高中数学向量秒杀第二辑
12. 【立体几何篇】内切球和法向量秒杀公式

大招二 内切球半径秒杀公式方法1:锥体的内切球半径3Vr S=,V 为锥体体积,S 为表面积。
一般可用等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等。
第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒rS S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABCO ABCP S S S S V r -----+++=3方法2:锥形的内切球半径,也可用相似来求。
如图,三棱锥ABC P -上正三棱锥,求其外接球的半径。
第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高; 第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r1.如图,已知球O 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的内切球,则平面ACD 1截球O 的截面面积为( )A .B .C .D .2.在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,若四棱锥M ﹣ABCD 为阳马,侧棱MA ⊥面ABCD ,且MA =BC =AB =2,则该阳马的内切球表面积为( ) A .24π﹣16B .16π﹣C .12πD .243.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm,将一个球放图14A在容器口,再向容器注水,当球面恰好接触水面时测得水深为6cm,如不计容器的厚度,则球的体积为()A.B.C.D.4.已知一个正四面体的俯视图如图所示,其中四边形ABCD是边长为3的正方形,则该正四面体的内切球的表面积为()A.6πB.54πC.12πD.48π5.已知棱长都相等正四棱锥的侧面积为16,则该正四棱锥内切球的表面积为.6.已知在三棱锥S﹣ABC中,SA=SB=SC=,BC=6,若点A在侧面SBC 内的射影恰是△SBC的垂心,则三棱锥S﹣ABC的内切球的体积为7.三棱锥P-ABC中,底面△ABC是边长为2的正三角形,P A⊥底面ABC,且PA=2,则此三棱锥的内切球的半径为_____________大招三 法向量求法秒杀技能在求立体几何线面角,二面角问题时,往往用向量的方法求解时需要求法向量,下面我们介绍一种简单的方法:叉乘法求解法向量. 结论:若=AB (x,y,z ) (a ,b ,c )CD = 则平面ABCD 的法向量00,0(x ,y ,z )n =()()()000=,,,,,,,,,,AB x y z CD a b c y z x yc bz b cx z y xc az a cx y z xb aya b===-=-=--==-即法向量可求出()()()()000000=,,2,3253424,51,3153343,51,2142323,42,4,2=-12-1n x y z x y z n n ==⨯-⨯=-=-=-⨯-⨯=+==⨯-⨯=-∴=-+-叉乘法:设为法向量即,,()()()00000000000000001,2,3345.,,.230345023011,345021,2,1AB CD n x y z n AB x y z CD n x y z x y x z x y y n ===⎧⎫⋅=++=⎪⎪⎨⎬⋅=++=⎪⎪⎩⎭+-==-⎧⎫⎧⎫=-⇒⎨⎬⎨⎬+-==⎩⎭⎩⎭∴=--例题:若(),,,常规解法:设为法向量则有令则。
高考数学专题课:定比分点的向量模型秒杀

教师:李飞月 2019年 3月19日21:30-22:00
难度系数 :⭐⭐ 高考分值:5分 考试频率:80%
2018年全国1卷理科数学第6题,文科数学第7题
1.向量的加减法和基底向量 2.三角形中线和中点
2018年全国1卷理科数学第6题,文科数学第7题
解 析
①由定比分点的黄金定律知道 AD=1/2AB+1/2AC
理科
可以直接利用秒杀法求解吗
除此之外,你还能怎 么办呢?
