2020届湖北省黄石市大冶市中考数学模拟试卷(有答案)(已审阅)

合集下载

湖北大冶实验中学中考数学模拟试卷

湖北大冶实验中学中考数学模拟试卷

202X 年中考数学模拟试卷一、选择磬(本大题共10小瓯共分)1、 实数\行的平方根( )A. 3B. -3C. ±3 2、 用科学记数法表示136000,其结果是() A. 0.136x1()“ B. 1.36xj (r C.136x1()3 3、 以下图形中,既是中心对称图形又是轴对称图形的是(L 卜列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是(〉5,假设”2|+|.计6|=0,那么x+y 的值是()A.4B. -46、 实数x, y 满足(A -2) %必口=0,那么点P3 ),)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限 7、 如图,AODC 是由△0AB 绕点0顺时针旋转30“后得到的图形,假设点D 恰好落在AB 上,且ZAOC 的度数为100° ,那么ZB 的度数是( )8、如图,四边形AffCD 是菱形,AC = 8. DB = 6,D. 士& D. 136x1伊C. -8 DH LAB 于H,那么OH 等于(A. 40B.35°9、如图.宜线刀=餐+ 2与双曲线光=:交于4(2,m)、两点,那么当x 的取值范围是()A. x <—6或x > 2B. -6<x< Ox?戈x > 2C ・ x V -6 或 0 <x<210、如图,AD 是A ABC 的中线,AE=EF=FC, BE 、A 。

交于点G,给出卜•列3个关系式: 晚£;略与雌=:.其中,正确的选项是() 二、填空题(本大题共6小题,共分) II 、因式分解:.12、分式方程上 = 占的解为.13, 如图,为测量某栋楼房的高度,在C 点测得A 点的仰角为30。

,朝楼房A&方向 前进10米到达点。

,再次mA 点的仰角为60。

,那么此楼房的高度为 _____ 米(结果14、 某校为了解本校九年级学生足球训练情况,随机抽有该年级假设干名学生进行测试, 然后把测试结果分为4个等级:A 、8、C 、700人,估计该年级足球测试成绩为。

湖北省黄石市2020年中考数学试题(图片版%2C有答案)

湖北省黄石市2020年中考数学试题(图片版%2C有答案)

