插值例题
MAAB牛顿插值法例题与程序

题目一:多项式插值某气象观测站在8:00(AM )开始每隔10分钟对天气作如下观测,用三次多项式插值函数(Newton )逼近如下曲线,插值节点数据如上表,并求出9点30分该地区的温度(x=10)。
二、数学原理假设有n+1个不同的节点及函数在节点上的值(x 0,y 0),……(x n ,y n ),插值多项式有如下形式:)())(()()()(n 10n 102010n x -x )(x -x x -x x P x x x x x x -⋯⋯-+⋯⋯+-++=αααα(1) 其中系数i α(i=0,1,2……n )为特定系数,可由插值样条i i n y x P =)((i=0,1,2……n )确定。
根据均差的定义,把x 看成[a,b]上的一点,可得f(x)=f (0x )+f[10x x ,](0x -x ) f[x,0x ]=f[10x x ,]+f[x,10x x ,](1x -x )……f[x,0x ,…x 1-n ]=f[x,0x ,…x n ]+f[x,0x ,…x n ](x-x n )综合以上式子,把后一式代入前一式,可得到:f(x)=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+…+f[x,0x ,…x n ](0x -x )…(x-x 1-n )+f[x,0x ,…x n ,x ])(x 1n +ω=N n (x )+)(x n R 其中N n (x )=f[0x ]+f[10x x ,](0x -x )+f[210x x x ,,](0x -x )(1x -x )+ …+f[x,0x ,…x n ](0x -x )…(x-x 1-n )(2))(x n R =f(x)-N n (x )=f[x,0x ,…x n ,x ])(x 1n +ω(3) )(x 1n +ω=(0x -x )…(x-x n ) Newton 插值的系数i α(i=0,1,2……n )可以用差商表示。
埃尔米特插值

0,则可以设:
0(x) (x 1)(ax b)
将:
0 (0) 1
0
(0)
0
带入0(x) (x 1)(ax b),则:
a 1 b 1
则:0 (x) 1 x2
同理: 1( x)为二次项式
又:
1(0) 0
1
(0)
0
则:x 0为1(x)的二重根
则:1(x) cx2 又:1(1) 1
xi
01
f(xi) 0
1
f (xi )
0
1
解: 本题利用承袭性的思想 首先利用:
xi
0
1
f(xi) 0
1
求出: L1(x)
L1 ( x)
x x1 x0 x1
y0
x x0 x1 x0
y1
x
增加:
xi 0
yi 0
求:H2 ( x), 其中H2 ( x)满足:
xi
01
f(xi) 0
1
f (xi )
则:c 1
则:1(x) x2 同理:0 (x) x(1 x)
插值余项为:
R(x)
f (x) H2(x)
f
(
3!
)
(
x
x0
)2
(
x
x1 )
仿Lagrange 或 Newton 证明
情形2. 已知: 4个条件
xi
x0 x1
yi = f(xi) y0 y1
yi f (xi ) y0 y1
一、 Hermite插值多项式的定义
插值条件中除函数值外, 还有导数值(回顾 Taylor展开式, 是某点的导数值), 如
已知: 2n+2个条件
第三章多项式插值方法习题

4、经过点(0,1),(1,2),(2,5)的插值多项式 P(x) ( D )
(A) x
(B) x 1
(C) 2x 1 (D) x2 1
x 0 2 51
5、已知函数 y f (x) 的数据表
,
y 3 6 9 0
则 y f (x) 的拉格朗日插值基函数 l2 (x) ( A )
(A) x(x 2)( x 1) (B) (x 2)( x 5)( x 1)
第三章 习 题
1、 n 次拉格朗日插值多项式的余项是( A )
(A) Rn (x)
f (n (n
1) ( )
1)!
n1
(
x)
(B) Rn (x)
f
(n)
n
(
!
)
n
(
x)
f (n1) ( )
(C) Rn (x) (n 1)!
(D)
Rn (x)
f (n) ( )
n!
x 0 0.5 1 1.5 2 1 1 x x 1 x 2 1 x3 3 x2 1。
2
2
22
又: R3 x f x px 满足: R0 1, R1 2, R2 3, R0 0 ,
使
xi
x
xi1 ,
令 h xi1 xi ,则: R(x)
f
'' (
2
)
(x
xi
)(x
xi1 )
,
解:对
x
[0,
2
]
,必有某个
x
i
使
xi
x
xi1 ,
令 h xi1 xi ,则: R(x)
f
'' (
第二章插值法习题及解答

