插值法习题及解答
计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2
xn
y2
第三章多项式插值方法习题

4、经过点(0,1),(1,2),(2,5)的插值多项式 P(x) ( D )
(A) x
(B) x 1
(C) 2x 1 (D) x2 1
x 0 2 51
5、已知函数 y f (x) 的数据表
,
y 3 6 9 0
则 y f (x) 的拉格朗日插值基函数 l2 (x) ( A )
(A) x(x 2)( x 1) (B) (x 2)( x 5)( x 1)
第三章 习 题
1、 n 次拉格朗日插值多项式的余项是( A )
(A) Rn (x)
f (n (n
1) ( )
1)!
n1
(
x)
(B) Rn (x)
f
(n)
n
(
!
)
n
(
x)
f (n1) ( )
(C) Rn (x) (n 1)!
(D)
Rn (x)
f (n) ( )
n!
x 0 0.5 1 1.5 2 1 1 x x 1 x 2 1 x3 3 x2 1。
2
2
22
又: R3 x f x px 满足: R0 1, R1 2, R2 3, R0 0 ,
使
xi
x
xi1 ,
令 h xi1 xi ,则: R(x)
f
'' (
2
)
(x
xi
)(x
xi1 )
,
解:对
x
[0,
2
]
,必有某个
x
i
使
xi
x
xi1 ,
令 h xi1 xi ,则: R(x)
f
'' (
插值法例题计算过程

插值法例题计算过程(实用版)目录一、插值法简介二、插值法例题计算过程1.公式变形2.计算过程3.结论正文一、插值法简介插值法是一种求解未知数值的方法,通常用于预测和推断。
在财务管理中,插值法常用于计算实际利率、股票价格和债券价格等。
插值法的核心思想是根据已知的数据点,通过数学模型估算出未知数据点的值。
二、插值法例题计算过程假设有一个财务问题,需要计算一个项目的净现值(NPV)。
已知该项目在不同折现率下的净现值如下:- 当折现率为 12% 时,净现值为 116530- 当折现率为 i 时,净现值为 120000- 当折现率为 10% 时,净现值为 121765为了计算项目的实际利率,我们可以使用插值法。
首先,我们需要将公式进行变形,以便于理解和计算。
变形后的公式如下:(i-12%) / (10%-12%) = (120000-116530) / (121765-116530)接下来,我们可以按照以下步骤进行计算:1.将已知的数值代入公式中,得到:(i-12%) / (10%-12%) = 3470 / 52352.对公式进行化简,得到:(i-12%) / (10%-12%) = 0.66023.解方程,得到:i = 12% + 0.6602 * (10%-12%)i = 12% + 0.6602 * (-2%)i = 12% - 1.3204%i = 10.68%因此,该项目的实际利率为 10.68%。
通过以上计算过程,我们可以看到插值法在计算实际利率方面的应用。
在实际应用中,插值法还可以用于计算其他财务指标,如股票价格、债券价格等。
插值法求复利现值系数例题

插值法求复利现值系数例题
1.在其他条件相同的条件下,下列说法正确的是()。
A、利率与一次性收付款终值呈同方向变化
B、利率与普通年金终值呈反方向变化
C、期限与一次性收付的现值呈反向变化
D、期限与普通年金现值呈反向变化答案:AC
解析:利率与一次性收付款复利终值呈同方向变化,期限与一次性收付款的复利现值呈反向变化2.有一项银行存款M元,年利率是10%,每季复利一次,期限是2年,那么期终值为()。
A、M*(F/P,10%,2)
B、M*(F/P,2.5%,8)
C、M*(F/P,10.38%,2)
D、M*(F/P,5%,4)
答案:BC
解析:如果用名义利率表示,则每季利率为2.5%,期限为8,所以B正确;如果用实际利率表示,则实际利率为(1+10%/4)4-
1=10.38%,期限为2,所以C正确。
二次插值计算例题

