牛顿插值法matlab程序例题

合集下载

牛顿插值MATLAB算法

牛顿插值MATLAB算法

MATLAB程序设计期中作业——编程实现牛顿插值成员:刘川(P091712797)签名_____汤意(P091712817)签名_____王功贺(P091712799)签名_____班级:2009信息与计算科学学院:数学与计算机科学学院日期:2012年05月02日牛顿插值的算法描述及程序实现一:问题说明在我们的实际应用中,通常需要解决这样的问题,通过一些已知的点及其对应的值,去估算另外一些点的值,这些数据之间近似服从一定的规律,于是,这就引入了插值法的思想。

插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

利用插值基函数很容易得到拉格朗日插值多项式,公式结构紧凑,在理论分析中甚为方便,但当插值节点增减时全部插值基函数均要随之变化,整个公式也将发生变化,这在实际计算中是很不方便的,为了克服这一缺点,提出了牛顿插值。

二:算法分析newton 插值多项式的表达式如下:010011()()()()()n n n N x c c x x c x x x x x x -=+-+⋅⋅⋅+--⋅⋅⋅-其中每一项的系数c i 的表达式如下:12011010[,,,][,,,][,,,]i i i i i f x x x f x x x c f x x x x x -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅=- 即为f (x)在点01,,,i x x x ⋅⋅⋅处的i 阶差商,([]()i i f x f x =,1,2,,i n =),由差商01[,,,]i f x x x ⋅⋅⋅的性质可知: ()01001[,,,]()i i i j j k j k k j f x x x f x x x ==≠⋅⋅⋅=-∑∏ 牛顿插值的程序实现方法:第一步:计算[][][][]001012012,,,,,,,n f x f x x f x x x f x x x x 、、、、。

MAAB牛顿插值法例题与程序

MAAB牛顿插值法例题与程序

题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。

二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。

根据均差的定义,把x 看成[a,b]上的一点,可得f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x )……f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n )综合以上式子,把后一式代入前一式,可得到:f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+…+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+)(x n R 其中N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2))(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ])(x 1n +ω(3) )(x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。

MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。

下面将详细介绍这些方法的实现原理和MATLAB代码示例。

1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。

该方法的优势在于可以快速计算多项式的系数。

以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。

2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。

一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。

以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。

3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。

牛顿插值matlab程序

牛顿插值matlab程序

牛顿插值matlab程序牛顿插值是一种多项式插值方法,其基本思想是利用分差表来构造一个一次到n 次多项式,从而逼近给定的数据点集合。

牛顿插值法有着计算简单,精度高,兼容性好等优点。

在Matlab中,牛顿插值法的实现非常简单。

接下来将介绍如何使用Matlab编写牛顿插值程序。

首先,我们需要明确牛顿插值法的基本思想,这可以用一个公式表示:f(x)≈Nn(x)=y0+C1(x−x0)+C2(x−x0)(x−x1)+⋯+Cn(x−x0)(x−x1)⋯(x−xn−1)其中y0即为给定数据点中的第一个点的纵坐标,x0到xn-1为已知的节点,Ci 表示节点x0到xi的差商,x为我们要求解的插值点。

据此,我们可以编写如下的Matlab代码实现牛顿插值:matlabfunction [result] = newton_interpolation(x, y, z)% x, y为已知的节点,z为插值点n = length(x);diff = zeros(n, n);diff(:, 1) = y';for j = 2:nfor i = j:ndiff(i, j) = (diff(i, j-1) - diff(i-1, j-1)) / (x(i) - x(i-j+1));endendresult = diff(n, n);for k = n-1:-1:1result = diff(k, k) + (z - x(k)) * result;end我们首先定义一个函数newton_interpolation,其输入为已知节点x和纵坐标y,以及插值点z。

接着,我们使用双重循环来计算分差表,并按照公式计算插值多项式的值。

最后,我们得到了插值点z处的函数值。

需要注意的是,在计算分差表时,我们需要根据已知的节点计算出所有的差商,并记录在diff中。

在计算插值点z处的函数值时,我们需要按照公式从n-1到0依次计算出多项式的各项系数。

matlab(迭代法_牛顿插值)

matlab(迭代法_牛顿插值)

