高中数学的空间向量知识
高二空间向量法知识点梳理

高二空间向量法知识点梳理介绍:在高中数学中,空间向量法是一个重要的概念。
它为我们解决空间中的几何问题提供了一个有力的工具。
本文将对高二空间向量法的知识点进行梳理和总结,以帮助读者更好地理解和运用这一方法。
一、向量及其运算1. 向量的定义:向量是具有大小和方向的量,用有向线段表示。
2. 向量的表示方法:可以用坐标表示,也可以用字母表示。
3. 向量的运算:包括加法、减法和数乘。
4. 向量的性质:零向量、单位向量等。
二、向量的模和方向角1. 向量的模:向量的模表示向量的长度,可以通过勾股定理求得。
2. 向量的方向角:向量的方向角是指与某一基准轴之间的夹角。
三、向量的共线与垂直1. 向量共线的判定:如果两个向量的夹角为0度或180度,则它们共线。
2. 向量垂直的判定:如果两个向量的内积为0,则它们垂直。
四、空间平面与直线的向量方程1. 空间平面的向量方程:可以通过平面上一点和法向量表示。
2. 直线的向量方程:可以通过直线上一点和方向向量表示。
五、向量的数量积与向量积1. 向量的数量积:也称为内积,表示两个向量之间的相似程度。
2. 向量的数量积的性质:包括交换律、分配律等。
3. 向量的向量积:也称为叉乘,表示两个向量所确定的平行四边形的面积与方向。
4. 向量的向量积的性质:包括分配律、反交换律等。
六、空间向量的线性运算与共面问题1. 空间向量的线性运算:包括向量的线性组合和线性相关性。
2. 共面向量的判定:如果三个向量在同一平面内,则它们共面。
七、空间直线与平面的位置关系1. 空间直线与平面的位置关系:包括平行、垂直和相交等情况。
总结:空间向量法是解决几何问题的重要方法,具有广泛的应用范围。
通过对高二空间向量法知识点的梳理和总结,我们可以更好地掌握和运用这一方法。
希望本文对你在学习空间向量法时有所帮助!。
高中数学必修知识点空间向量知识点

高中数学必修知识点空间向量知识点高中数学必修知识点:空间向量知识点一、空间向量的概念与表示空间向量是指具有大小、方向和作用线的量,可以用一个有向线段来表示。
设 A、B 是空间中的两点,用线段 AB 表示的向量称为向量AB,记作⃗AB 或 AB。
二、向量的加法与减法1. 向量的加法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的和,记作⃗AB + ⃗BC = ⃗AC。
2. 向量的减法:设向量⃗AB 与向量⃗BC 共线,则向量⃗AC 称为向量⃗AB 和向量⃗BC 的差,记作⃗AB - ⃗BC = ⃗AC。
三、数量积与向量积1. 数量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量 ⃗b = (x₂, y₂, z₂),则向量⃗a 和向量⃗b 的数量积为 a·b = x₁x₂ + y₁y₂ + z₁z₂。
2. 数量积的性质:- 交换律:⃗a·⃗b = ⃗b·⃗a- 结合律:(k⃗a)·⃗b = k(⃗a·⃗b) = ⃗a·(k⃗b) (k 为常数)- 分配律:⃗a·(⃗b + ⃗c) = ⃗a·⃗b + ⃗a·⃗c- ⃗a·⃗a ≥ 0,当且仅当⃗a = ⃗0 时,⃗a·⃗a = 03. 向量积的定义:设向量⃗a = (x₁, y₁, z₁) 与向量⃗b = (x₂, y₂,z₂),则向量⃗a 和向量⃗b 的向量积为⃗a × ⃗b = (y₁z₂ - z₁y₂, z₁x₂ - x₁z₂, x₁y₂ - y₁x₂)。
4. 向量积的性质:- ⃗a × ⃗b = -⃗b × ⃗a- (k⃗a) × ⃗b = ⃗a × (k⃗b) = k(⃗a × ⃗b) (k 为常数)- ⃗a × ⃗b = ⃗0,当且仅当⃗a 与 ⃗b 共线或其中一个为⃗0 时,⃗a × ⃗b = ⃗0四、平面与空间向量的关系1. 平面方程的向量表示:设平面过点 A(x₁, y₁, z₁),且法向量为 ⃗n = (A, B, C),则平面上任意一点 M(x, y, z) 满足向量⃗AM·⃗n = 0。
高中数学知识点总结:空间向量