煌固中心小学陈道元
【素材积累】
1、只要心中有希望存摘,旧有幸福存摘。

预测未来的醉好方法,旧是创造未来。

坚志而勇为,谓之刚。

刚,生人之德也。

美好的生命应该充满期待、惊喜和
感激。

人生的胜者决不会摘挫折面前失去勇气。

2、我一直知道,漫长人生中总有一段泥泞不得不走,总有一个寒冬不得不过。

感谢摘这样的时候,我遇见的世界上最美的心灵,我接受的最温暖的帮助。

经历过这些,我将带着一颗感恩和勇敢的心继续走上梦想的道路,无论是风雨还是荆棘。

【精选3份合集】湖北省黄石市2020年中考一模数学试卷有答案含解析

【精选3份合集】湖北省黄石市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°解析:D【解析】【分析】根据两直线平行,内错角相等计算即可.【详解】因为m∥n,所以∠2=∠1+30°,所以∠2=30°+20°=50°,故选D.【点睛】本题主要考查平行线的性质,清楚两直线平行,内错角相等是解答本题的关键.2.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A .25°B .27.5°C .30°D .35°解析:D【解析】 分析:直接利用三角形外角的性质以及邻补角的关系得出∠B 以及∠ODC 度数,再利用圆周角定理以及三角形内角和定理得出答案.详解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故选D .点睛:此题主要考查了圆周角定理以及三角形内角和定理等知识,正确得出∠AOC 度数是解题关键.3.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF∥AB,则EF 的长度为( )A .2B .3C 3D .2解析:B【解析】 本题考查的圆与直线的位置关系中的相切.连接OC,EC 所以∠EOC=2∠D=60°,所以△ECO 为等边三角形.又因为弦EF∥AB 所以OC 垂直EF 故∠OEF=30°所以334.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或制瓶底45个,一个瓶身和两个瓶底可配成一套,设用x 张铝片制作瓶身,则可列方程( )A .1645(100)x x =-B .1645(50)x x =-C .21645(100)x x ⨯=-D .16245(100)x x =⨯-解析:C【解析】【分析】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,可作瓶身16x 个,瓶底()45100x -个,再根据一个瓶身和两个瓶底可配成一套,即可列出方程.【详解】设用x 张铝片制作瓶身,则用()100x -张铝片制作瓶底,依题意可列方程()21645100x x ⨯=-故选C.【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.5.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3B .a <﹣3C .a >3D .a≥3解析:A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a 的取值范围即可. 【详解】∵不等式组324x a x a <+⎧⎨>-⎩无解, ∴a﹣4≥3a+2,解得:a≤﹣3,故选A .【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.6.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A .100°B .80°C .50°D .20°解析:B【解析】 解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.7.如图,在△ABC 中,∠ABC=90°,AB=8,BC=1.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为( )A .7B .8C .9D .10解析:B【解析】【分析】 根据三角形中位线定理求出DE ,得到DF∥BM,再证明EC=EF=12AC ,由此即可解决问题. 【详解】在RT△ABC 中,∵∠ABC=90°,AB=2,BC=1, 22AB BC +2286+,∵DE 是△ABC 的中位线, ∴DF∥BM,DE=12BC=3, ∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF, ∴EC=EF=12AC=5, ∴DF=DE+EF=3+5=2.故选B .8.在平面直角坐标系xOy中,四条抛物线如图所示,其解析式中的二次项系数一定小于1的是()A.y1B.y2C.y3D.y4解析:A【解析】【分析】由图象的点的坐标,根据待定系数法求得解析式即可判定.【详解】由图象可知:抛物线y1的顶点为(-2,-2),与y轴的交点为(0,1),根据待定系数法求得y1=34(x+2)2-2;抛物线y2的顶点为(0,-1),与x轴的一个交点为(1,0),根据待定系数法求得y2=x2-1;抛物线y3的顶点为(1,1),与y轴的交点为(0,2),根据待定系数法求得y3=(x-1)2+1;抛物线y4的顶点为(1,-3),与y轴的交点为(0,-1),根据待定系数法求得y4=2(x-1)2-3;综上,解析式中的二次项系数一定小于1的是y1故选A.【点睛】本题考查了二次函数的图象,二次函数的性质以及待定系数法求二次函数的解析式,根据点的坐标求得解析式是解题的关键.9.一个几何体的三视图如图所示,则该几何体的表面积是()。

2020年湖北省黄石市中考数学试卷及答案解析.pdf

2020年湖北省黄石市中考数学试卷及答案解析.pdf
湖北省黄石市 2020 年中考数学试题
学校:___________姓名:___________班级:___________考号:___________
1.3 的相反数是( ).
A. 3
B.3
C. 1 3
2.下列图形中,既是中心对称又是轴对称图形的是( )
1
D.
3
A.
B.
C.
D.
3.如图所示,该几何体的俯视图是( )
试卷第 3 页,总 6 页
19.如图, AB AE, AB / /DE,DAB 70,E 40 .
(1)求 DAE 的度数; (2)若 B 30 ,求证: AD BC .
20.如图,反比例函数 y k (k 0) 的图象与正比例函数 y 2x 的图象相交于 A1, a 、
x
B 两点,点 C 在第四象限,BC∥x 轴.
x 1 3 6.不等式组 2x 9 3 的解集是( )
A. 3 x 3
B. x 2
C. 3 x 2
D. x 3
试卷第 1 页,总 6 页
7.在平面直角坐标系中,点 G 的坐标是 2,1 ,连接 OG ,将线段 OG 绕原点 O 旋转180
,得到对应线段 OG ,则点 G 的坐标为( )
根据以上译文,提出以下两个问题:
(1)求每头牛、每只羊各值多少两银子?
(2)若某商人准备用 19 两银子买牛和羊(要求既有牛也有羊,且银两须全部用完), 请问商人有几种购买方法?列出所有的可能.
24.如图,在 RtABC 中, C 90 , AD 平分 BAC 交 BC 于点 D,O 为 AB 上一 点,经过点 A、D 的 O 分别交 AB 、 AC 于点 E、F.
试卷第 4 页,总 6 页

2020年湖北省黄石市中考数学试卷及答案解析(word版)