实验报告内容:一:不动点迭代法解方程二:牛顿插值法的MA TLAB实现完成日期:2012年6月21日星期四数学实验报告一日期:2012-6-21hold on>> fplot(g,[-2,2])>> fplot(f,[-2,2])>> hold off>> grid输出结果如下所示:所以,确定初值为x0=1二:不断迭代算法:第一步:将f(x0)赋值给x1第二步:确定x1-x0的绝对值大小,若小于给定的误差值,则将x1当做方程的解,否则回到第一步编写计算机程序:clearf=inline('0.5*sin(x)+0.4');x0=1;x1=f(x0);k=1;while abs(x1-x0)>=1.0e-6x0=x1;x1=f(x0);k=k+1;fprintf('k=%.0f,x0=%.9f,x1=%.9f\n',k,x0,x1)end显示结果如下:k=2,x0=0.820735492,x1=0.765823700k=3,x0=0.765823700,x1=0.746565483k=4,x0=0.746565483,x1=0.739560873k=5,x0=0.739560873,x1=0.736981783k=6,x0=0.736981783,x1=0.736027993k=7,x0=0.736027993,x1=0.735674699k=8,x0=0.735674699,x1=0.735543758k=9,x0=0.735543758,x1=0.735495216k=10,x0=0.735495216,x1=0.735477220k=11,x0=0.735477220,x1=0.735470548k=12,x0=0.735470548,x1=0.735468074k=13,x0=0.735468074,x1=0.735467157>>。

数值计算方法实验之Newton多项式插值(MATLAB代码)

数值计算方法实验之Newton多项式插值(MATLAB代码)

数值计算⽅法实验之Newton多项式插值(MATLAB代码)⼀、实验⽬的在⼰知f(x),x∈[a,b]的表达式,但函数值不便计算或不知f(x),x∈[a,b]⽽⼜需要给出其在[a,b]上的值时,按插值原则f(x i)=y i (i=0,1,……, n)求出简单函数P(x)(常是多项式),使其在插值基点x i处成⽴(x i)= y i(i=0,1,……,n),⽽在[a,b]上的其它点处成⽴f(x)≈P(x).⼆、实验原理三、实验内容求f(x)=x4在[0,2]上按5个等距节点确定的Lagrange插值多项式四、实验程序(1).m⽂件%输⼊的量:X是n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标,Y是纵坐标,%x是以向量形式输⼊的m个插值点,M在[a,b]上满⾜|f~(n+1)(x)|≤M%注:f~(n+1)(x)表⽰f(x)的n+1阶导数%输出的量:向量y是向量x处的插值,误差限R,n次⽜顿插值多项式L及其系数向量C,%差商的矩阵Afunction[y,R,A,C,L] = newton(X,Y,x,M)n = length(X);m = length(x);for t = 1 : mz = x(t);A = zeros(n,n);A(:,1) = Y';s = 0.0; p = 1.0; q1 = 1.0; c1 = 1.0;for j = 2 : nfor i = j : nA(i,j) = (A(i,j-1) - A(i-1,j-1))/(X(i)-X(i-j+1));endq1 = abs(q1*(z-X(j-1)));c1 = c1 * j;endC = A(n, n); q1 = abs(q1*(z-X(n)));for k = (n-1):-1:1C = conv(C, poly(X(k)));d = length(C);C(d) = C(d) + A(k,k);%在最后⼀维,也就是常数项加上新的差商endy(t) = polyval(C,z);R(t) = M * q1 / c1;endL = poly2sym(C); (2)命令窗⼝输⼊X = [0 0.5 1.0 1.5 2.0];Y = [0 0.0625 1 5.0625 16];x = linspace(0,pi,50);M = 1;[y,R,A,C,L] = newton(X, Y, x, M);y1 = x.*x.*x.*x; %可根据所给函数更改errorbar(x,y,R,'.g')hold onplot(X, Y, 'or', x, y, '.k', x, y1, '-b');legend('误差','样本点','⽜顿插值估算','x^4');五、运算结果(1) 图像(2) 运算结果第⼀列为所得多项式系数:。

牛顿插值法matlab程序解析

牛顿插值法matlab程序解析

牛顿插值法在MATLAB 中的实现经过n+1个不同的插值点12n+1,,x x x …,,构造牛顿插值公式1211231212n+112n =[,]()[,,]()()[,,]()()()N f x x x x f x x x x x x x f x x x x x x x x x -+--++---(x )……… 注:牛顿插值法中,用到了插值公式%我们以二次牛顿插值公式为例解析牛顿插值法的matlab 程序function[c,d ]=newpoly (x ,y )%这里x 为3个节点的横坐标组成的向量,即()123,,x x x x =,y 为纵坐标的组成向量,即()()()()123,,y f x f x f x =%c 为所得的牛顿插值多项式的系数组成的向量n=length(x);%测量向量x 的长度,即向量x 中元素i x 的个数,赋值给n,所以n=3,注:这里的“n ”仅为变量,和公式中的次数n 不一样d=zeros (n ,n ); d=zeros(3,3)%把变量d 定义为一个n 行,n 列的零矩阵,此矩阵用来储存各阶差商,格式完全等同于书中21页的表2。

1 d (:,1)=y';%此句是把向量y 的转置,即123()()()f x y f x f x ⎛⎫ ⎪= ⎪ ⎪⎝⎭,赋值给零矩阵d 的第一列%下面运用两个for 循环来构造书中21页的差商表2。

