遗传算法优化的BP神经网络建模

合集下载

基于遗传算法的BP神经网络气象预报建模

基于遗传算法的BP神经网络气象预报建模

基于遗传算法的BP神经网络气象预报建模 wxyhome20世纪90年代以来,国内外在大气学科中开展了很多有关神经网络预报建模和气候分析等应用研究。

然而随着神经网络方法在大气科学领域研究的不断深入,研究人员发现神经网络方法在实际业务天气预报应用中存在一个重要的问题,即在利用神经网络方法进行气象预报建模时,神经网络的初始权值、网络结构以及网络的学习参数,动量因子难以确定,往往是通过反复训练来确定网络的结构和各种参数,这样会导致在应用中出现过拟合问题,严重影响网络的泛化能力,极大限制神经网络在实际天气业务中的应用([1-8])。

该问题的研究不仅关系到在大气学科中能否进一步深入开展有关人工神经网络方法的业务预报应用,并且也是目前人工神经网络应用理论研究中尚未得到很好解决的关键技术问题。

神经网络如何有效提高神经网络的泛化能力,我简单以下分析影响神经网泛化能力的因素。

首先我简单介绍以下神经人工神经网络(Artificial Neural Networks,ANN),简称“神经网络”(NN),它是作为对人脑最简单的一种抽象和模拟,是对人的大脑系统一定特性的描述。

简单地讲,它是一个数学模型,可以用电子线路来实现或用计算机来模拟人的自然智能。

其中BP神经网络是目前应用最为广泛的神经网络模型之一,也是应用最具有成效的神经网络模型之一。

它在大气科学预报集成、观测资料优化等方面都有应用。

BP神经网络(Back-propagation Neutral Network) 通常是指基于误差反向传播算法(BP算法)的多层前向神经网络,采用由导师的训练方式。

它是 D.E.Rumelhart和J.L.McCelland及其研究小组在1986年研究并设计出来的。

BP算法已成为目前应用最为广泛的神经网络学习算法,绝大部分的神经网络模型是采用BP算法或它的变化形式,它也是前向神经网络的核心部分,体现了神经网络最精华的部分。

由于它可以实现输入和输出的任意非线性映射,这使得它在诸如函数逼近、模式识别、数据压缩等领域有广泛的应用。

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法基于遗传算法的BP神经网络算法是一种将遗传算法与BP神经网络相结合的机器学习算法。