二次插值计算例题二次插值是数学中常用的一种近似计算方法,通过已知的离散数据点构造二次函数,进而求解给定数据处的函数值,从而实现插值计算。
二次插值方法在实际应用中经常被广泛地使用,例如在图像和声音信号处理、数学模型和物理现象等方面。
在二次插值计算中,需要假设有三个已知数据点,分别为$(x_0,y_0)$,$(x_1,y_1)$和$(x_2,y_2)$,其中$x_0<x_1<x_2$。
在这三个点之间构造二次函数$y=ax^2+bx+c$,并且要满足函数在这三个点处的取值与已知数据相同,即满足以下三个方程组:$$y_0=ax_0^2+bx_0+c \\y_1=ax_1^2+bx_1+c \\y_2=ax_2^2+bx_2+c$$通过解这个方程组得到二次函数的系数$a$、$b$和$c$,进而求得在给定数据点处的函数值。
求解这个方程组的方法,可以使用高斯消元法、矩阵求逆法或拉格朗日插值法等多种计算方法。
其中拉格朗日插值法是一种比较常用的方法。
通过拉格朗日插值法可以构造出一个满足给定数据点的二次函数,其具体方法如下:$$L_0(x)=\frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)} \\L_1(x)=\frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)} \\L_2(x)=\frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$$构造出三个拉格朗日插值基函数$L_0(x)$、$L_1(x)$和$L_2(x)$,满足$L_i(x_j)=\delta_{ij}$。
其中,$\delta_{ij}$为克罗内克 delta 函数,当$i=j$时取值为1,否则取值为0。
通过将这三个插值基函数与已知数据点进行组合,可以得到一个满足插值条件的二次函数:$$y(x)=L_0(x)y_0+L_1(x)y_1+L_2(x)y_2$$利用这个二次函数,可以计算任意给定位置$x$处的函数值$y(x)$。
数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:6421111111111222211200-=-==x x x x x x A 37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
第4、5讲 插值与拟合 作业参考答案

第四、五讲作业题参考答案一、填空题1、拉格朗日插值基函数在节点上的取值是( 0或1 )。
2、当1,1,2x =-,时()034f x =-,,,则()f x 的二次插值多项式为 (2527633x x +- )。
3、由下列数据所确定的唯一插值多项式的次数为( 2次 )。
4、根据插值的定义,函数()x f x e -=在[0,1]上的近似一次多项式1()P x =( 1(1)1e x --+ ),误差估计为( 18 )。
5、在做曲线拟合时,对于拟合函数x y ax b =+,引入变量变换y =( 1y),x =(1x)来线性化数据点后,做线性拟合y a bx =+。
6、在做曲线拟合时,对于拟合函数Ax y Ce =,引入变量变换( ln()Y y = )、X x =和B C e =来线性化数据点后,做线性拟合Y AX B =+。
7、设3()1f x x x =+-,则差商[0,1,2,3]f =( 1 )。
8、在做曲线拟合时,对于拟合函数()A f x Cx =,可使用变量变换(ln Y y =)(ln X x = )和B C e =来线性化数据点后,做线性拟合Y AX B =+。
9、设(1)1,(0)0,(1)1,(2)5,()f f f f f x -====则的三次牛顿插值多项式为( 321166x x x +-),其误差估计式为(4()(1)(1)(2),(1,2)24f x x x x ξξ+--∈-) 10、三次样条插值函数()S x 满足:()S x 在区间[,]a b 内二阶连续可导,(),,0,1,2,,,k k k k S x y x y k n ==(已知)且满足()S x 在每一个子区间1[,]k k x x +上是( 三次多项式 )。
11、1()[a,b]()f x L x =函数在上的一次(线性)插值函数(公式)( ()()x b x af a f b a b b a--+-- ),1()R x =( 1()()(),2f x a x b a b ξξ''--≤≤ )。
数值分析作业答案

