}13<=xx B ,则()A 、{}0<=x x B A B 、R B A = C 、{}1>=x x B A D 、∅=B A 2、如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是()A 、14B 、π8C 、12D 、π43、设有下面四个命题:1:p 若复数z 满足1z ∈R ,则z ∈R ;2:p 若复数z 满足2z ∈R ,则z ∈R ;3:p 若复数12,z z 满足12z z ∈R ,则12z z =;4:p 若复数z ∈R ,则z ∈R .其中的真命题为()A 、13,p p B 、14,p p C 、23,p p D 、24,p p 4、记n S 为等差数列{}n a 的前n 项和,若4524a a +=,486=S ,则{}n a 的公差为()A 、1B 、2C 、4D 、85、函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是()A 、[2,2]-B 、[1,1]-C 、[0,4]D 、[1,3]6、621(1)(1)x x++展开式中2x 的系数为()A 、15B 、20C 、30D 、357、某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A 、10B 、12C 、14D 、168、右面程序框图是为了求出满足100023>-nn 的最小偶数n ,那么在和两个空白框中,可以分别填入()A 、1000>A 和1+=n nB 、1000>A 和2+=n nC 、1000≤A 和1+=n n D 、1000≤A 和2+=n n 9、已知曲线1C :x y cos =,2C :)322sin(π+=x y ,则下面结正确的是()A 、把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C B 、把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC 、把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2C D 、把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C 10、已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB|+|DE|的最小值为()A 、16B 、14C 、12D 、1011、设xyz 为正数,且235xyz==,则()A 、zy x 532<<B 、yx z 325<<C 、xz y 253<<D 、zx y 523<<12、几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动。
2017高考新课标全国1卷理科数学试题及答案

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14 B .π8 C .12D .π43.设有下面四个命题1p :若复数z 满足1z∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是 A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的学科网&最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
(完整版)2017年普通高等学校招生全国统一考试理科数学试题及答案-全国1卷

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。
2017年高考全国1卷理科数学和答案详解(word版本)(可编辑修改word版)

绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页,23 小题,满分 150 分。
考试用时 120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 作答选择题时,选出每小题答案后,用 2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4. 考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 A ={x |x <1},B ={x | 3x < 1 },则 A . A B = {x | x < 0} C . A B = {x | x > 1}B . A B = R D . A B = ∅2. 如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A . 14C. 123.设有下面四个命题B . π8D . π4p :若复数 z 满足 1∈ R ,则 z ∈ R ; 1zp 2 :若复数 z 满足 z 2 ∈ R ,则 z ∈ R ;p 3 :若复数 z 1 , z 2 满足 z 1 z 2 ∈ R ,则 z 1 = z 2 ;p4:若复数 z ∈R,则 z∈R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n 为等差数列{a n } 的前n 项和.若a4 +a5 = 24 ,S6 = 48 ,则{a n } 的公差为A.1 B.2 C.4 D.85.函数f (x) 在(-∞, +∞) 单调递减,且为奇函数.若f (1) =-1,则满足-1 ≤f (x - 2) ≤ 1的x 的取值范围是A.[-2, 2]B.[-1,1]C.[0, 4]D.[1, 3]6.(1+ 1)(1+x)6展开式中x2的系数为x2A.15 B.20 C.30 D.357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12 C.14 D.168.右面程序框图是为了求出满足3n−2n>1000 的最小偶数n,那么在和两个空白框中,可以分别填入A.A>1 000 和n=n+1B.A>1 000 和n=n+2C.A ≤1 000 和n=n+1D.A ≤1 000 和n=n+29.已知曲线C :y=cos x,C :y=sin (2x+ 2π),则下面结论正确的是1 23⎨ ⎩A. 把 C 1 π 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得6到曲线 C 2B. 把 C 1 π上各点的横坐标伸长到原来的2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得 12 到曲线 C 2C. 