THANKS
3.定比分点向量的黄金定律与向量的加减法则提炼 后的推论
效率 :60秒 准确率:100% 推荐度:⭐⭐⭐
A
B
C
2014年全国1卷数学高考卷理 科数学
第15题
①.如图,显然,ABCO四点构成 定比分点模型,且0为中点
②由题意,A、B、O三点共线 且AB为直径,O为中点
③直径AB所对的圆周角是90度
A
E
C
B
D
②因为E为中点,所以AE=1/2AD =1/4AB+1/4AC
③由加减法则知道EB=EA+AB =-1/4AB-1/4AC+AB =3/4AB-1/4AC
所以选A
1.定比分点向量黄金定律 =m +n ,且m+n=1, : =n:m
2.常见的模型有中点模型,三等分点模型,
提 角平分线模型 醒
高考数学秒杀干货盘点

高考数学秒杀干货内容盘点高考数学秒杀干货内容盘点板块一:函数板块秒杀干货1:已知函数奇偶性求解参数的值【策略】带一对数值秒解,比如为偶函数,则(1)(1)f f −=即可;甚至如果为奇函数,且0x =可取,则(0)0f =,计算更快。
【例题】若函数)2(log )(22a x x x f a ++=是奇函数,则=a _____________.【解析】(0)0f =,则2a =秒杀干货2:“奇函数+常数”模型 【策略】()()2f f −+=常数【例题】函数)(1sin )(3R x x x x f ∈++=,若2)(=a f ,则)(a f −的值为( ) 3.A0.B1.−C2.−D【解析】()()()02f a f a f a −+=⇒−=1【例题】设,已知,求的值____________ 【解析】(7)(7)5(7)272f f f −+=⇒=:秒杀干货3:函数周期性结论()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=−+=+=−+=−+=−−+=−⎧−⎨+=−⎩+=−⎧⎨⎩+=−−⎧−⎨+=−−⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=−−⎧⎨⎩+=−⎧−⎨+=−−⎩+=−⎧⎨⎩+=−−⎧⎨⎩为奇函数为奇函数为偶函数注:记住结论,可以大幅度提高我们解题速度和准度,不用现场推算。
高考数学知识点复习:奔驰定理与向量四心

专题5奔驰定理与向量四心秒杀秘籍:第一讲奔驰定理与三角形四心重心定理:三角形三条中线的交点.已知△ABC 的顶点),(11y x A ,),(22y x B ,),(33y x C ,则△ABC 的重心坐标为),(y x G .注意:(1)在△ABC 中,若O 为重心,则0OA OB OC++=.(2)三角形的重心分中线两段线段长度比为2:1,且分的三个三角形面积相等.定理:重心的向量表示:1133AG AB AC=+.定理:0B A C S OA S OB S OC(奔驰定理),则AOB 、AOC 、△BOC 的面积之比等于123:: 垂心定理:三角形三边上的高相交于一点.点O 是ABC 的垂心,则OA OB OB OC OC OA.角平分线定理:若OA a ,OB b ,则AOB 平分线上的向量OM 为(||||ab a b , 由OM 决定外心定理:垂直平分线的交点,到三个顶点的距离相等;(1)212AO AB AB ,212AO AC AC ;212BO BC BC ;(2)221144AO AF AB AC ,221144BO BE AB BC ,221144CO CD BC AC ;(3)221122AO BC AC AB ,221122BO AC BC BA ,2211.22CO AB BC AC 重心定理证明:2211133233AG AD AB AC AB AC奔驰定理证明:如图,令112131,,OA OA OB OB OC OC ,即满足1110OA OB OC11121AOB A OB S S ,11131AOC A OC S S ,11231BOC B OC S S ,故321::::AOB AOC BOC S S S l l l =.垂心定理证明:()00OA OB OC OB OB OA OC OB CA ,即OB CA^,以此类推.角平分线定理证明:||a a 和||b b 分别为OA 和OB 方向上的单位向量,||||a b a b 是以||a a 和||bb 为一组邻边的平行四边形过O 点的的一条对角线,而此平行四边形为菱形,故||||ab a b 在AOB 平分线上,但AOB 平分线上的向量OM 终点的位置由OM决定.当1 时,四边形OAMB 构成以 120AOB 的菱形.外心定理证明:如图,ABC △中,D 、E 、F 分别为AD 、AC 、BC 边中点,O 为ABC △外心,则AB OD ,AC OE ,BC OF ,AO AD DO AE EO ,221122AO AB AD DO AB AB DO AB AB ,同理可证:212AO AC AC ×= ,212BO BC BC ;22111111222244AO AF AO AB AC AO AB AO AC AB AC骣琪×=×+=×+×=+琪桫;同理221144BO BE AB BC ×=+;同理221144CO CD AC BC ×=+.