单轴、双轴太阳能跟踪系统受力分析及计算

合集下载

一种基于墙体安装的双轴跟踪太阳能热水器设计

一种基于墙体安装的双轴跟踪太阳能热水器设计
较大的扭矩 , 因此 , 必须通过计 算 自旋轴 跟踪过程 中产生 的扭矩
来计算电机 的扭矩 。 由于实际跟踪过程 中有摩擦 、 震动等因素 , 出
1 …水 节示意 l . … 平调
于安全 J的考虑 , 生 电机的扭矩要保 留一定的余量 。 同时 , 电机的转
速也是影 响控制精度 的一个重要 因素 , 平稳的传动可 以有效的避
n ysl ae e e o l nyb ntl d o ero dtee c ny o tin l n r f r r a oa w tr a rcud ol eis l nt o a f i c uiz gs a e eg o r ht ae h f n h f e f li or i y nwfa- ae oa ae etr sl e as s ee e t l h e asd b fxd i t l i e it p n l l w trh a o b cueo c i f c o i t acue y e n a a o s r ei w f on f g a f r i s l n t
S N Jn r n XI HE i— o g , ONG Z ig n 2 h — a g
( ol eo o p t n f ma o , h i nvr t, h n zo 0 2 C ia l g f m ue a dI o t n Ho a U i sy C agh u2 2 , hn ) C e C r nr i ei 1 3
沈金 荣 熊志 刚
(河海大学 计算机与信息学院 , 常州 23 2 ) 102 (河海大学 机电工程学院, 常州 232 ) 10 2
De i n f r olr ta kn u la i t e t r f l h n ig t p sg o a - r c ig d a- xs wa er a e l a gn y e s h o wa