把 C 1 1 π 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得26到曲线 C 2D. 把 C 1 1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移2 π个单位长度,12得到曲线 C 210.已知 F 为抛物线 C :y 2=4x 的焦点,过 F 作两条互相垂直的直线 l 1,l 2,直线 l 1 与 C 交于 A 、B 两点, 直线 l 2 与 C 交于 D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设 xyz 为正数,且2x = 3y = 5z ,则 A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4, 8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20,21,再接下来的三项是 20,21,22, 依此类推.求满足如下条件的学科网&最小整数 N :N >100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2017年高考山东理科数学试题及答案(word解析版)

2017年普通高等学校招生全国统一(tǒngyī)考试(山东(shān dōnɡ)卷)数学(shùxué)(理科(lǐkē))第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.(1)【2017年山东,理1,5分】设函数的定义域为,函数的定义域为,则()(A)(B)(C)(D)【答案】D【解析】由得,由得,,故选D.(2)【2017年山东,理2,5分】已知,是虚数单位,若,,则()(A)1或(B)或(C)(D)【答案】A【解析】由得,所以,故选A.(3)【2017年山东,理3,5分】已知命题:,;命题:若,则,下列命题为真命题的是()(A)(B)(C)(D)【答案】B【解析】由时有意义,知p是真命题,由可知q是假命题,即p,均是真命题,故选B.(4)【2017年山东,理4,5分】已知、满足约束条件,则的最大值是()(A)0 (B)2 (C)5 (D)6【答案】C【解析】由画出可行域及直线如图所示,平移20x y+=发现,当其经过直线与的交点时,2=+最大为z x y,故选C.(5)【2017年山东,理5,5分】为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为,已知,,,该班某学生的脚长为24,据此估计其身高为()(A)160 (B)163 (C)166 (D)170【答案】C【解析】,故选C.(6)【2017年山东(shān dōnɡ),理6,5分】执行(zhíxíng)两次如图所示的程序框图,若第一次输入的x值为7,第二次输入(shūrù)的x值为9,则第一次、第二次输出(shūchū)的值分别(fēnbié)为()(A)0,0 (B)1,1 (C)0,1 (D)1,0【答案】D【解析】第一次;第二次,故选D.(7)【2017年山东,理7,5分】若,且,则下列不等式成立的是()(A)(B)(C)(D)【答案】B【解析】,故选B.(8)【2017年山东,理8,5分】从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到在2张卡片上的数奇偶性不同的概率是()(A)(B)(C)(D)【答案】C【解析】,故选C.(9)【2017年山东,理9,5分】在中,角A、B、的对边分别为a、、,若ABC∆为锐角三角形,且满足,则下列等式成立的是()(A)(B)(C)(D)【答案】A【解析】所以,故选A.(10)【2017年山东,理10,5分】已知当时,函数的图象与的图象有且只有一个交点,则正实数的取值范围是()(A)(B)(C)(D)【答案】B【解析】当时,,2=+单调递=-单调递减,且,y x m(1)y mx增,且,此时有且仅有一个交点;当时,,2=-在y mx(1)上单调递增,所以要有且仅有一个交点,需,故选B.第II卷(共100分)二、填空题:本大题共5小题,每小题5分(11)【2017年山东,理11,5分】已知的展开式中含有的系数是54,则.【答案】4【解析】,令得:,解得.(12)【2017年山东,理12,5分】已知、是互相垂直的单位向量,若与的夹角为,则实数的值是 . 【答案(dá àn)】【解析(jiě xī)】,,,,解得:.(13)【2017年山东(shān dōnɡ),理13,5分】由一个(yī ɡè)长方体和两个圆柱体构成(gòuchéng)的几何体的三视图如图,则该几何体的体积为 . 【答案】【解析】该几何体的体积为.(14)【2017年山东,理14,5分】在平面直角坐标系中,双曲线(,)的右支与焦点为的抛物线()交于A 、B 两点,若,则该双曲线的渐近线方程为 .【答案】【解析】,因为,所以渐近线方程为22y x =±. (15)【2017年山东,理15,5分】若函数(是自然对数的底数)在的定义域上单调递增,则称函数()f x 具有M 性质。
2017年全国卷Ⅰ数学(理)文档版(有答案)

绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则 A .{|0}A B x x =< B .A B =R C .{|1}AB x x =>D .AB =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π43.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .168.右面程序框图是为了求出满足3n −2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235x y z ==,则A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考理科数学(全国卷1)试题及答案一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x |x <1},B ={x |31x <},则( )A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是( )A .14B .π8 C .12 D .π43.设有下面四个命题 1p :若复数z 满足1z∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ; 3p :若复数12,z z 满足12z z ∈R ,则12z z =; 4p :若复数z ∈R ,则z ∈R .