BP神经网络是一种具有自适应学习功能的人工神经网络,它通过反向传播算法来不断调整网络的权重和阈值,从而实现对样本数据的学习和预测。

遗传算法是一种模拟生物进化过程的优化算法,它通过选择、交叉和变异等操作来产生下一代的优秀个体,从而逐步寻找到最优解。

在基于遗传算法的BP神经网络算法中,遗传算法用于优化BP神经网络的初始权重和阈值,以提高网络的学习和泛化能力。

1.初始化个体群体:随机生成一组个体,每个个体代表BP神经网络的初始权重和阈值。

2.适应度评估:使用生成的个体来构建BP神经网络,并使用训练数据进行训练和验证,评估网络的适应度,即网络的性能指标。

3.选择操作:根据个体的适应度值确定选择概率,选择一些适应度较高的个体作为父代。

4.交叉操作:从父代中选择两个个体,通过交叉操作生成两个新的子代个体。

5.变异操作:对新生成的子代个体进行变异操作,引入一定的随机扰动,增加种群的多样性。

6.替换操作:根据一定的替换策略,用新生成的子代个体替代原来的父代个体。

7.终止条件判断:根据预先设定的终止条件(如达到最大迭代次数或达到一些适应度值阈值)判断是否终止算法。

8.返回结果:返回适应度最高的个体,即最优的BP神经网络参数。

然而,基于遗传算法的BP神经网络算法也存在一些缺点。

首先,算法的收敛速度较慢,需要较长的时间进行优化。

其次,算法需要设置一些参数,如种群大小、交叉概率和变异概率等,不同的参数组合可能对算法的性能产生较大影响,需要经过一定的试错过程。

综上所述,基于遗传算法的BP神经网络算法是一种结合了两种优化方法的机器学习算法,能够有效提高BP神经网络的学习和泛化能力。

同时,也需要在实际应用中根据具体情况选择合适的参数设置和终止条件,以获得更好的算法性能。

基于小生境-遗传算法优化的新型BP模型

基于小生境-遗传算法优化的新型BP模型
申义彩 李 军 ,
( . 南 中医学 院 , 南 郑 州 4 0 0 ; 1河 河 5 0 8 2 华北 水利 水 电学 院 , 南 郑 州Βιβλιοθήκη 4 0 1 ) . 河 5 0 1
摘 要: 为解 决传 统 B P神经 网络 模型 易陷入 局部 极小 点 、 网络结 构不 稳定 、 收敛 速度 慢等 问题 , 出 了一个 小 生境 遗传 算 提
中图分类 号 :P8 T 13
文献 标识 码 : A
文章 编号 : 7 - 2 X 2 1 )9 03 —4 1 3 69 (02 0 - 15 0 6
O p i ie tm z d BP ur lNe wo k M o lBa e n Ne a t r de s d o Ni h -g n tc Al o ih c e e e i g rt m
Absr c : c rig t h rc mig fBP n u a ewo kmo e ,sc se ta me ti c lo tmu Iu s ben t r tu tr 。l— ta t Ac odn o so to n so e rl t r d l u ha nrp n l a p n no i m nt l ewoksr cue so a
c ai n l an n b lt f BP n u a e wo k t p i z e i i a o n c i n weg t d t r s o d f te h n a e wo k b a s o i t e r i g a ii o e r ln t r o t o y o mi e t n t l n e t i h s a e h l s o e rl n t r y me h i c o n h h n f s l ci n o e ai n,c o s v ro e ai n。mu a o p r t n a d nc e p s ee t p r t o o r s o e p r to t t n o e a i n ih a s,a d t e d p sBP a g r h t r i ewo k,wh c a i o n h n a o t o t m tan n t r l i o ihc n e f c ie y s l e t e q e t n fBP n t r b u e s n b e i i a au n ewo k mic n e g n e n d i r v e c n e g n e fe t l o v h u si s o e wo k a o t a o a l n tl v l e a d n t r s o v r e c ,a mp o e t o v r e c v o r i h s e d a d te sa i t fn t r p e n t b l y o e wo k.Th x e me t e u t h w a e mo e smo e f a i l d e f ci e t a h a i o a t o s h i ee p r i n s l s o t t d li r s h h t r e s e a fe t n t e t d t n me d . b n v h r i l h

遗传算法及遗传算法优化BP神经网络实现代码

遗传算法及遗传算法优化BP神经网络实现代码

遗传算法开放分类:编程、程序、数学、计算机、算法目录• 遗传算法定义• 遗传算法特点• 遗传算法的应用• 遗传算法的现状• 遗传算法的一般算法• 遗传算法实例遗传算法定义[编辑本段]遗传算法(Genetic Algorithm)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法,它是有美国Michigan 大学J.Holland教授于1975年首先提出来的,并出版了颇有影响的专著《Adaptation in Natural and Artificial Systems》,GA这个名称才逐渐为人所知,J.Hilland教授所提出的GA通常为简单遗传算法(SGA)。

遗传算法是从代表问题可能潜在的解集的一个种群(population)开始的,而一个种群则由经过基因(gene)编码的一定数目的个体(individual)组成。

每个个体实际上是染色体(chromosome)带有特征的实体。

染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。

因此,在一开始需要实现从表现型到基因型的映射即编码工作。

由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度(fitness)大小挑选(selection)个体,并借助于自然遗传学的遗传算子(genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。

这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码(decoding),可以作为问题近似最优解。

遗传算法特点[编辑本段] 遗传算法是一类可用于复杂系统优化的具有鲁棒性的搜索算法,与传统的优化算法相比,主要有以下特点:1、遗传算法以决策变量的编码作为运算对象。

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法

基于遗传算法的BP神经网络算法人工神经网络(Artificial Neural Network,ANN)是一种模拟人脑中神经元运作原理的数学模型。

反向传播神经网络(Back Propagation Neural Network,BPNN)是一种常用的人工神经网络模型,其训练方法是通过计算输出与期望输出之间的误差,并将误差反向传播进行网络参数的调整。