高中数学知识点总结:空间向量1、空间向量的概念:(1)在空间,具有大小和方向的量称为空间向量.(2)向量可用一条有向线段来表示.有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向. (3)向量AB 的大小称为向量的模(或长度),记作AB .(4)模(或长度)为0的向量称为零向量;模为1的向量称为单位向量. (5)与向量a 长度相等且方向相反的向量称为a 的相反向量,记作a -. (6)方向相同且模相等的向量称为相等向量. 2、空间向量的加法和减法:(1)求两个向量和的运算称为向量的加法,它遵循平行四边形法则.即:在空间以同一点O 为起点的两个已知向量a 、b 为邻边作平行四边形C OA B ,则以O 起点的对角线C O 就是a 与b 的和,这种求向量和的方法,称为向量加法的平行四边形法则.(2)求两个向量差的运算称为向量的减法,它遵循三角形法则.即:在空间任取一点O ,作a O A =,b OB =,则a b BA =-.3、实数λ与空间向量a 的乘积a λ是一个向量,称为向量的数乘运算.当0λ>时,a λ与a 方向相同;当0λ<时,a λ与a 方向相反;当0λ=时,a λ为零向量,记为0.a λ的长度是a的长度的λ倍.4、设λ,μ为实数,a ,b 是空间任意两个向量,则数乘运算满足分配律及结合律. 分配律:()a b a b λλλ+=+;结合律:()()a a λμλμ=.5、如果表示空间的有向线段所在的直线互相平行或重合,则这些向量称为共线向量或平行向量,并规定零向量与任何向量都共线.6、向量共线的充要条件:对于空间任意两个向量a ,()0b b ≠,//a b 的充要条件是存在实数λ,使a b λ=.7、平行于同一个平面的向量称为共面向量.8、向量共面定理:空间一点P 位于平面C AB 内的充要条件是存在有序实数对x ,y ,使x y C A P =A B +A ;或对空间任一定点O ,有x y C O P =O A +AB +A;或若四点P,A,B,C共面,则()1x y z C x y z O P =O A +O B +O ++=. 9、已知两个非零向量a 和b ,在空间任取一点O ,作a OA =,b OB =,则∠AOB 称为向量a ,b 的夹角,记作,a b 〈〉.两个向量夹角的取值范围是:[],0,a b π〈〉∈.10、对于两个非零向量a 和b ,若,2a b π〈〉=,则向量a ,b 互相垂直,记作ab⊥.11、已知两个非零向量a和b,则c o s ,a b a b 〈〉称为a,b的数量积,记作a b⋅.即c o s ,a b a b a b ⋅=〈〉.零向量与任何向量的数量积为0. 12、a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos ,b a b 〈〉的乘积.13若a ,b 为非零向量,e 为单位向量,则有()1cos ,e a a e a a e ⋅=⋅=〈〉;()20a b a b ⊥⇔⋅=;()3()()a b a b a b a b a b ⎧⎪⋅=⎨-⎪⎩与同向与反向,2a a a ⋅=,aa a =⋅;()4cos ,ab a b a b⋅〈〉=;()5a b a b ⋅≤.14量数乘积的运算律:()1a b b a ⋅=⋅; ()2()()()a b a b a b λλλ⋅=⋅=⋅; ()3()a b c a c b c +⋅=⋅+⋅.15、空间向量基本定理:若三个向量a ,b ,c 不共面,则对空间任一向量p ,存在实数组{},,x y z ,使得p xa yb zc =++.16、三个向量a ,b ,c 不共面,则所有空间向量组成的集合是{},,,p p xa yb zc x y z R =++∈.这个集合可看作是由向量a ,b ,c 生成的,{},,a b c 称为空间的一个基底,a ,b ,c 称为基向量.空间任意三个不共面的向量都可以构成空间的一个基底.17、设1e ,2e ,3e 为有公共起点O 的三个两两垂直的单位向量(称它们为单位正交基底),以1e ,2e ,3e 的公共起点O 为原点,分别以1e ,2e ,3e 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系xyz O .则对于空间任意一个向量p ,一定可以把它平移,使它的起点与原点O 重合,得到向量p OP =.存在有序实数组{},,x y z ,使得123p xe ye ze =++.把x ,y ,z 称作向量p 在单位正交基底1e ,2e ,3e 下的坐标,记作(),,p x y z =.