1%第一个循环(父循环),循环变量为kfor k=2:n%用来表示零矩阵d 中的第几行%第二个循环(父循环),循环变量为kfor j=k :n%用来表示零矩阵d 中的第几列d (k ,j)=(d (k ,j-1)—d(k-1,j —1))/(x (k)-x (k —j+1));%差商公式,其中d (k,j)表示零矩阵d 中的第k 行,第j 列的元素,d (k,j —1),d (k-1,j —1)等也类似,它们代表的元素随着双循环而变化,x(k —1)表示1k x -,这种计算差商的方法是根据差商表的排列位置而得来,具体解释见下面。

Langrage和Newton插值法的matlab实现

Langrage和Newton插值法的matlab实现

仅供参考1.已知数据如下:(1)用MATLAB语言编写按Langrage插值法和Newton插值法计算插值的程序,对以上数据进行插值;(2)利用MATLAB在第一个图中画出离散数据及插值函数曲线。

(1.1)langrage插值法编程实现syms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for i=1:5a=1;for j=1:5if j~=ia=expand(a*(x-x0(j)));endendb=1;for k=1:5if k~=ib=b*(x0(i)-x0(k));endendA(i)=expand(a/b);endL=0;for p=1:5L=L+y0(p)*A(p);endLL =-25/48*x^4+5/6*x^3-53/48*x^2+23/120*x+49/50(1.2)Newton插值程序实现clear allclcsyms xx0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];for k=1:5for i=1:ka=1;b=0;for j=1:kif j~=ia=a*(x0(i)-x0(j));endendb=b+y0(i)/a;endA(k)=b;endB=[1,(x-x0(1)),(x-x0(1))*(x-x0(2)),(x-x0(1))*(x-x0(2))*(x-x0(3)),(x-x 0(1))*(x-x0(2))*(x-x0(3))*(x-x0(4))];L1=A.*B;l=0;for m=1:5l=l+L1(m);endL=expand(l)L =61/100+13/30*x+383/48*x^2-155/24*x^3+475/48*x^4(2)画图x0=[0.2,0.4,0.6,0.8,1.0];y0=[0.98,0.92,0.81,0.64,0.38];subplot(1,2,1);plot(x0(1),y0(1),'+r',x0(2),y0(2),'+r',x0(3),y0(3),'+r',x0(4),y0(4),' +r',x0(5),y0(5),'+r')x=0:0.05:1;y=-25/48.*x.^4+5/6.*x.^3-53/48.*x.^2+23/120.*x+49/50;subplot(1,2,2);plot(x,y)2.给定函数21(),[1,1]125f x x x ,利用上题编好的Langrage 插值程序(或Newton 插值程序),分别取3个,5个、9个、11个等距节点作多项式插值,分别画出插值函数及原函数()f x 的图形,以验证Runge 现象、分析插值多项式的收敛性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿插值法是一种常用的数值分析方法,用于构造一个多项式函数,
以便在给定的数据点上进行插值。

这个主题在数学和工程领域中有着
广泛的应用,特别是在数据拟合和函数逼近方面。

牛顿插值法的核心
思想是通过不断地添加新的数据点来构造一个多项式,并利用已知数
据点来确定多项式的系数,从而实现对未知数据点的插值预测。

在Matlab中,实现牛顿插值法并不困难,我们可以利用已有的函数
和工具来简化计算过程。

下面,我们将通过一个具体的例题来讲解如
何使用Matlab编写牛顿插值法的程序,并分析其结果。

我们需要明确牛顿插值法的数学原理。

给定n个互不相同的节点\(x_0, x_1, ... , x_n\),以及在这些节点上的函数值\(f(x_0), f(x_1), ... , f(x_n)\),我们希望构造一个n次插值多项式p(x),满足p(x_i) = f(x_i),
i=0,1,...,n。

牛顿插值多项式的一般形式为:
\[p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + ... + a_n(x -
x_0)(x - x_1)...(x - x_{n-1})\]
其中,\[a_i\]表示插值多项式的系数。

通过牛顿插值法的迭代过程,可以逐步求解出这些系数,进而得到插值多项式的表达式。

接下来,我们将以一个具体的例题来演示如何在Matlab中实现牛顿
插值法。

假设我们有如下的数据点和函数值:
\(x = [1, 2, 3, 4]\)
\(f(x) = [1, 4, 9, 16]\)
我们希望利用这些数据点来构造一个插值多项式,并在给定的区间上
进行插值计算。