遗传算法(Genetic Algorithm,GA)是一种基于生物进化理论的优化方法,通过模拟基因遗传和进化的过程来最优解。

BP神经网络算法结合遗传算法能够提高网络的训练效果,并进一步提升算法的性能。

1.随机初始化BP神经网络的权重和阈值。

BP神经网络的训练需要初始化网络的权重和阈值,遗传算法可以随机生成初始值作为种群的个体。

2.选择适应度函数。

适应度函数用于评估每个个体的适应度程度,即个体在解决问题中的优劣程度。

对于BP神经网络,适应度函数可以选择网络的误差函数,如均方误差。

3.选择遗传算子。

遗传算子包括选择、交叉和变异操作。

选择操作根据个体的适应度确定被选中参与下一代个体的概率。

交叉操作模拟基因交换,通过交叉操作可以产生新的个体。

变异操作则模拟基因突变,通过变异操作可以增加种群的多样性。

4.根据选择的适应度函数计算种群的适应度值。

对于BP神经网络,可以使用遗传算法对初始种群进行迭代并通过BP算法进行训练,根据训练结果计算个体的适应度值。

5.根据选择的适应度值进行选择操作。

根据适应度值选择种群中的个体,并根据选择的概率生成新的种群。

6.进行交叉操作。

通过交叉操作将选定的个体进行基因交换,并生成新的个体。

7.进行变异操作。

对选定的个体进行基因突变,增加种群的多样性。

8.根据选择的适应度函数计算新种群的适应度值。

对新生成的个体进行适应度评估。

9.判断终止条件。

终止条件可以根据算法的需求进行设置,如达到指定的迭代次数或达到指定的适应度阈值。

10.重复进行步骤5至步骤9,直到满足终止条件。

基于遗传算法优化BP神经网络圆柱壳结构可靠度分析

基于遗传算法优化BP神经网络圆柱壳结构可靠度分析

基于遗传算法优化BP神经网络圆柱壳结构可靠度分析目录一、内容概括 (1)(一)基于遗传算法的优化方法介绍 (2)(二)BP神经网络介绍与应用场景分析 (2)(三)圆柱壳结构可靠度分析方法探讨 (4)二、圆柱壳结构基础理论知识概述 (5)(一)圆柱壳结构的组成及特点分析 (6)(二)圆柱壳结构的力学特性研究 (7)(三)圆柱壳结构可靠度评价指标介绍 (9)三、BP神经网络在圆柱壳结构可靠度分析中的应用 (9)(一)BP神经网络模型的构建与训练过程 (10)(二)基于BP神经网络的圆柱壳结构可靠度预测模型建立与实施步骤介绍11 (三)BP神经网络模型的优缺点分析及对策建议 (13)四、遗传算法在优化BP神经网络模型中的应用 (14)(一)遗传算法的基本原理及特点介绍 (16)(二)基于遗传算法的BP神经网络模型优化过程与实施步骤解析..16(三)案例分析 (18)一、内容概括介绍了BP神经网络的基本原理及其在当前圆柱壳结构可靠度分析中的局限性。