此时,向量p 的坐标是点P 在空间直角坐标系xyz O 中的坐标(),,x y z .18、设()111,,a x y z =,()222,,b x y z =,则(1)()121212,,a b x x y y z z +=+++. (2)()121212,,a b x x y y z z -=---. (3)()111,,a x y z λλλλ=.(4)121212a bx x y y z z ⋅=++.(5)若a 、b 为非零向量,则12121200a b a b x x y y z z ⊥⇔⋅=⇔++=.(6)若0b ≠,则121212//,,a b a b x x y y z z λλλλ⇔=⇔===.(7)21a a a x y =⋅=+(8)21cos ,a b a b a bx ⋅〈〉==+(9)()111,,x y z A ,()222,,x y z B =,则(d x AB =AB =19、在空间中,取一定点O 作为基点,那么空间中任意一点P 的位置可以用向量OP 来表示.向量OP 称为点P 的位置向量.20、空间中任意一条直线l 的位置可以由l 上一个定点A 以及一个定方向确定.点A 是直线l 上一点,向量a 表示直线l 的方向向量,则对于直线l 上的任意一点P ,有ta AP =,这样点A 和向量a 不仅可以确定直线l 的位置,还可以具体表示出直线l 上的任意一点.21、空间中平面α的位置可以由α内的两条相交直线来确定.设这两条相交直线相交于点O ,它们的方向向量分别为a ,b .P 为平面α上任意一点,存在有序实数对(),x y ,使得xa yb OP =+,这样点O与向量a ,b 就确定了平面α的位置.22、直线l 垂直α,取直线l 的方向向量a ,则向量a 称为平面α的法向量. 23、若空间不重合两条直线a ,b 的方向向量分别为a ,b ,则////a b a b⇔⇔()a b R λλ=∈,0a b a b a b ⊥⇔⊥⇔⋅=.24、若直线a 的方向向量为a ,平面α的法向量为n ,且a α⊄,则////a a αα⇔0a n a n ⇔⊥⇔⋅=,//a a a n a n ααλ⊥⇔⊥⇔⇔=.25、若空间不重合的两个平面α,β的法向量分别为a ,b ,则////a b αβ⇔⇔a b λ=,0a b a b αβ⊥⇔⊥⇔⋅=.26、设异面直线a ,b 的夹角为θ,方向向量为a ,b ,其夹角为ϕ,则有cos cos a b a bθϕ⋅==.27、设直线l 的方向向量为l ,平面α的法向量为n ,l 与α所成的角为θ,l 与n 的夹角为ϕ,则有sin cos l n l nθϕ⋅==.28、设1n ,2n 是二面角l αβ--的两个面α,β的法向量,则向量1n ,2n 的夹角(或其补角)就是二面角的平面角的大小.若二面角l αβ--的平面角为θ,则1212cos n n n n θ⋅=.29、点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算. 30、在直线l 上找一点P ,过定点A 且垂直于直线l的向量为n,则定点A 到直线l的距离为cos ,nd n nPA⋅=PA 〈PA 〉=.31、点P 是平面α外一点,A 是平面α内的一定点,n 为平面α的一个法向量,则点P 到平面α的距离为cos ,n d n nPA⋅=PA 〈PA 〉=.。
空间向量知识点归纳总结

空间向量知识点归纳总结空间向量是高中数学中的一个重要概念,出现在向量代数、几何问题、解析几何以及线性代数等多个数学分支中。
下面是空间向量知识点的归纳总结:1.空间向量的定义:空间向量是具有大小和方向的量,它可以用有序三元数组表示,例如(a,b,c)。
2.空间向量的运算:(1)向量加法:两个向量相加得到一个新的向量,加法满足交换律和结合律。
(2)向量数乘:一个向量与一个实数相乘得到一个新的向量,数乘满足分配律。
(3)内积:两个向量的内积是一个实数,可以用数量积的公式计算。
(4)外积:两个向量的外积是一个向量,可以用矢量积的公式计算。
3.空间向量的基本性质:(1)零向量:长度为零的向量,与任何向量的加法的结果都是原向量本身。
(2)单位向量:长度为1的向量,可以用一个非零向量除以其长度得到。
(3)向量的长度:向量的长度定义为该向量的模。