【例1】在四边形ABCD 中,AB DC = =(1,0),BA BC BDBA BC BD+=,则四边形ABCD 的面积是()A .32B .3C .34D .32【解析】,||||1||||||BA BC BDBD ABC BD BA BA BC BD为的角平分线且,又因为 1,0AB DC ,故ABCD 是一个菱形,且120ABC Ð=°,故面积为131322S =创=,选A.【例2】已知点O 为ABC 内一点,且230OA OB OC,则AOB 、AOC 、BOC 的面积之比等于()A .9∶4∶1B .1∶4∶9C .3∶2∶1D .1∶2∶3【解析】如图,令1123OB OB OC OC,即满足1110OA OB OC112AOB AOB S S ,113AOC AOC S S ,11123BOC B OC S S ,故111::::3:2:1.236AOB AOC BOC S S S 例2图例3图例4图【例3】已知G 为ABC 的重心,令AB a = ,AC b = ,过点G 的直线分别交AB 、AC 于P 、Q 两点,且AP ma =,AQ nb = ,则11m n+=.【解析】1133AG a b =+,AP AP ma a m,AQ AQ nb b n ;11;3333AP AQ AG a b m n =+=+令PG PQ l =,即()1AG AP AQ l l =-+,()1AG AP AQ l l =-+,故11111333m n m nl l -=Þ=Þ+=.【例4】在OAB 中,OA a = ,OB b = ,若2a b a b×=-=.(1)求22a b + 的值;(2)若()0a b a b a b 骣琪+×-=琪琪桫,3AB AM = ,2BA BN = ,求OM ON ×的值.【解析】(1)由于22222224428a b a b a ab b a b ab -=Þ-=-+=Þ+=+= ;(2)||||a b a b +表示AOB 的角平分线OD 的共线向量,a b -表示BA ,()0.||||a b a b a b骣琪+-=琪桫可知OAB 为等腰三角形,即a b ,2282a b a b a b OAB为等边三角形.1122ON a b ,1233OM b a ,22112111142432233326326ON OM a b a b a ab b.【例5】已知O 为ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM AO×的值()A .23B .12C .6D .5【解析】22111152244AO AM AO AB AC AB AC骣琪×=×+=+=琪桫.【例6】设P 为锐角ABC 的外心(三角形外接圆圆心),AP k AB AC =+ (k ∈R ).若cos ∠BAC =25,则k ()A .514B .214C .57D .37【解析】()()22221212252512122525AP AB AB k AB k AC AB k AB k AB AC k AB k AC AP AC AC k AB k AC AC k AC k AB AC k AC k AB 骣琪×==+×=+Þ-=琪桫骣琪×==+×=+Þ-=琪桫 üïïïýïïïþ;AB AC \= 故1252314k k k 骣琪-=Þ=琪桫,选A .达标训练1.已知两个非零向量a ,b 满足||||b a b a ,则下面结论正确的是()A .b a ∥B .b a C .||||b a D .ba b a 2.已知ABC △和点M 满足0MA MA MC ++= .若存在实数m 使得AB AC mAM += 成立,则m =()A .2B .3C .4D .53.已知O 是ABC 所在平面内一点,D 为BC 边中点,且20OA OB OC ++=,那么()A .OD AOB .ODAO 2 C .OD AO 3 D .ODAO 24.已知非零向量AB 与AC 满足()0||||AB AC BC AB AC,且12||||AB AC AB AC +=,则ABC △为()A .等腰非等边三角形B .等边三角形C .三边均不相等的三角形D .直角三角形5.点O 是ABC △所在平面内的一点,满足OA OB OB OD OC OA,则点O 是ABC △的()A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点6.点P 是ABC △所在平面上一点,若PA PB PB PC PC PA,则P 是ABC △的()A .外心B .内心C .重心D .垂心7.点O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足()||||AB ACOP OA AB AC l =++,),0[ ,则P 的轨迹一定通过ABC △的()A .