BP神经网络是一种通过反向传播算法进行权值和阈值调整的多层前馈网络,广泛应用于各种工程领域。

传统的BP神经网络在解决复杂结构优化问题时,往往存在易陷入局部最优解、收敛速度慢等问题。

阐述了遗传算法的基本原理和特性,遗传算法是一种模拟自然选择和遗传机制的优化搜索算法,具有全局优化能力,能够解决复杂的非线性问题。

将遗传算法与BP神经网络相结合,有望提高圆柱壳结构可靠度分析的准确性和效率。

详细描述了基于遗传算法优化BP神经网络的流程和方法。

通过遗传算法优化BP神经网络的权值和阈值,提高网络的性能和准确性。

将优化后的BP神经网络应用于圆柱壳结构可靠度分析,通过大量的数据训练和测试,验证该方法的可行性和有效性。

通过实例分析,展示了基于遗传算法优化BP神经网络在圆柱壳结构可靠度分析中的实际应用效果。

该方法能够显著提高圆柱壳结构可靠度分析的准确性和效率,为工程实践提供了一种新的思路和方法。

遗传算法优化确定BP神经网络的遥感图像分类

遗传算法优化确定BP神经网络的遥感图像分类

遗传算法优化确定BP神经网络的遥感图像分类遗传算法(Genetic Algorithm,GA)是一种应用于求解优化问题的智能算法。

遥感图像分类是一种常见的图像处理任务,而BP神经网络是一种常用的分类模型。

将遗传算法与BP神经网络相结合,可以提高遥感图像分类的准确性和效率。

在遥感图像分类中,首先需要准备训练样本和测试样本。

训练样本用于训练BP神经网络的权重和阈值,而测试样本用于评估网络的分类性能。

然后,通过遗传算法确定BP神经网络的参数。

遗传算法的核心思想是模拟生物进化中的自然选择和优胜劣汰的过程。

具体而言,遗传算法通过三个操作模拟自然进化的过程:选择、交叉和变异。

根据适应度函数选择适应度较高的个体(即BP神经网络参数)作为父代。

然后,通过交叉操作将两个父代个体的染色体(即网络参数)进行交叉组合,生成子代。

通过变异操作对子代的染色体进行随机变换,以增加种群的多样性。

这样,经过多次迭代,遗传算法可以找到适应度最高的个体,即最优的BP神经网络参数。

在遥感图像分类中,适应度函数可以通过网络的分类准确率来定义。

遗传算法的优势在于可以在大量参数空间中进行搜索,并通过自然选择机制不断优化,从而找到最优解。

而BP神经网络作为分类模型,具有很好的学习能力和非线性拟合能力,可以更好地处理遥感图像分类问题。

将遗传算法应用于优化BP神经网络的遥感图像分类任务,可以提高分类准确率和效率。

这种方法可以广泛应用于遥感图像的土地利用分类、目标检测等相关问题,具有很好的应用前景。

但是需要注意的是,遗传算法的效果受到问题复杂度、种群大小、交叉和变异的概率等参数的影响,需要通过实验和调优来确定最佳的参数设置。

基于遗传算法优化BP神经网络的曝气量预测

基于遗传算法优化BP神经网络的曝气量预测

基于遗传算法优化BP神经网络的曝气量预测基于遗传算法优化BP神经网络的曝气量预测一、引言曝气量预测在水处理领域中具有重要的应用价值,能够帮助工程师在水处理过程中提前获取曝气量的信息,进行更加有效和精准的操作控制。

传统的曝气量预测方法存在着预测精度不高、模型复杂度高等问题。

因此,本文探讨了基于遗传算法优化BP神经网络的曝气量预测方法,以期提高曝气量预测的准确性和效率。

二、遗传算法与BP神经网络的概述2.1 遗传算法遗传算法是一种模拟自然进化过程中的遗传机制而发展起来的计算模型。

遗传算法通过模拟自然界的进化过程,利用种群的基因编码和适应度评价等机制进行选择、交叉和变异等操作,寻找最优解。

它具有全局搜索能力和自适应搜索能力,在解决复杂问题方面具有广泛的应用。

2.2 BP神经网络BP神经网络是一种常用的人工神经网络模型,它模拟了人脑神经细胞之间的相互连接和信息传递机制。

BP神经网络具有自学习、自适应的特点,通过调整网络的权值和阈值来实现对输入样本进行训练和预测。

三、基于遗传算法优化BP神经网络的曝气量预测方法3.1 数据准备在进行曝气量预测之前,首先需要收集和整理相关的数据。

这些数据包括但不限于进水流量、出水浊度、曝气池水位等。

通过对这些数据进行特征提取和预处理,得到合适的输入样本和输出样本。

3.2 神经网络结构设计BP神经网络的设计关乎到曝气量预测的准确性和泛化能力。

在设计神经网络结构时,需要根据实际问题进行权衡与选择。

一般情况下,一个典型的BP神经网络由输入层、隐含层和输出层组成。

其中,输入层负责接收输入样本的特征值,隐含层负责处理输入层传递过来的信息,输出层负责输出样本的预测结果。

3.3 遗传算法优化为了提高BP神经网络的预测效果,本文引入了遗传算法对神经网络进行优化。

遗传算法通过遗传操作(选择、交叉、变异)对神经网络的权重和阈值进行调整,进而改善网络的性能。

在种群的演化过程中,通过选择适应度函数对个体进行评价,选择进入下一轮迭代的优秀个体,利用交叉和变异操作产生新的个体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传算法优化的BP神经网络建模十一月匆匆过去,每天依然在忙碌着与文档相关的东西,在寒假前一个多月里,努力做好手头上的事的前提下多学习专业知识,依然是坚持学习与素质提高并重,依然是坚持锻炼身体,为明年找工作打下基础。