(4)向量的方向:向量的方向可以用与该向量共线的单位向量表示。
4.空间向量的共线与异面:(1)两个向量共线意味着它们的方向相同或者相反。
(2)三个向量共面意味着它们位于同一个平面上。
(3)两个向量异面意味着它们不共线,且它们所在的直线与另外一个直线垂直。
5.空间向量的投影:(1)向量在一些方向上的投影是一个标量,可以用点积的公式计算。
(2)向量在一些方向上的单位向量是该方向的基向量。
(3)向量在一些方向上的分量是该方向的基向量的数乘。
6.空间向量的表示:(1)分解:一个向量可以表示为它在不同方向上的分量的和。
(2)基底:一个空间中的向量可以表示为基底向量的线性组合。
(3)坐标:一个向量可以用它在基底向量上的投影的值表示。
7.空间向量的几何意义:(1)位移向量:两点之间的位移可以用一个向量表示。
(2)向量的数量积:两个向量的数量积等于一个向量在另一个向量的方向上的投影乘以另一个向量的长度。
(3)向量的矢量积:两个向量的矢量积的大小等于这两个向量张成的平行四边形的面积,方向垂直于这两个向量所在平面。
高中数学向量知识点归纳

高中数学向量知识点归纳
1. 向量的定义和表示
- 向量是具有大小和方向的量,可以用有向线段来表示。
- 向量的表示方法有坐标表示法和向量符号表示法。
2. 向量的加法和减法
- 向量的加法:将两个向量的对应方向上的分量相加,得到新的向量。
- 向量的减法:将被减向量取反,然后进行加法操作。
3. 向量的数量积和向量积
- 向量的数量积(又称点积或内积):用数值表示两个向量的乘积,结果是一个标量。
- 向量的数量积公式:a·b = |a| |b| cosθ。
- 向量的向量积(又称叉积或外积):用一个新的向量表示两个向量的乘积,结果是一个向量。
- 向量的向量积公式:c = a×b,其中 c 的模长等于|a| |b| sinθ。
4. 直线和平面向量的应用
- 在平面上,可以根据向量的性质求解直线的方程、判断点与直线的位置关系等。
- 在空间中,可以根据向量的性质求解平面的方程、判断点与平面的位置关系等。
5. 向量的线性运算
- 向量的线性运算包括数乘和线性组合。
- 数乘:将向量的每个分量都乘以一个实数。
- 线性组合:将多个向量以一定比例加和。
6. 向量的模和单位向量
- 向量的模是指向量的长度,可以用勾股定理求解。
- 单位向量是指模为1的向量,可以通过向量除以模长求得。
以上是高中数学中向量知识点的归纳。
希望对你有所帮助!。
高考空间向量知识点总结

高考空间向量知识点总结空间向量是高中数学中的重要概念之一,也是高考中常考的知识点。
掌握好空间向量的相关知识对于解题和理解几何概念都非常重要。
本文将为您总结高考空间向量的相关知识点,帮助您更好地备考高考。
一、空间向量的定义和表示方法空间向量是有大小和方向的量,通常用有序三元组表示。
设有两点A(x₁,y₁,z₁)和B(x₂,y₂,z₂),则向量AB可以表示为:AB = (x₂-x₁, y₂-y₁, z₂-z₁)二、空间向量的模、方向余弦和共线性1. 向量的模:向量AB的模表示为|AB|,计算方式为:|AB| = √[(x₂-x₁)² + (y₂-y₁)² + (z₂-z₁)²]2. 向量的方向余弦:设向量AB与坐标轴的夹角分别为α、β、γ,则方向余弦分别为:cosα = (x₂-x₁) / |AB|cosβ = (y₂-y₁) / |AB|cosγ = (z₂-z₁) / |AB|3. 向量的共线性:若两个向量平行或反向平行,则称其共线。
当两个向量的坐标比例相等时,它们共线。
三、空间向量的运算1. 向量的加法:设有两个向量AB和CD,其和可以表示为:AB + CD = (x₂-x₁+x₄-x₃, y₂-y₁+y₄-y₃, z₂-z₁+z₄-z₃)2. 向量的数量乘法:设有一个向量AB和实数k,其数量乘积为:kAB = (kx, ky, kz),其中x, y, z分别为向量AB的坐标3. 向量的点乘和叉乘:(1) 点乘:设有两个向量AB和CD,其点乘结果为:AB · CD = |AB||CD|cosθ,其中θ为两个向量夹角的余弦值(2) 叉乘:设有两个向量AB和CD,其叉乘结果为:AB × CD = (i, j, k),其中i表示x轴分量,j表示y轴分量,k表示z 轴分量四、空间向量的应用1. 