外心B .内心C .重心D .垂心8.设点O 在ABC △的内部,且有230OA OB OC ++=,则ABC △的面积与AOC △的面积的比为()A .2B .32C .3D .539.已知P 为ABC 内部任一点(不包括边界),且满足0)()2)(( CA CB AB PC P A PB P A PB ,则ABC 一定为()A .直角三角形B .等边三角形C .等腰直角三角形D .等腰三角形10.如图,在圆C 中,弦AB 的长为4,则AB AC ()A .8B .8C .4D .4第10题第15题11.已知点G 是ABC △内一点,满足0GA GB GC ++= ,若3BAC ,1AB AC ,则||AG 的最小值是()A 3B 2C 6D 612.边长为8的等边ABC △所在平面内一点O ,满足230OA OB OC --=,若19|| OP ,则||PA 的最大值为()A .63B .219C .319D .41913.已知O 是ABC △的外心,4|| AB ,2|| AC ,则)(AC AB AO =()A .10B .9C .8D .614.已知ABC △中, 45A , 60B ,点H 是ABC △的垂心,存在实数s ,t ,使得AH s AB t AC =+,则s ,t 的值分别为()A .32 s ,33 t B .32 s ,3 t C .32 s ,33t D .32 s ,32 t 15.如图,AB 是圆O 的直径,P 是圆弧 AB 上的点,M 、N 是直径AB 上关于O 对称的两点,且AB =6,MN =4,则PM PN=()A .13B .7C .5D .316.在ABC △中,AB =AC =5,BC =6,I 是ABC △的内心,若BI mBA nBC =+)(R n m ,(m ,n ∈R ),则nm=()A .43B .65C .2D .1217.已知A 、B 、C 三点不共线,且点O 满足0OA OB OC ++=,则下列结论正确的是()A .1233OA AB BC =+ B .2133OA AB BC=-- C .1233OA AB BC =--D .2133OA AB BC=+ 18.在ABC △中,G 为ABC △的重心,过G 点的直线分别交AB ,AC 于P ,Q 两点,且AP hAB =,AC k AQ ,则16h +25k 的最小值()A .27B .81C .66D .4119.已知ABC △为等边三角形,动点P 在以BC 为直径的圆上,若AC AB AP ,则 2 的最大值为()A .12B .331C .52D .23220.已知平面上不共线的四点O ,A ,B ,C ,若54OC OB OC =- ,则||||AB BC等于()A .1B .2C .3D .421.ABC △所在平面上一点P 满足PA PB PC AB ++=,则P AB △的面积与ABC △的面积比为()A .3:2B .3:1C .4:1D .6:122.在ABC △中,G 为ABC △的重心,过G 点的直线分别交AB ,AC 于P ,Q 两点,且AP hAB =,AC k AQ ,则k h 11 =()A .3B .4C .5D .623.已知平面向量OA 、OB 、OC 满足:||||||1OA OB OC ===,12OA OB .若OB y OC x OC ,)(R y x ,,则y x 的最大值是()A .1B .33C .2D .23324.在ABC △中,点G 满足0GA GB GC ++= .若存在点O ,使得16OG BC =,且OA mOB nOC =+ ,则n m =()A .2B .2C .1D .125.已知O 为ABC △内一点,且有230OA OB OC ++=,记ABC △,BCO △,ACO △的面积分别为1S ,2S ,3S ,则321S S S ::等于()A .1:2:3B .2:1:3C .2:1:6D .1:2:626.已知G 是ABC △的重心,过点G 作直线MN 与AB ,AC 交于点M ,N ,且AM xAB =,AC y AN ,)0( y x ,,则y x 3的最小值是()A .83B .72C .52D .4233327.已知P 为ABC △所在平面内一点,0AB PB PC ++= ,2|||||| AB PC PC ,则PBC △的面积等于()A .33B .23C 3D .4328.A ,B ,C ,D 在一个平面内,满足2DA DB DB DC DC DA ×=×=×=-.||||||DC DB DA ,动点P ,M满足PM MC = ,|PA|1=,则||MB 的最大值是()A .72B .4C .92D .529.在ABC △中,O 为中线AM 上的一个动点,若4 AM ,则)(OC OB OA 的最小值是()A .4B .8C .10D .1230.