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究

太阳能双轴自动跟踪系统设计与研究太阳能是一种清洁、可再生的能源,越来越多的人开始关注和使用太阳能发电系统。

太阳能发电系统中,太阳能电池板的角度对能量转换效率影响很大。

为了使太阳能电池板能够始终面向太阳,保持最佳角度,研究和设计太阳能双轴自动跟踪系统是非常必要的。

首先,系统设计方面。

太阳能双轴自动跟踪系统主要由太阳能电池板、运动控制系统和传感器系统组成。

太阳能电池板负责转换太阳能为电能,是整个系统的核心部件。

运动控制系统根据传感器系统实时采集到的太阳位置数据,控制太阳能电池板的角度调整。

传感器系统包括光敏传感器和方位传感器,负责检测太阳的位置并将数据传输到运动控制系统。

在太阳能双轴自动跟踪系统的研究中,需要考虑以下几个问题。

首先是数据采集问题。

传感器系统需要实时采集太阳的位置数据,以便运动控制系统进行调整。

传感器系统应该具备高精度、快速响应的特点,以确保数据的准确性和系统的灵敏度。

其次是运动控制问题。

运动控制系统需要精确地控制太阳能电池板的角度调整,以达到最佳转换效率。

运动控制系统应该具备稳定性和高精度的特点,以确保太阳能电池板能够准确地跟踪太阳的位置。

此外,系统的安全性和稳定性问题也需要考虑。

例如,对于极端天气条件下的系统运行,系统应该具备抗风、抗雨和抗震能力。

太阳能双轴自动跟踪系统的研究还可以从以下几个方面展开。

首先是材料和结构的研究。

太阳能电池板的材料和结构对于系统的效率和稳定性有着重要影响。

通过研究和优化太阳能电池板的材料和结构,可以提高系统的效率和稳定性。

其次是算法和控制的研究。

根据实时采集到的太阳位置数据,运动控制系统需要精确地计算调整角度,并控制太阳能电池板的运动。

通过研究和优化算法和控制策略,可以提高系统的精度和响应速度。

综上所述,太阳能双轴自动跟踪系统的设计与研究非常重要。

通过合理设计系统的结构和算法,并优化材料和控制策略,可以提高太阳能发电系统的转换效率和稳定性。

这将对太阳能发电系统的普及和应用起到积极的促进作用,推动可持续能源发展。

太阳能双轴跟踪系统原理解析

太阳能双轴跟踪系统原理解析

太阳能双轴跟踪系统原理解析太阳能双轴跟踪系统原理解析1. 引言太阳能作为一种清洁、可再生的能源形式,受到了越来越多的关注和应用。

为了更高效地收集太阳能,提高太阳能发电系统的效率,太阳能双轴跟踪系统应运而生。

本文将深入探讨太阳能双轴跟踪系统的原理及其在太阳能发电领域的应用。

2. 太阳能双轴跟踪系统的基本原理太阳能双轴跟踪系统是一种能够根据太阳的位置来调整太阳能发电设备角度的系统。

它通过使用两个轴(水平轴和垂直轴)来实现对太阳能接收器的定位,以确保太阳能始终垂直照射到接收器上。

这种追踪方式与传统的固定式太阳能系统相比,能够使得接收器相对于太阳的角度始终保持最佳状态,从而提高太阳能发电的效率。

3. 太阳能双轴跟踪系统的构成太阳能双轴跟踪系统主要由以下几个组成部分构成:3.1 太阳能追踪控制器:该控制器根据预设的追踪算法和传感器采集的数据,来计算并控制太阳能发电设备的运动。

它可以通过控制执行机构,调整发电设备的角度和方向。

3.2 电动机或执行机构:太阳能双轴跟踪系统通过电动机或其它执行机构来实现设备的角度调整。

这些电动机或执行机构通过接收控制器的指令,将设备转动到正确的位置上。

3.3 传感器:为了准确地获取太阳的位置信息,太阳能双轴跟踪系统通常会配备多个传感器。

这些传感器可以是太阳光电传感器、倾斜传感器等。

它们通过检测太阳的位置和周围环境的变化,向控制器提供实时的反馈信息,以确保设备能够准确追踪太阳。

3.4 太阳能接收器:太阳能双轴跟踪系统最关键的一部分是太阳能接收器。

它通常由太阳能电池板或聚光器组成,用于将太阳光转化为电能。

通过精确地追踪太阳,太阳能接收器可以最大限度地吸收太阳的能量,提高太阳能的利用效率。

4. 太阳能双轴跟踪系统的优势相较于固定式太阳能系统,太阳能双轴跟踪系统具有以下几个优势:4.1 提高发电效率:通过追踪太阳的位置并使接收器始终垂直照射,太阳能双轴跟踪系统可以最大限度地吸收太阳能,提高发电效率。

平单轴、斜单轴、双轴自动跟踪技术选择分析方法

平单轴、斜单轴、双轴自动跟踪技术选择分析方法

平单轴、斜单轴、双轴自动跟踪技术选择分析方法众所周知,为提高光伏电站的发电量,降低度电成本,增加投资的经济效益,可以采用光伏自动跟踪技术。

从国内技术来讲,对非聚光形式有双轴跟踪、斜单轴、平单轴以下3种跟踪技术。

对各种跟踪方式优缺点比较如下:(1)双轴跟踪范围大的同时占地面积大,安装容量容易受安装环境影响;安 装相对复杂、抗风能力一般,一次性投入相对较高,在电池板价格低的情况下,经 济价值一般。

安装结构示意图参见图5-7。

(2)斜单轴单元安装容量、跟踪范围一方面受环境影响另一方面受顶杆电机 行程约束,抗风能力较好、安装比较简单,整个性价比较高,如果安装在斜坡上则 优势更明显。

(3)平单轴跟踪范围大、安装简单、容易扩展容量,容量大时造价低、抗风 能力强,经济性能高,更适合在赤道附近地区应用同时对地基平面要求高。

西限位开关水平电机东限位开关光强检测装置东西方向侧视图正视图图5-7 双轴跟踪示意图从发电效率来看:平单轴:发电量提高10%~20%,成本增加3%~5%,单机最大功率50kW (2008年底)。