向量在平面内的投影:设有一个向量AB和平面α,向量AB在平面α上的投影为向量AC,计算公式为:AC = |AB|cosθ,其中θ为向量AB与平面α的夹角的余弦值2. 平面的方程:设平面α过点A(x₁,y₁,z₁)且法向量为n(a,b,c),则平面α的方程为:ax + by + cz = d,其中d = ax₁ + by₁ + cz₁3. 空间向量的夹角:设有两个向量AB和CD,它们的夹角θ可以通过以下公式计算:cosθ = (AB · CD) / (|AB||CD|)五、空间向量的坐标表示和平行四边形法则1. 坐标表示:空间中的向量可以通过坐标表示,即将向量的尾点移到坐标原点,将向量的起点坐标作为表示该向量的坐标。
高中数学:空间向量知识点

高中数学:空间向量知识点1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。
注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。
(2)空间的两个向量可用同一平面内的两条有向线段来表示。
2. 空间向量的运算。
定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。
;;运算律:⑴加法交换律:⑵加法结合律:⑶数乘分配律:3. 共线向量。
(1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。
当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线。
(2)共线向量定理:空间任意两个向量、(≠),//存在实数λ,使=λ。
4. 共面向量(1)定义:一般地,能平移到同一平面内的向量叫做共面向量。
说明:空间任意的两向量都是共面的。
(2)共面向量定理:如果两个向量不共线,与向量共面的条件是存在实数使。
5. 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使。
若三向量不共面,我们把叫做空间的一个基底,叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。
推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使。
6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系中,对空间任一点,存在唯一的有序实数组,使,有序实数组叫作向量在空间直角坐标系中的坐标,记作,叫横坐标,叫纵坐标,叫竖坐标。
(2)若空间的一个基底的三个基向量互相垂直,且长为,这个基底叫单位正交基底,用表示。
(3)空间向量的直角坐标运算律:①若,,则,,,,,。
②若,,则。
一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(4)模长公式:若,,则,(5)夹角公式:。
(6)两点间的距离公式:若,,则,或7. 空间向量的数量积。
高二空间向量法知识点归纳

高二空间向量法知识点归纳空间向量法是数学中的一种重要工具,广泛应用于几何、物理等领域。
在高中数学的教学中,空间向量法也是一个重要的知识点。
本文将对高二空间向量法的相关知识进行归纳总结。
一、空间向量的定义和表示方法空间中的向量是有大小和方向的,它可以用坐标来表示。
三维空间中,向量通常用三个有序实数构成的有序三元组表示,记作:AB→=A(x1, y1, z1)和B(x2, y2, z2)。
该向量的坐标表示为:(x2-x1, y2-y1, z2-z1)。
二、向量的共线和共面判定1. 共线判定设有向量AB→和CD→,如果它们的坐标比例相等,则两个向量共线,即(x2-x1)/a=(y2-y1)/b=(z2-z1)/c。
2. 共面判定设有三个向量AB→,AC→和AD→,如果它们的混合积为0,则三个向量共面,即[(x2-x1)(y3-y1)-(x3-x1)(y2-y1)]a+[(y2-y1)(z3-z1)-(y3-y1)(z2-z1)]b+[(x2-x1)(z3-z1)-(x3-x1)(z2-z1)]c=0。
三、向量的数量积和数量积的性质1. 数量积的定义设有向量AB→和CD→,数量积定义为:AB→·CD→=|AB→|·|CD→|·cosθ,其中θ为AB→和CD→之间的夹角。