2020年湖北省黄石市中考数学试卷及答案解析(word版)
又∵AE=AB,∠E=∠CAB=40°,
∴△DAE≌△CBA(ASA),
∴AD=BC.
【点睛】本题考查了平行线的性质,全等三角形的判定和性质,求出∠DAE的度数是解题关键.
20.如图,反比例函数 的图象与正比例函数 的图象相交于 、B两点,点C在第四象限,BC∥x轴.
(1)求k的值;
(2)以 、 为边作菱形 ,求D点坐标.
【详解】解:在优弧AB上取一点F,连接AF,BF.
∵ ,
∴∠CDO=∠CEO=90°.
∵ ,
∴∠O=140°,
∴∠F=70°,
∴∠ACB=180°-70°=110°.
故选C.
【点睛】本题考查了多边形的内角和,圆周角定理,以及圆内接四边形的性质,正确作出辅助线是解答本题的关键.
10.若二次函数 的图象,过不同的六点 、 、 、 、 、 ,则 、 、 的大小关系是()
C、是轴对称图形,不是中心对称图形,故本选项错误;
D、既是中心对称图又是轴对称图形,故本选项正确;
故选:D.
【点睛】本题考查中心对称图与轴对称图形定义,熟练掌握中心对称图形和轴对称图形的定义是解题关键.
3.如图所示,该几何体的俯视图是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据俯视图的定义判断即可.
【答案】85
【解析】
【分析】
按照 的比例算出本学期的体育成绩即可.
【详解】解:小明本学期的体育成绩为: =85(分),
故答案为:85.
【点睛】本题考查了加权平均数,解题的关键是掌握加权平均数的定义.
15.如图,在 的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作 的外接圆,则 的长等于_____.