斜单轴:发电量提高20%~30%,成本增加10%,单机最大功率3.3kW (2006年底)。

双轴:发电量提高30%~40%,成本增加15%,单机最大功率l0kW (2008年底)。

在光伏电站设计中,要不要跟踪,应因地而异,完全由综合技术经济性来判定。

从以上3种跟踪技术比较来说,通常是斜单轴跟踪费效比较好,平单轴适合于低纬度地区(30度内)。

对平板太阳电池方阵,在太阳电池组件已大幅降价之后,一般不必选择双轴跟踪。

因为双轴跟踪往往可靠性并不高,给维护带来麻烦,结果所谓得不偿失。

图5-8所示分别为斜单轴跟踪系统的原理图和前视图。

Z=维度Z=维度图5-8 斜单轴跟踪系统原理图。

太阳能双轴跟踪系统原理

太阳能双轴跟踪系统原理

太阳能双轴跟踪系统原理一、前言太阳能作为一种清洁、可再生的能源,越来越受到人们的关注和重视。

而太阳能跟踪系统则是提高太阳能利用效率的重要手段之一。

本文将详细介绍太阳能双轴跟踪系统的原理。

二、太阳能双轴跟踪系统的概述太阳能双轴跟踪系统是指通过控制电机驱动,使得光伏板始终朝向太阳,并保持与太阳光线垂直,从而最大限度地提高光伏板的发电效率。

该系统由控制器、电机、传感器和支架等组成。

三、控制器控制器是整个系统的核心部件,它负责接收传感器采集到的数据,并根据预设算法计算出正确的电机转动角度和方向,从而实现对光伏板的精确跟踪。

控制器还可以设置参数,如时间间隔、角度误差等。

四、电机电机是实现光伏板转动的关键部件,通常采用直流电机或步进电机。

在工作时,控制器会根据传感器采集到的数据计算出电机需要转动的角度和方向,并通过控制电流来驱动电机转动。

五、传感器传感器是实现太阳能跟踪的关键部件,它可以测量太阳的位置和光线的强度。

常用的传感器有光敏电阻、光电二极管、太阳能光伏电池等。

传感器采集到的数据将被送往控制器进行处理。

六、支架支架是安装在地面或屋顶上,用于支撑光伏板并实现转动的设备。

通常采用钢材或铝合金材料制成,具有足够强度和稳定性。

七、原理太阳能双轴跟踪系统的原理基于日地运动学原理。

地球绕着太阳公转,同时自转,因此在任何时刻都会有一个方向与太阳相对应。

通过精确测量这个方向,就可以实现对光伏板的精确跟踪。

具体来说,系统中安装有两个传感器:一个用于测量水平方向上的角度(俯仰角),另一个用于测量垂直方向上的角度(方位角)。

根据这两个角度以及当前时间和地理位置等信息,控制器可以计算出太阳的位置,并确定光伏板需要转动的角度和方向。

控制器通过驱动电机来实现光伏板的转动,使其始终朝向太阳,并保持与太阳光线垂直。

八、总结太阳能双轴跟踪系统是提高太阳能利用效率的重要手段之一,其原理基于日地运动学原理。

系统由控制器、电机、传感器和支架等组成,通过精确测量太阳位置和光线强度来实现对光伏板的精确跟踪。

光伏发电双轴智能跟踪系统设计

光伏发电双轴智能跟踪系统设计

光伏发电双轴智能跟踪系统设计摘要:随着经济与技术的共同发展,人们对于能源的需求越来越大,使得目前对于能源的消耗量逐渐增长,但是目前大多数能源还都是采用以往的化石燃料焚烧的方法来都得到。

因此,为了能够使得能源进行一定的优化与改善,就需要不断的探索并开发出新能源。

通过光伏发电双轴智能跟踪系统的应用,能够有效的实现将太阳能转化为电能,在该系统中采用了单片机、锂电池、光电传感器、电机等设备,通过这些设备的应用能够实现智能化的跟踪光源,充分的获取所需的太阳能,并将其合理的利用,有效的发挥该系统的作用。

本篇文章就对于光伏发底单双轴智能跟踪系统进行研究与分析,从而促进该系统的推广与应用,实现新能源的开发与应用。

关键词:光伏发电;智能跟踪系统;在光伏发电的实际应用过程中,其太阳能的有效利用成为了一大难题,因此,为了能够有效的获取充足的太阳能,并且提高电能生产的效率,需要对发电效率以及光能的获取这两项内容进行研究与分析。

对于地球而言,其每个地方所受到太阳照射的时间、程度都是不一样的,且其变化的速度非常快。

因此,为了能够保证光伏发电能够不受该问题的影响,能够获取充足的光能,需要设计出一种特殊的光伏发电系统,并且保证该系统的应用过程中太阳的位置光能发电板的位置能够相互匹配,提高光能的收集效率。

根据相关的研究发现,采用追踪模式能够有效的追踪光能的位置,从而提高光能获取的效率,因此光伏发电双轴智能跟踪系统的研发与应用是非常必要的。

1双轴智能跟踪系统的作用原理在双轴智能跟踪系统的应用过程中,需要相关设备及装置的支持,其中双轴智能跟踪装置发挥重要的作用,在该装置的内部通过应用两个同种类型的电机,能够实现对于高度以及角度的控制,从而保证光伏发电所使用的发电板能够时刻与太阳照射之间的角度保持在90度,在应用的过程中电机通过旋转来时刻的追踪太阳位置的变化情况。