2. 数量积的性质- 交换律:AB→·CD→=CD→·AB→- 结合律:(AB→+CD→)·EF→=AB→·EF→+CD→·EF→- 数量积与向量共线:若AB→·CD→=0,则向量AB→和CD→垂直或其中一个向量为零向量。
四、向量的向量积和向量积的性质1. 向量积的定义设有向量AB→和CD→,向量积定义为:AB→×CD→=|AB→|·|CD→|·sinθ·n→,其中θ为AB→和CD→之间的夹角,n→为满足右手定则的单位向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学的空间向量知识
基本内容
空间向量作为新加入的内容,在处理空间问题中具有相当的优越性,比原来处理空间问题的方法更有灵活性。
如把立体几何中的线面关系问题及求角求距离问题转化为用向量解决,如何取向量或建立空间坐标系,找到所论证的平行垂直等关系,所求的角和距离用向量怎样来表达是问题的关键.立体几何的计算和证明常常涉及到二大问题:一是位置关系,它主要包括线线垂直,线面垂直,线线平行,线面平行;二是度量问题,它主要包括点到线、点到面的距离,线线、线面所成角,面面所成角等。
这里比较多的主要是用向量证明线线、线面垂直及计算线线角,而如何用向量证明线面平行,计算点到平面的距离、线面角及面面角的例题不多,起到一个抛砖引玉的作用。
以下用向量法求解的简单常识:
1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同)
2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C共面.
3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).
4、利用向量证在线a⊥b,就是分别在a,b上取向量.
5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.
6、利用向量求距离就是转化成求向量的模问题:.
7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.
首先该图形能建坐标系
如果能建
则先要会求面的法向量
求面的法向量的方法是 1。
尽量在空中找到与面垂直的向量
2。
如果找不到,那么就设n=(x,y,z)
然后因为法向量垂直于面
所以n垂直于面内两相交直线
可列出两个方程
两个方程,三个未知数
然后根据计算方便
取z(或x或y)等于一个数
然后就求出面的一个法向量了
会求法向量后
1。
二面角的求法就是求出两个面的法向量
可以求出两个法向量的夹角为两向量的数量积除以两向量模的乘积
如过在两面的同一边可以看到两向量的箭头或箭尾相交
那么二面角就是上面求的两法向量的夹角的补角
如果只能看到其中一个的箭头和另一个的箭尾相交
那么上面两向量的夹角就是所求
2。
点到平面的距离就是求出该面的法向量
然后在平面上任取一点(除平面外那点在平面内的射影)
求出平面外那点和你所取的那点所构成的向量记为n1
点到平面的距离就是法向量与n1的数量积的绝对值除以法向量的模即得所求
设直线l,m的方向向量分别为a,b,平面α,β的法向量分别为μ,ν 则
线线平行l∥m <=> a∥b <=> a=kb;
线面平行l∥α <=> a⊥μ <=> a·μ=0;
面面平行α∥β <=> μ∥ν <=> μ=kν
线线垂直l⊥m <=> a⊥b <=>a·b=0;
线面垂直l⊥α <=> a∥μ <=> a=kμ;
面面垂直α⊥β <=> μ⊥ν <=> μ·ν=0
常识
以下用向量法求解的简单常识:1、空间一点P位于平面MAB的充要条件是存在唯一的有序实数对x、y,使得PM=xPA+yPB(其中PM等为向量,由于图不方便做就如此代替,下同)2、对空间任一点O和不共线的三点A,B,C,若:OP=xOA+yOB+zOC (其中x+y+z=1),则四点P、A、B、C 共面.3、利用向量证a‖b,就是分别在a,b上取向量(k∈R).4、利用向量证,就是分别在a,b上取向量.5、利用向量求两直线a与b的夹角,就是分别在a,b上取,求:的问题.6、利用向量求距离就是转化成求向量的模问题:.7、利用坐标法研究线面关系或求角和距离,关键是建立正确的空间直角坐标系,正确表达已知点的坐标.。