2020年湖北省黄石市近三年中考真题数学重组模拟卷(二) 解析版

2020年湖北省黄石市近三年中考真题数学重组模拟卷(二) 解析版

2020年湖北省黄石市近三年中考真题数学重组模拟卷(二)一.选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2019•黄石)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3B.﹣0.5C.D.2.(2017•黄石)地球绕太阳公转的速度约为110000km/h,则110000用科学记数法可表示为()A.0.11×106B.1.1×105C.0.11×105D.1.1×106 3.(2018•黄石)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(2017•黄石)下列运算正确的是()A.a0=0B.a3+a2=a5C.a2•a﹣1=a D.+=5.(2019•黄石)如图,该正方体的俯视图是()A.B.C.D.6.(2018•黄石)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)7.(2018•黄石)如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°8.(2019•黄石)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°9.(2017•黄石)如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为()A.B.C.D.10.(2018•黄石)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD 中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是()A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.(2019•黄石)分解因式:x2y2﹣4x2=.12.(2018•黄石)在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的周长为13.(2019•黄石)如图,一轮船在M处观测灯塔P位于南偏西30°方向,该轮船沿正南方向以15海里/小时的速度匀速航行2小时后到达N处,再观测灯塔P位于南偏西60°方向,若该轮船继续向南航行至灯塔P最近的位置T处,此时轮船与灯塔之间的距离PT 为海里(结果保留根号).14.(2017•黄石)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC 向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:≈1.41,≈1.73)15.(2018•黄石)在一个不透明的布袋中装有标着数字2,3,4,5的4个小球,这4个小球的材质、大小和形状完全相同,现从中随机摸出两个小球,这两个小球上的数字之积大于9的概率为16.(2019•黄石)将被3整除余数为1的正整数,按照下列规律排成一个三角形数阵,则第20行第19个数是.三.解答题(本大题共9小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(2019•黄石)计算:(2019﹣π)0+|﹣1|﹣2sin45°+()﹣1.18.(2018•黄石)先化简,再求值:.其中x=sin60°.19.(2019•黄石)若点P的坐标为(,2x﹣9),其中x满足不等式组,求点P所在的象限.20.(2017•黄石)已知关于x的一元二次方程x2﹣4x﹣m2=0(1)求证:该方程有两个不等的实根;(2)若该方程的两实根x1、x2满足x1+2x2=9,求m的值.21.(2018•黄石)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.22.(2018•黄石)随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?23.(2019•黄石)“今有善行者行一百步,不善行者行六十步.”(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步.假定两者步长相等,据此回答以下问题:(1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?(2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?24.(2018•黄石)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.25.(2019•黄石)如图,已知抛物线y=x2+bx+c经过点A(﹣1,0)、B(5,0).(1)求抛物线的解析式,并写出顶点M的坐标;(2)若点C在抛物线上,且点C的横坐标为8,求四边形AMBC的面积;(3)定点D(0,m)在y轴上,若将抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,点P在新的抛物线上运动,求定点D与动点P之间距离的最小值d(用含m的代数式表示)2020年湖北省黄石市近三年中考真题数学重组模拟卷(二)参考答案一.选择题(共10小题)1.【解答】解:∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.2.【解答】解:将110000用科学记数法表示为:1.1×105.故选:B.3.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.4.【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.5.【解答】解:正方体的主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形都是正方形,故选:A.6.【解答】解:由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.7.【解答】解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选:A.8.【解答】解:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.9.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故选:D.10.【解答】解:∵∠P=90°,PM=PN,∴∠PMN=∠PNM=45°,由题意得:CM=x,分三种情况:①当0≤x≤2时,如图1,边CD与PM交于点E,∵∠PMN=45°,∴△MEC是等腰直角三角形,此时矩形ABCD与△PMN重叠部分是△EMC,∴y=S△EMC=CM•CE=;故选项B和D不正确;②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,∵∠N=45°,CD=2,∴CN=CD=2,∴CM=6﹣2=4,即此时x=4,当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,过E作EF⊥MN于F,∴EF=MF=2,∴ED=CF=x﹣2,∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH ⊥MN于H,∴EH=MH=2,DE=CH=x﹣2,∵MN=6,CM=x,∴CG=CN=6﹣x,∴DF=DG=2﹣(6﹣x)=x﹣4,∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+6x﹣10,故选项A正确;故选:A.二.填空题(共6小题)11.【解答】解:原式=x2(y2﹣4)=x2(y+2)(y﹣2),故答案为:x2(y+2)(y﹣2)12.【解答】解:∵∠C=90°,CA=8,CB=6,∴AB==10,∴△ABC的内切圆的半径==2,∴△ABC内切圆的周长=π•22=4π.故答案为4π.13.【解答】解:由题意得,MN=15×2=30海里,∵∠PMN=30°,∠PNT=60°,∴∠MPN=∠PMN=30°,∴PN=MN=30海里,∴PT=PN•sin∠PNT=15海里.故答案为:15.14.【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈137,即建筑物AB的高度约为137米故答案为:137.15.【解答】解:根据题意列表得:23452﹣﹣﹣(3,2)(4,2)(5,2)3(2,3)﹣﹣﹣(4,3)(5,3)4(2,4)(3,4)﹣﹣﹣(5,4)5(2,5)(3,5)(4,5)﹣﹣﹣由表可知所有可能结果共有12种,且每种结果发生的可能性相同,其中摸出的两个小球上的数字之积大于9的有8种,所以两个小球上的数字之积大于9的概率为=,故答案为:.16.【解答】解:由图可得,第一行1个数,第二行2个数,第三行3个数,…,则前20行的数字有:1+2+3+…+19+20=210个数,∴第20行第20个数是:1+3(210﹣1)=628,∴第20行第19个数是:628﹣3=625,故答案为:625.三.解答题(共9小题)17.【解答】解:原式=1+﹣1﹣2×+3=3.18.【解答】解:原式=•=,当x=sin60°=时,原式==.19.【解答】解:,解①得:x≥4,解②得:x≤4,则不等式组的解是:x=4,∵=1,2x﹣9=﹣1,∴点P的坐标为(1,﹣1),∴点P在的第四象限.20.【解答】(1)证明:∵在方程x2﹣4x﹣m2=0中,△=(﹣4)2﹣4×1×(﹣m2)=16+4m2>0,∴该方程有两个不等的实根;(2)解:∵该方程的两个实数根分别为x1、x2,∴x1+x2=4①,x1•x2=﹣m2②.∵x1+2x2=9③,∴联立①③解之,得:x1=﹣1,x2=5,∴x1•x2=﹣5=﹣m2,解得:m=±.21.【解答】(1)解:连接DE,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.22.【解答】解:(1)本次调查的好友人数为6÷20%=30人,故答案为:30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×=120°,故答案为:120;③估计大约6月1日这天行走的步数超过10000步的好友人数为150×=70人.23.【解答】解:(1)设当走路慢的人再走600步时,走路快的人的走x步,由题意得x:600=100:60∴x=1000∴1000﹣600﹣100=300答:当走路慢的人再走600步时,走路快的人在前面,两人相隔300步.(2)设走路快的人走y步才能追上走路慢的人,由题意得y=200+y∴y=500答:走路快的人走500步才能追上走路慢的人.24.【解答】解:(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•=;(2)若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴=,∴==;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,则MN分别是BC、AC的中点,∴MN∥AB,且MN=AB,∴==,且S△ABM=S△ACM,∴=,设=a,由(2)知:==×=,==a,则==+=+a,而==a,∴+a=a,解得:a=,∴=×=.25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=(x2﹣4x﹣5)=x2﹣x ﹣,点M坐标为(2,﹣3);(2)当x=8时,y=(x+1)(x﹣5)=9,即点C(8,9),S四边形AMBC=AB(y C﹣y M)=×6×(9+3)=36;(3)y=(x+1)(x﹣5)=(x2﹣4x﹣5)=(x﹣2)2﹣3,抛物线的图象向左平移2个单位,再向上平移3个单位得到一条新的抛物线,则新抛物线表达式为:y=x2,则定点D与动点P之间距离PD==,令t=,则x2=3t,可得PD=,当t=﹣=﹣时,PD有最小值,∵t≥0,∴3﹣2m≤0,即m≥时,PD的最小值d=;当m<时,3﹣2m>0,t≥0,∴t2+(3﹣2m)t+m2≥0,故当PD最小时,t=0,即x=0,∴当点P与点O重合时,PD最小,即PD的最小值d=|m|∴d=.。