在ABC △中,1 AB , 60ABC ,1AC AB ,若O 是ABC △的重心,则BO AC的值为()A .1B .52C .83D .531.已知点P 在圆122x y 上,点A 的坐标为)0,2( ,O 为原点,则AO AP ×的最大值为.32.过点3,1(P 作圆122 x y 的两条切线,切点分别为A ,B ,则PB P A =.33.已知A ,B ,C 为圆O 上的三点,若1()2AO AB AC =+,则AB 与AC 的夹角为.34.在ABC △中,M 是BC 的中点,AM =3,BC =10,则AB AC ×=.35.在四边形ABCD 中,AB DC = =(1,1),3||||||BA BC BD BA BC BD +=,则四边形ABCD 的面积是.36.在ABC △中,M 是BC 的中点,120A ,12AB AC ,则线段AM 长的最小值为.。
数学秒杀型公式及方法

20XX高考复习数学秒杀型公式及方法20XX高考复习:数学秒杀型公式及方法1、适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2、函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3、关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律:1,等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6、数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高考数学爆强秒杀公式及方法(精华)

高考数学爆强秒杀公式与方法一1,适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A 为直线与焦点所在轴夹角,是锐角。
x 为别离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2,函数的周期性问题(记忆三个):1、假设f(x)=-f(x+k),那么T=2k; 2、假设f(x)=m/(x+k)(m 不为0),那么T=2k;3、假设f(x)=f(x+k)+f(x-k),那么T=6k 。
注意点:a.周期函数,周期必无限 b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin 派x 相加不是周期函数。
3,关于对称问题(无数人搞不懂的问题)总结如下:1,假设在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;2、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;3、假设f(a+x)+f(a-x)=2b ,那么f(x)图像关于(a ,b)中心对称4,函数奇偶性1、对于属于R 上的奇函数有f(0)=0;2、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项3,奇偶性作用不大,一般用于选择填空5,数列爆强定律:1,等差数列中:S 奇=na 中,例如S13=13a7(13和7为下角标);2等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q2mS(n)可以迅速求q|精.|品.|可.|编.|辑.|学.|习.|资.|料.*|*|*|*||欢.|迎.|下.|载.6,数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于an+1=pan+q(n+1为下角标,n 为下角标),a1,那么特征根x=q/(1-p),那么数列通项公式为an=(a1-x)p 2(n-1)+x ,这是一阶特征根方程的运用。
2向量(课堂讲义和例题)秒杀高考数学教材

专题1 向量的基础知识(1)向量b 与非零向量....a共线的充要条件是有且只有一个实数λ,使得a b λ=. (2)设a =()11,x y ,()22,b x y =,12210a b x y x y ⇔-=∥,a ⊥b 001221=+⇔=⋅⇔y y x x b a . (3)两个向量a ,b的夹角公式:cos q .【例1】(2015•四川)设向量(2,4)a =与向量(,6)b x =共线,则实数x =( ) A .2B .3C .4D .6【例2】(2015•河北)已知点A (0,1),B (3,2),向量(4,3)AC =--,则向量BC =( ) A .(7,4)--B .(7,4)C .(1,4)--D .