遗传算法优化的BP神经网络建模借鉴别人的程序做出的仿真,最近才有时间整理。

目标:对y=x1^2+x2^2非线性系统进行建模,用1500组数据对网络进行构建网络,500组数据测试网络。

由于BP神经网络初始神经元之间的权值和阈值一般随机选择,因此容易陷入局部最小值。

本方法使用遗传算法优化初始神经元之间的权值和阈值,并对比使用遗传算法前后的效果。

步骤:未经遗传算法优化的BP神经网络建模1、随机生成2000组两维随机数(x1,x2),并计算对应的输出y=x1^2+x2^2,前1500组数据作为训练数据input_train,后500组数据作为测试数据input_test。

并将数据存储在data中待遗传算法中使用相同的数据。

2、数据预处理:归一化处理。

3、构建BP神经网络的隐层数,次数,步长,目标。

4、使用训练数据input_train训练BP神经网络net。

5、用测试数据input_test测试神经网络,并将预测的数据反归一化处理。

6、分析预测数据与期望数据之间的误差。

遗传算法优化的BP神经网络建模1、读取前面步骤中保存的数据data;2、对数据进行归一化处理;3、设置隐层数目;4、初始化进化次数,种群规模,交叉概率,变异概率5、对种群进行实数编码,并将预测数据与期望数据之间的误差作为适应度函数;6、循环进行选择、交叉、变异、计算适应度操作,直到达到进化次数,得到最优的初始权值和阈值;7、将得到最佳初始权值和阈值来构建BP神经网络;8、使用训练数据input_train训练BP神经网络net;9、用测试数据input_test测试神经网络,并将预测的数据反归一化处理;10、分析预测数据与期望数据之间的误差。