=
5 4
= 1.25
1
3. 已知函数 y =
的一组数据:
1+ x2
xi 0 1 2
yi 1 0.5 0.2
求分段线性插值函数,并计算 f (1.5) 的
近似值.
解答 解 x ∈[0,1] , L% ( x) = x −1×1+ x − 0 × 0.5 = 1− 0.5x
0−1 1−0
x ∈[1, 2] , L% ( x) = x − 2 × 0.5 + x −1× 0.2 = −0.3x + 0.8
2
3
Ak f ( xk ) ,那么
3
Ak = (
)
k =0
k =0
A.1
B. 2
C. 3
D. 4
答:C
3.过点(x0,y0), (x1,y1),…,(x5,y5)的插值多项式 P(x)是( )次的多项式。
(A). 6 (B).5
(C).4
(D).3.
答:B
三、证明题
1. 设 f (x) = (x-1) (x-2) .证明对任意的 x 有: f [1, 2, x)]= 1
= [0 - (x-1)]/ (1 – x)
=1
2.设
在
上具有二阶连续导数,且
,求证:
解:由
,则 在 ,于是由
的线性插值多项式为:
,可得:
3. 试利用差分性质证明: 证明:记:
可以证明:
,
又:
故:
.
四、计算题:
1..已知数值表
x
0.5
0.6
0.7
f (x)
0.47943 0.56464 0.64422
插值法例题计算过程

插值法例题计算过程(实用版)目录一、插值法简介二、插值法例题计算过程1.公式变形2.计算过程3.结论正文一、插值法简介插值法是一种求解未知数值的方法,通常用于预测和推断。
在财务管理中,插值法常用于计算实际利率、股票价格和债券价格等。
插值法的核心思想是根据已知的数据点,通过数学模型估算出未知数据点的值。
二、插值法例题计算过程假设有一个财务问题,需要计算一个项目的净现值(NPV)。
已知该项目在不同折现率下的净现值如下:- 当折现率为 12% 时,净现值为 116530- 当折现率为 i 时,净现值为 120000- 当折现率为 10% 时,净现值为 121765为了计算项目的实际利率,我们可以使用插值法。
首先,我们需要将公式进行变形,以便于理解和计算。
变形后的公式如下:(i-12%) / (10%-12%) = (120000-116530) / (121765-116530)接下来,我们可以按照以下步骤进行计算:1.将已知的数值代入公式中,得到:(i-12%) / (10%-12%) = 3470 / 52352.对公式进行化简,得到:(i-12%) / (10%-12%) = 0.66023.解方程,得到:i = 12% + 0.6602 * (10%-12%)i = 12% + 0.6602 * (-2%)i = 12% - 1.3204%i = 10.68%因此,该项目的实际利率为 10.68%。
通过以上计算过程,我们可以看到插值法在计算实际利率方面的应用。
在实际应用中,插值法还可以用于计算其他财务指标,如股票价格、债券价格等。
第2章 插值法例题

∵
f ( x )
3 8
5 2
x
x
R 2 (115 )
0 . 0017
例5.13 2, 5 ,
已知 x=0, 2, 3, 5 对应的函数值为 y=1, 3, 4.4 .1 差商及其性
质
作三次Newton插值多项式。
xi
三阶差商
f ( x i)
1
3
一阶差商
二阶差商
0
2
1
3
-2/3 5 5/6
x
x
45 8
x
2
91 4
2
2
3 x
3
8x
2
9x 5
例5.3
已知x=1, 4, 9 的平方根值, 用抛
7
物插值公式,
(求 x1)(x–x2) x– (x–x0)(x–x2) p2(x) = (x –x )(x –x ) y0 + y1 0 1 0 2 (x1–x0)(x1–x2) (x–x0)(x–x1) + y2 (x2–x0)(x2–x1)
2
求满足条件的
解: x 0 1, x 1 2 , h 2 1 1
2
A 1 ( 1 2 ( x 1 ))( x 2 ) ( 2 x 1 )( x 2 ) A 2 ( 1 2 ( x 2 ))( x 1 ) ( 2 x 3 )( x 1 )
3 x1 33 49 x 2 9
求得法方程组的解为
x 1 2 . 979 x 2 1 . 2259
这也就是超定方程组的最小二乘解。
例题
财务管理插值法例题

财务管理插值法例题插值法在财务管理中有着广泛的应用,它可以帮助我们估计在某个特定区间内的未知数值。
插值法基于一个简单的理念:如果已知一个函数在几个点上的值,那么我们可以通过这些点之间的插值来估算该函数在其他点的值。
一、常见的插值方法1.线性插值:它是插值方法中最简单的一种,假设两个已知点之间的函数为直线,根据这个直线方程来估算未知点的值。
2.多项式插值:它假设函数在已知点之间存在一个多项式,通过这个多项式来估算未知点的值。
二、插值法在财务管理中的应用插值法在财务管理中有着广泛的应用,例如:1.估算违约风险:在债券或贷款的违约风险分析中,我们可以通过插值法来估算违约发生概率。
2.预测利率:在债券定价或货币时间价值计算中,我们可以通过插值法来预测未来的利率。
3.估算收益率:在投资项目的评估中,我们可以通过插值法来估算未来的收益率。
三、30道财务管理插值法例题与答案例题1:某公司发行了一笔面值为1000元的债券,票面利率为5%,债券期限为10年。
假设市场利率为4%,请问该债券的发行价格应该是多少?答案:首先,我们可以使用插值法来计算债券的发行价格。
假设债券的发行价格为P,根据债券定价公式:PV=C/(1+r)^t,其中C为每年的利息支付,r为市场利率,t为债券期限。
已知C=50(因为票面利率为5%),r=4%(即0.04),t=10年,代入公式可得:PV=50/(1+0.04)^10≈737.94元。
因此,该债券的发行价格应该是737.94元。
例题2:某公司预计未来三年的现金流分别为100万元、150万元和200万元,假设年利率为10%,请问未来三年的现金流现值分别是多少?答案:使用插值法计算现金流的现值。
已知现金流和利率,我们可以使用公式PV=C/(1+r)^t来计算每个现金流的现值。
对于第一年的现金流,我们有C=100万元,r=10%(即0.1),t=1年,代入公式可得:PV=100/(1+0.1)^1≈90.91万元;对于第二年的现金流,我们有C=150万元,r=10%,t=2年,代入公式可得:PV=150/(1+0.1)^2≈138.63万元;对于第三年的现金流,我们有C=200万元,r=10%,t=3年,代入公式可得:PV=200/(1+0.1)^3≈223.6万元。
Chapter 1 插值方法 习题