(1,4)【例3】(2015•黑龙江)a =(1,1)-,b =(1,2)--,则(2a +b )⋅a =( ) A .1-B .0C .1D .2【例4】(2015•广东)在平面直角坐标系xoy 中,已知四边形ABCD 是平行四边形,AB =(1,2)-,AD =(2,1)则AD AC ×=( )A .5B .4C .3D .2,OB OA x y y --cos a b a b =⋅【例5】(2015•山东)已知菱形ABCD 的边长为a ,∠ABC=60°,则BD CD ×=( )A .223a -B .243a -C .243aD .223a【例6】(2015•安徽)ABC ∆是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( )A .1=bB .b a ⊥C .1=⋅b aD .()→⊥+BC b a4【例7】已知向量a 和b 的夹角为120°,1a =,3b =,则 . 【例8】(2015•重庆)若非零向量a ,b 满足22a b =,且()()32a b a b -^+,则a 与b 的夹角为( ) A .4πB .2πC .43π D .π|5|a b -=秒杀秘籍:向量运算与整式运算的同与异(无坐标的向量运算)同:2222)(b ab a b a +±=±;222b ab a b a +±=±;ac ab c b a +=+)(公式都可通用.异:整式:b a ab ±=,a 仅仅表示数;向量:)(cos 夹角与为b a b a b aθθ=⋅.22222cos ma nb m a mn a b n b θ±=±+使用范围广泛,通常是求模或者夹角.m a n b ma nb m a n b -≤±≤+,通常是求ma nb ±最值的时候用.专题 2 共线之对面的女孩看过来【例1】在ABC ∆中,已知3BC BD =,则AD =( )A .1(2)3AC AB + B .1(2)3AB AC +C .1(3)4AC AB +D .1(2)4AC AB +【例2】已知OA a =,OB b =,C 为线段AB 上距A 较近的一个三等分点,D 为线段CB 上距C 较近的一个三等分点,则用a ,b 表示OD 的表达式为( )A .1(45)9a b +B .1(97)16a b + C .1(2)3a b +D .1(3)4a b +【例3】已知O A B ,,是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )例3题图 例4题图 例5题图【例4】在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC mAE nAF =+,其中m ,n ∈R ,则m n += .【例5】在△OAB 的边OA 、OB 上分别取点M 、N ,使|OM |:|OA |=1∶3,|ON |:|OB |=1∶4,设线段AN 与BM 交于点P ,记OA a =,OB b =,用a ,b 表示向量OP .秒杀秘籍:对面的女孩看过来平面上O ,A ,B 三点不共线,D 在直线AB 上,且AD AB λ=,令a OA =,b OB =,x OD =,则有(1)x b a λλ=+-其表达意思就是从一个顶点O 引出三个向量,且它们共线,每一个向量,a b 分别乘以它对面的比值,简称对面的女孩看过来。
人教A版高中数学选修2-1《3.2立体几何中的向量方法(二)》课件

知识点二 向量法判断线面垂直
思考
若直线 l 的方向向量为 μ1=2,43,1,平面 α 的法向量为 μ2= 3,2,32,则直线 l 与平面 α 的位置关系是怎样的?如何用向量 法判断直线与平面的位置关系? 答案
梳理
设直线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则 l⊥α⇔a∥μ⇔ a=kμ(k∈R) .
思考
若直线l1的方向向量为μ1=(1,3,2),直线l2的方向向量为μ2= (1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂 直的一般方法是什么? 答案
梳理
设直线l的方向向量为a=(a1,a2,a3),直线m的方向向量为b=(b1,b2,b3), 则l⊥m⇔ a·b=0 ⇔ a1b1+a2b2+a3b3=0 .
跟踪训练3 在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD= 90°,∠ADB=30°,E、F分别是AC、AD的中点,求证:平面BEF⊥ 平面ABC. 证明
当堂训练
1.下列命题中,正确命题的个数为 答案 解析
①若n1,n2分别是平面α,β的法向量,则n1∥n2⇔α∥β; ②若n1,n2分别是平面α,β的法向量,则α⊥β ⇔ n1·n2=0; ③若n是平面α的法向量,a与平面α平行,则n·a=0;
C.a=(0,1,-1),b=(0,-1,1)
D.a=(1,0,0),b=(-1,0,0)
因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所 以a⊥b,故选B.
12345
3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则
A.l∥α
规律与方法
几何法