算法流程图如下:运行后使用遗传算法改进前后误差的对比图:程序:1、未经遗传算法优化的BP神经网络建模clear;clc;%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%N=2000; %数据总个数M=1500; %训练数据%%%%%%%%%%%%%训练数据%%%%%%%%%%%%%%for i=1:Ninput(i,1)=-5+rand*10;input(i,2)=-5+rand*10;endoutput=input(:,1).^2+input(:,2).^2;save data input outputload data.mat%从1到N随机排序k=rand(1,N);[m,n]=sort(k);%找出训练数据和预测数据input_train=input(n(1:M),:)';output_train=output(n(1:M),:)';input_test=input(n((M+1):N),:)';output_test=output(n((M+1):N),:)';%数据归一化[inputn,inputs]=mapminmax(input_train); [outputn,outputs]=mapminmax(output_train);%构建BP神经网络net=newff(inputn,outputn,5);net.trainParam.epochs=100;net.trainParam.lr=0.1;net.trainParam.goal=0.0000004;%BP神经网络训练net=train(net,inputn,outputn);%测试样本归一化inputn_test=mapminmax('apply',input_test,inputs); %BP神经网络预测an=sim(net,inputn_test);%%网络得到数据反归一化BPoutput=mapminmax('reverse',an,outputs);figure(1)%plot(BPoutput,':og');scatter(1:(N-M),BPoutput,'rx');hold on;%plot(output_test,'-*');scatter(1:(N-M),output_test,'o');legend('预测输出','期望输出','fontsize',12);title('BP网络预测输出','fontsize',12);xlabel('样本','fontsize',12);xlabel('优化前输出的误差','fontsize',12);figure(2)error=BPoutput-output_test;plot(1:(N-M),error);xlabel('样本','fontsize',12);ylabel('优化前输出的误差','fontsize',12);%save net net inputs outputs2、遗传算法优化的BP神经网络建模(1)主程序%清空环境变量clcclear%读取数据load data.mat%节点个数inputnum=2;hiddennum=5;outputnum=1;%训练数据和预测数据input_train=input(1:1500,:)';input_test=input(1501:2000,:)';output_train=output(1:1500)';output_test=output(1501:2000)';%选连样本输入输出数据归一化[inputn,inputps]=mapminmax(input_train);[outputn,outputps]=mapminmax(output_train);%构建网络net=newff(inputn,outputn,hiddennum);%% 遗传算法参数初始化maxgen=10; %进化代数,即迭代次数sizepop=30; %种群规模pcross=[0.3]; %交叉概率选择,0和1之间pmutation=[0.1]; %变异概率选择,0和1之间%节点总数numsum=inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum;lenchrom=ones(1,numsum);bound=[-3*ones(numsum,1) 3*ones(numsum,1)]; %数据范围%------------------------------------------------------种群初始化------------------------------%--------------------------individuals=struct('fitness',zeros(1,sizepop), 'chrom',[]); %将种群信息定义为一个结构体%avgfitness=[]; %每一代种群的平均适应度bestfitness=[]; %每一代种群的最佳适应度bestchrom=[]; %适应度最好的染色体%初始化种群for i=1:sizepop%随机产生一个种群individuals.chrom(i,:)=Code(lenchrom,bound); %编码x=individuals.chrom(i,:);%计算适应度individuals.fitness(i)=fun(x,inputnum,hiddennum,outputnum,net,inputn,ou tputn); %染色体的适应度end%找最好的染色体[bestfitness bestindex]=min(individuals.fitness);bestchrom=individuals.chrom(bestindex,:); %最好的染色体%avgfitness=sum(individuals.fitness)/sizepop; %染色体的平均适应度% 记录每一代进化中最好的适应度和平均适应度%trace=[avgfitness bestfitness];%% 迭代求解最佳初始阀值和权值% 进化开始for i=1:maxgeni% 选择individuals=Select(individuals,sizepop);% avgfitness=sum(individuals.fitness)/sizepop;%交叉individuals.chrom=Cross(pcross,lenchrom,individuals.chrom,sizepop,bound );% 变异individuals.chrom=Mutation(pmutation,lenchrom,individuals.chrom,sizepop ,i,maxgen,bound);% 计算适应度for j=1:sizepopx=individuals.chrom(j,:); %解码individuals.fitness(j)=fun(x,inputnum,hiddennum,outputnum,net,i nputn,outputn);end%找到最小和最大适应度的染色体及它们在种群中的位置[newbestfitness,newbestindex]=min(individuals.fitness);[worestfitness,worestindex]=max(individuals.fitness);% 代替上一次进化中最好的染色体if bestfitness>newbestfitnessbestfitness=newbestfitness;bestchrom=individuals.chrom(newbestindex,:);endindividuals.chrom(worestindex,:)=bestchrom;individuals.fitness(worestindex)=bestfitness;%avgfitness=sum(individuals.fitness)/sizepop;% trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度end%% 遗传算法结果分析%figure(3)%[r c]=size(trace);%plot([1:r]',trace(:,2),'b--');%title(['适应度曲线' '终止代数=' num2str(maxgen)]);%xlabel('进化代数');ylabel('适应度');%legend('平均适应度','最佳适应度');disp('适应度变量');x=bestchrom;%% 把最优初始阀值权值赋予网络预测% %用遗传算法优化的BP网络进行值预测w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outp utnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennu m+hiddennum*outputnum+outputnum);net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%% BP网络训练%网络进化参数net.trainParam.epochs=100;net.trainParam.lr=0.1;%net.trainParam.goal=0.00001;%网络训练[net,per2]=train(net,inputn,outputn);%% BP网络预测%数据归一化inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test);test_simu=mapminmax('reverse',an,outputps);error=test_simu-output_test;%figure(4);hold on;plot(1:500,error,'r');legend('优化前的误差','优化后的误差','fontsize',12)(2)编码子程序code.mfunction ret=Code(lenchrom,bound)%本函数将变量编码成染色体,用于随机初始化一个种群% lenchrom input : 染色体长度% bound input : 变量的取值范围% ret output: 染色体的编码值flag=0;while flag==0pick=rand(1,length(lenchrom));ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值,编码结果以实数向量存入ret中flag=test(lenchrom,bound,ret); %检验染色体的可行性end(3)适应度函数fun.mfunction error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)%该函数用来计算适应度值%x input 个体%inputnum input 输入层节点数%outputnum input 隐含层节点数%net input 网络%inputn input 训练输入数据%outputn input 训练输出数据%error output 个体适应度值%提取w1=x(1:inputnum*hiddennum);B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outp utnum);B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hidd ennum+hiddennum*outputnum+outputnum);net=newff(inputn,outputn,hiddennum);%网络进化参数net.trainParam.epochs=20;net.trainParam.lr=0.1;net.trainParam.goal=0.00001;net.trainParam.show=100;net.trainParam.showWindow=0;%网络权值赋值net.iw{1,1}=reshape(w1,hiddennum,inputnum);net.lw{2,1}=reshape(w2,outputnum,hiddennum);net.b{1}=reshape(B1,hiddennum,1);net.b{2}=B2;%网络训练net=train(net,inputn,outputn);an=sim(net,inputn);error=sum(abs(an-outputn));(4)选择操作Select.mfunction ret=select(individuals,sizepop)% 该函数用于进行选择操作% individuals input 种群信息% sizepop input 种群规模% ret output 选择后的新种群%求适应度值倒数[a bestch]=min(individuals.fitness);%b=individuals.chrom(bestch);%c=individuals.fitness(bestch);fitness1=10./individuals.fitness; %individuals.fitness为个体适应度值%个体选择概率sumfitness=sum(fitness1);sumf=fitness1./sumfitness;%采用轮盘赌法选择新个体index=[];for i=1:sizepop %sizepop为种群数pick=rand;while pick==0pick=rand;endfor i=1:sizepoppick=pick-sumf(i);if pick<0index=[index i];break;endendend%index=[index bestch];%新种群individuals.chrom=individuals.chrom(index,:); %individuals.chrom为种群中个体individuals.fitness=individuals.fitness(index);%individuals.chrom=[individuals.chrom;b];%individuals.fitness=[individuals.fitness;c];ret=individuals;(5)交叉操作cross.mfunction ret=Cross(pcross,lenchrom,chrom,sizepop,bound)%本函数完成交叉操作% pcorss input : 交叉概率% lenchrom input : 染色体的长度% chrom input : 染色体群% sizepop input : 种群规模% ret output : 交叉后的染色体for i=1:sizepop %每一轮for循环中,可能会进行一次交叉操作,染色体是随机选择的,交叉位置也是随机选择的,%但该轮for循环中是否进行交叉操作则由交叉概率决定(continue控制)% 随机选择两个染色体进行交叉pick=rand(1,2);while prod(pick)==0pick=rand(1,2);endindex=ceil(pick.*sizepop);% 交叉概率决定是否进行交叉pick=rand;while pick==0pick=rand;endif pick>pcrosscontinue;endflag=0;while flag==0% 随机选择交叉位pick=rand;while pick==0pick=rand;endpos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同pick=rand; %交叉开始v1=chrom(index(1),pos);v2=chrom(index(2),pos);chrom(index(1),pos)=pick*v2+(1-pick)*v1;chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性if flag1*flag2==0flag=0;else flag=1;end %如果两个染色体不是都可行,则重新交叉endendret=chrom;(6)变异操作Mutation.mfunction ret=Mutation(pmutation,lenchrom,chrom,sizepop,num,maxgen,bound)% 本函数完成变异操作% pcorss input : 变异概率% lenchrom input : 染色体长度% chrom input : 染色体群% sizepop input : 种群规模% opts input : 变异方法的选择% pop input : 当前种群的进化代数和最大的进化代数信息% bound input : 每个个体的上届和下届% maxgen input :最大迭代次数% num input : 当前迭代次数% ret output : 变异后的染色体for i=1:sizepop %每一轮for循环中,可能会进行一次变异操作,染色体是随机选择的,变异位置也是随机选择的,%但该轮for循环中是否进行变异操作则由变异概率决定(continue控制)% 随机选择一个染色体进行变异pick=rand;while pick==0pick=rand;endindex=ceil(pick*sizepop);% 变异概率决定该轮循环是否进行变异pick=rand;if pick>pmutationcontinue;endflag=0;while flag==0% 变异位置pick=rand;while pick==0pick=rand;endpos=ceil(pick*sum(lenchrom)); %随机选择了染色体变异的位置,即选择了第pos个变量进行变异pick=rand; %变异开始fg=(rand*(1-num/maxgen))^2;if pick>0.5chrom(i,pos)=chrom(i,pos)+(bound(pos,2)-chrom(i,pos))*f g;elsechrom(i,pos)=chrom(i,pos)-(chrom(i,pos)-bound(pos,1))*f g;end %变异结束flag=test(lenchrom,bound,chrom(i,:)); %检验染色体的可行性endendret=chrom;。

相关文档
最新文档