其中的真命题为( )A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为( )A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为( ) A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .168.右面程序框图是为了求出满足3n -2n >1000的最小偶数n ,那么在和两个空白框中,可以分别填入( )A .A >1 000和n =n +1B .A >1 000和n =n +2C .A ≤1 000和n =n +1D .A ≤1 000和n =n +29.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3), 则下面结论正确的是( )A .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变, 再把得到的曲线向右平移π6个单位长度,得到曲线C 2 B .把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 210.已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为A .16B .14C .12D .1011.设x 、y 、z 为正数,且235x y z ==,则( )A .2x <3y <5zB .5z <2x <3yC .3y <5z <2xD .3y <2x <5z12.几位大学生响应国家的创业号召,开发了一款应用软件. 为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动. 这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推. 求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂. 那么该款软件的激活码是( )A .440B .330C .220D .110二、填空题:本题共4小题,每小题5分,共20分。
13.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则| a +2b |= ___ .14.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,则32z x y =-的最小值为 ____ .15.已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点. 若∠MAN =60°,则C 的离心率为________.16.如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O . D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB分别是以BC ,CA ,AB 为底边的等腰三角形. 沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D 、E 、F 重合,得到三棱锥. 当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长.18.(12分)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm ).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布2(,)N μσ.(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(3,3)μσμσ-+之外的零件数,求(1)P X ≥及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(3,3)μσμσ-+之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得16119.9716i i x x ===∑,0.212s ==≈,其中i x 为抽取的第i 个零件的尺寸,1,2,,16i =⋅⋅⋅. 用样本平均数x 作为μ的估计值ˆμ,用样本标准差s 作为σ的估计值ˆσ,利用估计值判断是否需对当天的生产过程进行检查?剔除ˆˆˆˆ(3,3)μσμσ-+之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布2(,)N μσ,则(33)0.997 4P Z μσμσ-<<+=,160.997 40.959 2=0.09≈.20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2), P 4(1C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.21.(12分)已知函数f (x )=ae 2x +(a ﹣2) e x ﹣x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为41x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la .23.[选修4—5:不等式选讲](10分)已知函数f(x)=-x2+ax+4,g(x)=│x+1│+│x–1│.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[–1,1],求a的取值范围.答案及解析一、选择题:ABBCD CBDDA DA二、填空题:13.14. 515. 16.17、【解析】(1)S△ABC=12ab sin C=a23sin A,得12b sin C=a3sin A由正弦定理,得 12sin B ·sin C =13, 解得sin B ·sin C =23. (2)由题知cos(B +C )=cos B ·cos C -sin B ·sin C =16-23=-12,即cos A =12,A =π3. 由正弦定理,323sin sin sin 32b c a B C A ==== ∴23sin b B =, 23sin c C = 则有223sin 23sin 12sin sin 1283bc B C B C =⋅==⨯= 由余弦定理,得2229a b c bc ==+- ,解得33b c +=∴△ABC 的周长为333+18、【解析】(1)由∠BAP =∠CDP =90°,得AB ⊥AP ,CD ⊥PD . ∵AB//CD ,∴AB ⊥PD ,又AP ∩PD =P ,∴AB ⊥平面P AD , ∴平面P AB ⊥平面P AD .