在Matlab中,可以通过interp1函数来进行插值计算,该函数支持多种插值方法,包括牛顿插值法。

下面是一个简单的Matlab程序示例:
```matlab
x = [1, 2, 3, 4];
y = [1, 4, 9, 16];
xi = 2.5;
yi = interp1(x, y, xi, 'spline');
disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);
```
在这段代码中,我们首先定义了给定的数据点x和对应的函数值y,然后利用interp1函数对x=2.5处的插值结果进行计算。

在这里,我们
使用了'spline'选项来指定使用牛顿插值法进行计算。

运行程序后,我
们可以得到在x=2.5处的插值结果,从而实现了对未知数据点的插值
预测。

通过以上的例题和程序演示,我们可以看到在Matlab中实现牛顿插值法并不复杂,而且可以通过简单的几行代码就能实现插值计算。

牛顿插值法作为一种常用的数值分析方法,能够有效地拟合数据和逼近函数,在实际应用中有着广泛的价值和意义。

总结回顾:
通过本文,我们对牛顿插值法进行了深入的探讨和Matlab程序示例演示。

我们首先介绍了牛顿插值法的数学原理和核心思想,然后通过具体的例题和Matlab程序演示了如何在Matlab中实现牛顿插值法。

通过这些内容的学习,我们能够更深入地理解牛顿插值法的原理和应用,并能够灵活地运用Matlab工具进行插值计算。

个人观点和理解:
牛顿插值法作为一种经典的数值分析方法,在实际工程和科学计算中有着广泛的应用。

通过构造插值多项式,我们能够在给定的数据点上进行插值预测,从而实现对未知数据点的逼近和预测。

在Matlab中实现牛顿插值法非常方便,并且通过简单的函数调用就能实现复杂的插值计算。

掌握牛顿插值法以及在Matlab中的实现方法,对于进行数据拟合和函数逼近具有重要的意义和实际应用的价值。

牛顿插值法是一种非常重要的数值分析方法,可以用来构造插值多项式以逼近实际数据,对于工程领域和科学研究有着广泛的应用。

在Matlab中实现牛顿插值法非常方便,并且可以通过简单的几行代码来实现复杂的
插值计算。

下面我们将对Matlab中实现牛顿插值法进行进一步的探讨,深入理解其原理和应用。

在前面的例题中,我们已经演示了如何通过interp1函数使用牛顿插值法来进行插值计算。

现在,我们将进一步深入研究插值原理和Matlab程序编写方法,以便更好地掌握牛顿插值法的实现和应用。

我们需要了解牛顿插值法的核心思想和计算步骤。

牛顿插值法的关键在于构造一个插值多项式,然后利用已知的数据点来确定多项式的系数。

通过不断地添加新的数据点,我们可以逐步求解出插值多项式的系数,进而实现对未知数据点的插值预测。

在Matlab中,可以通过polyfit函数来拟合插值多项式。

该函数可以根据给定的数据点和函数值,利用最小二乘法来确定多项式的系数。

可以使用polyval函数来计算插值多项式在指定位置的取值。

下面是一个简单的Matlab程序示例:
```matlab
x = [1, 2, 3, 4];
y = [1, 4, 9, 16];
p = polyfit(x, y, length(x) - 1);
xi = 2.5;
yi = polyval(p, xi);
disp(['在x=',num2str(xi),'处的插值结果为:',num2str(yi)]);
```
在这段代码中,我们首先使用polyfit函数来拟合n-1次插值多项式的系数,然后利用polyval函数来计算插值多项式在x=2.5处的取值。

运行程序后,我们可以得到在x=2.5处的插值结果,进而实现了对未
知数据点的插值预测。

除了使用interp1和polyfit/polyval函数,我们还可以通过Newton 插值法的公式来编写具体的计算程序。

牛顿插值法的迭代计算公式为:
\[f[x_0,...,x_k] = \frac{f[x_1,...,x_k] - f[x_0,...,x_{k-1}]}{x_k - x_0}\]
\[N_k(x) = f[x_0] + f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-
x_1)+...+f[x_0,x_1,...,x_k](x-x_0)(x-x_1)...(x-x_{k-1})\]
通过上述的公式,我们可以编写一个简单的Matlab程序来实现牛顿
插值法的计算。

这样可以更好地理解牛顿插值法的数学原理和计算过程,加深对其的理解和掌握。

牛顿插值法作为一种重要的数值分析方法,在Matlab中的实现并不
复杂。

通过使用interp1、polyfit/polyval函数或编写计算程序,我们可以方便地进行插值计算,实现对未知数据点的逼近和预测。

熟练掌
握牛顿插值法的实现方法,对于工程领域和科学研究具有重要的价值
和意义。

牛顿插值法以及在Matlab中的实现方法,对于进行数据拟合和函数
逼近具有重要的意义和实际应用的价值。

通过学习和掌握牛顿插值法,我们可以更好地处理实际问题,为工程和科学研究提供更加准确和可
靠的数值计算方法。

相关文档
最新文档