2
将以上代入 p( x) 中即可。 注:本题中两个节点 x0 0, x1 1 具有对称性,事实上
0 (1 x) 1 ( x),1 (1 x) 0 ( x), 0 (1 x) 1 ( x), 1 (1 x) 0 ( x)
由此特性也可简化处理过程。
f ( 4) ( ) ( x x0 )3 ( x x1 ) 。 节点,故插值余项为 f ( x) p( x) 4! 9. 解:注意到满足条件 q(1) 0, q(1) 10, q(1) 40
的插值多项式为
q( x) 10( x 1) 20( x 1)2 且 q(x)的余项因子为 ( x 1)3 ,故令所求的插值多项式为
解得 a 5, b 11 。所以,所求的插值多项式为 p( x) 10( x 1) 20( x 1)2 (5x 11)( x x0 )3 10. 解:用基函数方法完整求解问题 7 令所求的插值多项式为 0 ( x) y1 1 ( x) p( x) y00 ( x) y11 ( x) y0 (0) 0 (1) 0 。 为此要求基函数 0 ( x) 满足条件 0 (0) 1,0 (1) 0
p( x) f ( x0 ) f ( x0 , x1 )( x x0 ) f ( x0 , x1 , xห้องสมุดไป่ตู้ )( x x0 )( x x1 ) c( x x0 )( x x1 )( x x2 ) ,
f ( x1 ) f ( x0 , x1 ) 式 中 , c f ( x0 , x1 , x2 ) x1 x0 f ( x1 , x2 ) f ( x0 , x1 ) f ( x0 , x1 , x2 ) x2 x0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 机床加工
待加工零件的外形根据工艺要求由一组数据(x, y)给出(在平面情况下),用程控
铣床加工时每一刀只能沿x 方向和y 方向走非常小的一步,这就需要从已知数据得到加工所要求的步长很小的(x, y)坐标。
表1 中给出的x, y数据位于机翼断面的下轮廓线上,假设需要得到x坐标每改变
0.1 时的y坐标。
试完成加工所需数据,画出曲线,并求出x = 0处的曲线斜率和
13 ≤x ≤15范围内y的最小值。
表 1
x 0 3 5 7 9 11 12 13 14 15
y 0 1.2 1.7 2.0 2.1 2.0 1.8 1.2 1.0 1.6
要求用Lagrange、分段线性和三次样条三种插值方法计算。
解编写以下程序:
clc,clear
x0=[0 3 5 7 9 11 12 13 14 15];
x=0:0.1:15;
y1=lagrange(x0,y0,x); %调用前面编写的Lagrange插值函数
y2=interp1(x0,y0,x);
y3=interp1(x0,y0,x,'spline');
pp1=csape(x0,y0); y4=ppval(pp1,x);
pp2=csape(x0,y0,'second'); y5=ppval(pp2,x);
fprintf('比较一下不同插值方法和边界条件的结果:\n')
fprintf('x y1 y2 y3 y4 y5\n')
xianshi=[x',y1',y2',y3',y4',y5'];
fprintf('%f\t%f\t%f\t%f\t%f\t%f\n',xianshi')
subplot(2,2,1), plot(x0,y0,'+',x,y1), title('Lagrange')
subplot(2,2,2), plot(x0,y0,'+',x,y2), title('Piecewise linear') subplot(2,2,3), plot(x0,y0,'+',x,y3), title('Spline1')
subplot(2,2,4), plot(x0,y0,'+',x,y4), title('Spline2')
dyx0=ppval(fnder(pp1),x0(1)) %求x=0处的导数
ytemp=y3(131:151);
index=find(ytemp==min(ytemp));
xymin=[x(130+index),ytemp(index)]
计算结果略。
可以看出,拉格朗日插值的结果根本不能应用,分段线性插值的光滑性较差(特别
是在x = 14附近弯曲处),建议选用三次样条插值的结果。