第2章 插值法1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。
(1)用单项式基底。
(2)用Lagrange 插值基底。
(3)用Newton 基底。
证明三种方法得到的多项式是相同的。
解:(1)用单项式基底设多项式为:2210)(x a x a a x P ++=,所以:642111111111122221120-=-==x x x x x x A37614421111111424113110111)()()(222211200222221112000-=-=---==x x x x x x x x x f x x x f x x x f a 2369421111111441131101111)(1)(1)(12222112002222112001=--=--==x x x x x x x x f x x f x x f a 6565421111111421311011111)(1)(1)(12222112002211002=--=---==x x x x x x x f x x f x x f x a 所以f(x)的二次插值多项式为:2652337)(x x x P ++-= (2)用Lagrange 插值基底)21)(11()2)(1())(())(()(2010210-+-+=----=x x x x x x x x x x x l)21)(11()2)(1())(())(()(2101201------=----=x x x x x x x x x x x l)12)(12()1)(1())(())(()(1202102+-+-=----=x x x x x x x x x x x lLagrange 插值多项式为:372365)1)(1(314)2)(1(61)3(0)()()()()()()(22211002-+=+-⨯+--⨯-+=++=x x x x x x x l x f x l x f x l x f x L所以f(x)的二次插值多项式为:22652337)(x x x L ++-= (3) 用Newton 基底: 均差表如下:Newton 372365)1)(1(65)1(230))(](,,[)](,[)()(21021001002-+=+-+-+=--+-+=x x x x x x x x x x x x f x x x x f x f x N所以f(x)的二次插值多项式为:22652337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题:
1. 满足()a a f x x =,()b b f x x =,()c c f x x =的拉格朗日插值余项为 。
答:()()
()()()3!
a b c f R x x x x x x x ξ'''=---
2.已知函数()f x 的函数值()()()()()0,2,3,5,6f f f f f ,以及均差如下 ()()()()()00,0,24,0,2,35,0,2,3,51,0,2,3,5,60f f f f f ===== 那么由这些数据构造的牛顿插值多项式的最高次幂的系数是 答: 1
二、选择题
1. 通过点()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A .()00l x =0,()110l x = B . ()00l x =0,()111l x = C .()00l x =1,()110l x = D . ()00l x =1,()111l x = 答:D
2.. 已知等距节点的插值型求积公式
()()35
2
k
k
k f x dx A f x =≈∑⎰,那么3
k
k A
==∑( )
A .1 B. 2 C. 3 D. 4 答:C
3.过点(x 0,y 0), (x 1,y 1),…,(x 5,y 5)的插值多项式P(x)是( )次的多项式。
(A). 6 (B).5 (C).4 (D).3. 答:B 三、证明题
1. 设 f (x) = (x-1) (x-2) .证明对任意的x 有: f [1, 2, x)]= 1
证明:f [1, 2] = [f (1) – f (2)]/ (1 – 2) = [0 – 0]/ (-1) = 0, 对任意的x 有
F[2, x] = [f (2) – f (x)]/ (2 – x) = [0 – (x-1) (x-2)]/ (2 – x) = (x-1), 所以 f [1, 2, x] = [f (1, 2) - f (2, x)]/ (1 – x) = [0 - (x-1)]/ (1 – x) = 1 2.设
在
上具有二阶连续导数,且
,求证:
解:由,则在的线性插值多项式为:
,于是由
,可得:
3. 试利用差分性质证明:
证明:记:
可以证明:,
又:
故:
. 四、计算题: 1..已知数值表
x
()f x
试用二次插值计算()0.57681f 的近似值,计算过程保留五位小数。
(要写出二次插值多项式)
答: 过()0.5,0.447943,()0.6,0.56464,()0.7,0.64422作二次插值多项式
()()()()()()()()()
20.60.70.50.70.479430.564640.50.60.50.70.60.50.60.7x x x x P x ----=⨯+⨯----
()()()()
0.50.60.644220.70.50.70.6x x --+⨯-- (5分)
所以
()()()()()()
20.576810.60.576810.70.576810.576810.479430.50.60.50.7f P --≈=⨯--
()()()()0.576810.50.576810.70.564640.60.50.60.7--+
⨯--
()()()()
0.576810.50.576810.60.644220.70.50.70.6--+⨯--
(9
分)
0.002860.009460.00178
0.479430.564640.644220.20.10.10.10.20.1
=⨯-⨯-⨯⨯⨯⨯
0.068560.534280.057380.54546=+-= (15分)
2.用已知函数表
求抛物插值多项式,并求1()2
f 的近似值。
解答:作差商表:
()()()()2
210011N x x x x x =+-+--=+
2115
1.25224
f N ⎛⎫⎛⎫≈== ⎪ ⎪⎝⎭⎝⎭
3. 已知函数2
1
1y x
=
+的一组数据:
求分段线性插值函数,并计算()1.5f 的近似值.
解答 解 []0,1x ∈, ()1010.510.50110x x L x x --=
⨯+
⨯=---% []1,2x ∈,()210.50.20.30.81221
x x L x x --=
⨯+⨯=-+--% 所以分段线性插值函数为
()[][]
10.50,10.80.31,2x x L x x x ⎧-∈⎪=⎨-∈⎪⎩% 10分 ()1.50.80.3 1.50.35L =-⨯=% 12
分
4. 试给出样条函数:
的分段表达式. 解:由
的定义可得:
5. 求一次数小于等于三次多项式
,满足如下插值条件:
,
,
,
解:
,其中
为二次多项式,满足插值条件:
,
,
可求得:. 由
得:.(
)
故:.
6.设:
求
之值,
.这里互异
解:利用差商的性质:
,
.
可得:
,得:。