(2)记AD 的中点为O ,连接PO ,则有PO ⊥AD ,∵AB ⊥平面P AD , ∴OP ⊥AB ,又AD ∩AB =A ,∴OP ⊥平面ABCD .以O 为原点,分别以OA 、DC 、OP 方向为x 轴、y 轴、z 轴建立如右图所示的空间直角坐标系. 不妨假设OA =1,于是有A (1,0,0),B (1,2,0),C(-1,2,0),D (-1,0,0),P (0,0,1).∴(1,0,1)PA =-,(0,2,0)AB =,设1(,,)n x y z =是平面P AB 的一个法向量∴11020n PA x z n AB y ⎧⋅=-=⎪⎨⋅==⎪⎩, 得0x z y =⎧⎨=⎩,令x =1,得1(1,0,1)n = 同理可求得2(0,1,2)n =是平面PBC 的一个法向量.∴12121223cos ,3||||23n n n n n n ⋅<>===⨯ 由于二面角A -PB -C 是钝二面角,则二面角A -PB -C 的余弦值为33-.19、【解析】(1)由题意知,X ~B (16,0.0026),∴P (X ≥1)=1-P(X =0)=1-0.997416=1-0.9592=0.0408,X 的数学期望E (X )=16×0.0026=0.0416.(2)(i )由(1)知,出现了尺寸在(μ-3σ,μ+3σ)之外的零件的概率为0.0408,如果如此小的概率在一次试验中发生了,有理由相信出现异常情况.(ii )3=9.970.636=9.334μσ--,3=9.970.636=10.606μσ++,剔除9.22,剔除后,9.97169.2210.0215μ⨯-==,1622210.21216161591.13i i x x ==⨯+=∑, 221591.139.221510.020.0915σ--⨯=≈.20、【解析】(1)由椭圆的对称性可知,P 2,P 3,P 4在椭圆C 上.把P 2(0,1)代入C ,得21=1b ,即b 2=1,把P 4(1代入C ,得213=14a +,即a 2=4. ∴ 椭圆C 的方程为2214x y +=.(2)设直线l 的方程为y =kx +n (n ≠1),A (x 1,y 1),B (x 2,y 2).联立2244x y y kx n⎧+=⎨=+⎩, 得222(14)8440k x knx n +++-= 由韦达定理,得122814kn x x k+=-+,21224414n x x k -=+ 221212121211111P A P B y y kx n kx n k k x x x x --+-+-+=⋅=⋅=-,即1212(21)(1)()0k x x n x x ++-+= 222448(21)(1)01414n kn k n k k -∴+⋅--⋅=++,即(21)(1)(1)2(1)0k n n kn n ∴++---= 由于n ≠1,n -1≠0,得(21)(1)20k n kn ∴++-=,解得21n k =-- ∴直线l 的方程为21y kx k =--,即1(2)y k x +=-,∴l 过定点(2,-1).21、【解析】(1) 由题知,f (x )的定义域为R ,2'()2(2)1(1)(21)x x x x f x ae a e ae e =+--=-+,其中210x e +>恒成立. 若a ≤0,则1x ae -<0恒成立,'()f x <0,则f (x )在R 上单调减; 若a >0,令10x ae ->,解得ln x a ->;令10x ae -<,解得ln x a -<. 即当ln x a -<时,'()f x <0;当ln x a ->时,'()0f x >.∴ f (x )在(,ln )a -∞-上单调减,在(ln )a -+∞,上单调增.(2)若a ≤0,f (x )在R 上单调减,至多只有一个零点,不符,舍去;若a >0,当x →+∞时,f (x )→+∞;x →-∞时,f (x )→+∞.要使f (x )有两个零点,只要min ()(ln )0f x f a =-<即可 只要2111(2)ln 0a a a a a ⎛⎫⋅+-⋅- ⎪⎝⎭<即可,即111ln 0a a --<令10t a=>,则()1ln g t t t =--在(0,+∞)上单调减 又(1)0g =,∴当11t a=>,即0<a <1时,()0g t <,(ln )0f a -<. 即f (x )有两个零点时,a 的取值范围为(0,1).22、【解析】(1)消去参数θ,得曲线C 的普通方程为2299x y +=.当a =-1时,消去参数t ,得直线l 的普通方程为43x y +=.联立229943x y x y ⎧+=⎨+=⎩,解得1130x y =⎧⎨=⎩,2221252425x y ⎧=-⎪⎪⎨⎪=⎪⎩∴C 与l 的交点坐标为(3,0)和21242525⎛⎫- ⎪⎝⎭,.(2)设曲线C 上任意一点P ()3cos sin θθ,, 消去参数t ,得直线l 的普通方程为4(4)0x y a +-+=.∴点P 到直线l的距离d =由题知,max d max |5sin()(4)|17a θϕ+-+=当a +4>0时,则有5(4)17a --+=-,解得8a =;当a +4≤0时,则有5(4)17a -+=,解得16a =-;综上,a 的值为8或-16.23、【解析】(1)当a =1时,2()4f x x x =-++,又21()21121x x g x x x x --⎧⎪=-≤≤⎨⎪⎩,<,,>,当x <-1时,242x x x -++≥-,解得14x -≤≤,舍去当-1≤x ≤1时,242x x -++≥,解得12x -≤≤,即11x -≤≤当x ≥1时,242x x x -++≥x ≤≤,即1x ≤≤综上,不等式()()f x g x ≥的解集为1⎡-⎢⎣⎦.(2)当-1≤x ≤1时,()2g x =. 要使不等式()()f x g x ≥的解集包含[–1,1], 只要()()f x g x ≥在[–1,1]上恒成立,只要242x ax -++≥在[–1,1]上恒成立法一:数形结合法只要220x ax --≤在[–1,1]上恒成立,令2()2g x x ax =--只要(1)0(1)0g g ≤⎧⎨-≤⎩,即120120a a +-≤⎧⎨--≤⎩,解得11a -≤≤,即a 的取值范围为[]11-,.法二:参数分离法只要22ax x ≥- ①在[–1,1]上恒成立,令2()h x x x=- 当x =0时,不等式①显然恒成立;当0<x ≤1时,只要2a x x≥-在(0,1]上恒成立,由于()h x 在(0,1]上单调增∴max ()(1)121h x h ==-=-,1a ≥-.当-1≤x <0时,只要2a x x≤-在[-1,0)上恒成立,由于()h x 在[-1,0)上单调增∴min ()(1)121h x h =-=-+=,1a ≤. 综上所述,a 的取值范围为[]11-,.。