在光伏发电双轴智能跟踪系统中还会利用光电传感器设备,通过该设备的应用能够有效的将光信号转化为电信号。

太阳能发电自动跟踪系统技术方案

太阳能发电自动跟踪系统技术方案

太阳能发电自动跟踪系统技术方案太阳能发电自动跟踪系统是一种能够根据太阳位置实时调整太阳能电池板角度的技术方案。

根据太阳的位置变化,自动跟踪系统可以最大程度地使太阳能电池板与太阳光源保持垂直,从而提高太阳能发电效率。

下面是一个关于太阳能发电自动跟踪系统技术方案的详细描述。

1.系统结构太阳能发电自动跟踪系统主要由以下组件组成:太阳能电池板、追踪装置、控制器和电池等设备。

太阳能电池板是核心组件,负责将太阳光转化为电能。

追踪装置通过电机和传感器实现对太阳能电池板角度的调整。

控制器则负责收集太阳位置信息,控制追踪装置的工作,并实时监测太阳能发电系统的工作状态。

2.工作原理太阳能发电自动跟踪系统的工作原理是基于太阳位置的实时计算和反馈控制的。

系统通过安装在太阳能电池板上的传感器,实时监测太阳位置,并将数据传输给控制器。

控制器会根据太阳位置信息,计算出太阳能电池板需要调整的角度,并通过追踪装置调整电池板的角度,使其面向太阳。

3.太阳位置计算太阳位置计算是太阳能发电自动跟踪系统的核心算法之一、根据地理位置和时间,可以通过公式计算出太阳高度角和方位角。

高度角表示太阳光线与地平面的夹角,而方位角表示太阳在东西方向上的位置。

利用这些数据,可以精确计算出太阳在天空中的位置。

4.追踪装置追踪装置是太阳能发电自动跟踪系统的核心部件之一、它包括电机和支架,能够根据控制器的指令,调整太阳能电池板的角度。

追踪装置可以分为单轴和双轴两种类型。

单轴追踪装置只能实现水平角度的调整,而双轴追踪装置还可以调整垂直角度。

5.控制器控制器是太阳能发电自动跟踪系统的关键组件之一、它负责收集太阳位置数据,并根据算法计算太阳能电池板需要调整的角度。

控制器还可以监测系统的工作状态,并根据环境条件进行智能调节,例如在阴天或夜间停止跟踪,以节省能源。

6.电池电池是太阳能发电自动跟踪系统的能量储存装置。

太阳能发电系统不仅可以随着太阳位置的变化而调整电池板的角度,同时也可以将多余的电能储存到电池中,以备不时之需。

太阳能双轴跟踪控制系统工作流程

太阳能双轴跟踪控制系统工作流程

太阳能双轴跟踪控制系统工作流程太阳能是一种清洁、可再生的能源,近年来得到了广泛的应用。

然而,由于太阳能的收集效率与太阳的位置有关,因此需要使用太阳能跟踪系统来提高太阳能的收集效率。

太阳能双轴跟踪控制系统是一种高效的太阳能跟踪系统,下面将介绍该系统的工作流程。

一、系统结构太阳能双轴跟踪控制系统由以下几部分组成:1. 太阳能电池板:用于收集太阳能供电。

2. 电机和减速器:用于控制太阳能电池板的运动。

3. 传感器:用于检测太阳的位置和太阳能电池板的位置。

4. 控制器:用于控制电机和减速器的运动,使太阳能电池板始终面向太阳并跟随太阳运动。

二、系统工作原理太阳能双轴跟踪控制系统的工作原理如下:1. 传感器检测到太阳的位置。

2. 控制器接收传感器的信号,并计算出太阳能电池板需要转动的角度和方向。

3. 控制器控制电机和减速器的运动,使太阳能电池板始终面向太阳并跟随太阳运动。

4. 传感器不断检测太阳的位置,并向控制器发送信号,控制器根据信号调整太阳能电池板的位置。

5. 太阳能电池板始终面向太阳并跟随太阳运动,从而提高太阳能的收集效率。

三、系统优点太阳能双轴跟踪控制系统具有以下优点:1. 收集效率高:太阳能双轴跟踪控制系统可以使太阳能电池板始终面向太阳并跟随太阳运动,从而提高太阳能的收集效率。

2. 稳定性强:太阳能双轴跟踪控制系统可以根据传感器检测到的太阳位置进行实时调整,保证太阳能电池板始终面向太阳并跟随太阳运动,从而保证系统的稳定性。

3. 适应性强:太阳能双轴跟踪控制系统可以适应不同的地理位置和气候条件,从而适用范围广。

4. 节能环保:太阳能双轴跟踪控制系统使用太阳能作为能源,不产生污染物,具有良好的节能环保效果。

四、系统应用太阳能双轴跟踪控制系统可以广泛应用于太阳能发电、太阳能光热利用等领域。

例如,在太阳能发电中,太阳能双轴跟踪控制系统可以提高太阳能电池板的收集效率,从而提高发电量;在太阳能光热利用中,太阳能双轴跟踪控制系统可以调整太阳能集热器的位置,从而提高集热效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单轴、双轴太阳能跟踪系统受力分析及计算
暨太阳能电池板受力,仰角和水平方向的驱动扭矩分析及计算公式
在太阳能跟踪系统中,受外部风力的影响是在设计时需要考虑的重要环节,决定着整套系统的稳定性和安全性,下面是太阳能光伏跟踪发电系统中一些计算公式和经验,对于初入太阳能或已经从事太阳能跟踪发电的工程技术人员有着很好的借鉴和帮助作用。

太阳能跟踪设计原理简易图:
一、太阳能电池板受到风力计算
太阳能电池板受到风力也就是支架、立柱及跟踪传动部件的受力情况,在设计时各部件均要克服也就是大于其所承受的力,整套系统在实际使用过程中才能够安全可靠的运行。

太阳能电池板受到风力计算公式如下:
F=CA*A*WO*cos(a)
式中:F——太阳板上所受的力kg;CA——安全系数,取1.3~1.4;A—太阳板面积平方米(m2);WO——风压kg/m2,风压WO的标准,通常我们应该考虑其最大、最恶劣的使用工况,要按照30年一遇的11级暴风,风速 30m/s计算,其风压WO=60kg/m2 cos(a) ——太阳能电池板最大工作角度
举例:63m2的太阳能电池板受风力是多少?
依照公式:F=CA*A*WO*cos(a)
带入公式:F=1.4*63*60*0.9063(cos25)=4796kg
分析:
1、支架的强度
支架的轴向负载载荷要大于等于4796kg+太阳能板本身重量kg
2、立柱的强度
立柱的抗弯曲和剪切力要大于等于4796kg
3、跟踪传动部件的强度
跟踪传动部件的轴向和径向载荷要大于等于4796kg+系统本身重量
二、仰角方向驱动扭矩计算
仰角方向的驱动扭矩,即整个跟踪系统驱动仰角方向时所需要的动力。

驱动
扭矩的合理选择决定着整套系统的发电效率的高低和系统的正常运行,电机的功
率过大会消耗更多的太阳能电池板自身的发电能量,减低整套系统的发电效率;电机功率太小,驱动不了整套系统,不能正常运行。

仰角方向驱动扭矩计算
M1=CM*A*WO*D* cos(a) *10
式中:M1——太阳板上所受的仰角方向扭力矩Nm;CM——安全系数,取0.02~0.04;A——太阳板面积m2;WO——风压kg/m2;, (按照最大工作状态7级风,风速15m/s计算,WO=15kg/m2) D——太阳能板最大受力方向的尺寸m cos(a) ——太阳能电池板最大工作角度
举例:63m2的太阳能电池板仰角方向驱动扭矩是多少?太阳能板受力方向的尺
寸7.5m
依照公式:M=CM*A*WO*D* cos(a) *10
带入公式:M=0.02*63*15*9*0.9063*10=1541 Nm
最终经过若干级的减速后,输出扭矩达到1541Nm即可驱动63m2的太阳能仰角
方向的电池板。

三、水平方向驱动扭矩计算
水平方向的驱动扭矩相对较小一些,按照摩擦力计算即可以了。

这里要考虑
2方面的摩擦力,一方面是整个支架和电池板的自身重量产生的摩擦力和风对电
池板产生的摩擦力。

整体太阳能电池板相对与跟踪传动轴心的倾覆力矩而产生的
摩擦力可忽略不计,取值稍比实际计算的大些就可以了。

M2=CM*(F+N) *10
式中:M2——太阳板上所受的水平方向扭力矩Nm;CM——摩擦系数,取0.005~0.01;F——太阳板上所受的力kg; N——系统自身重量kg
举例:63m2的太阳能电池板水平方向驱动扭矩是多少?电池板及支架重量假设
N =2000kg
依照公式:M2=CM*(F+N) *10
带入公式:M2=0.01*(4796+2000) *10=679 Nm 取700Nm
最终经过若干级的减速后,输出扭矩达到700Nm即可驱动63m2水平方向的太
阳能电池板。

相关文档
最新文档