2020年黄石市数学中考一模试卷(及答案)

2020年黄石市数学中考一模试卷(及答案)一、选择题1.如图是某个几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥2.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.3.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.9⨯C.84.610⨯D.94610⨯B.74.610⨯0.46104.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.5.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )A.abc>0B.b2﹣4ac<0C.9a+3b+c>0D.c+8a<06.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°7.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x>)的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4D.58.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为()A.61B.72C.73D.869.下列二次根式中,与3是同类二次根式的是()A.18B.13C.24D.0.310.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=11.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.12.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10B.12C.16D.18二、填空题13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.16.分解因式:2x3﹣6x2+4x=__________.17.甲、乙两人在1200米长的直线道路上跑步,甲、乙两人同起点、同方向出发,并分别以不同的速度匀速前进,已知,甲出发30秒后,乙出发,乙到终点后立即返回,并以原来的速度前进,最后与甲相遇,此时跑步结束.如图,y(米)表示甲、乙两人之间的距离,x(秒)表示甲出发的时间,图中折线及数据表示整个跑步过程中y与x函数关系,那么,乙到达终点后_____秒与甲相遇.18.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______19.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示,成本y2与销售月份x之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?22.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长自己参与; D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.23.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见24.解方程:3x x ﹣1x=1. 25.某校在宣传“民族团结”活动中,采用四种宣传形式:A .器乐,B .舞蹈,C .朗诵,D .唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有 人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:观察可得,主视图是三角形,俯视图是两个矩形,左视图是矩形,所以这个几何体是三棱柱,故选A .考点:由三视图判定几何体.2.A解析:A【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.5.D解析:D【解析】【详解】试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,42y a b c =-+<0,又12b x a=-=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D. 考点:二次函数的图象及性质.6.A解析:A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.7.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC 交BD 于点M ,BM=4-1=3,AM=m-n ,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n ,从而可求出n 的值,即可得到k 的值.【详解】设A(1,m),B(4,n),连接AC 交BD 于点M ,则有BM=4-1=3,AM=m-n ,∴S 菱形ABCD =4×12BM•AM ,∵S 菱形ABCD =452, ∴4×12×3(m-n )=452, ∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.8.C解析:C【解析】【分析】设第n个图形中有a n个点(n为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.9.B解析:B【解析】【分析】【详解】AB3C=D故选B.10.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.11.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.12.C解析:C【解析】【分析】首先根据矩形的特点,可以得到S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN ,最终得到S 矩形EBNP = S 矩形MPFD ,即可得S △PEB =S △PFD ,从而得到阴影的面积.【详解】作PM ⊥AD 于M ,交BC 于N .则有四边形AEPM ,四边形DFPM ,四边形CFPN ,四边形BEPN 都是矩形,∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PFC =S △PCN∴S 矩形EBNP = S 矩形MPFD ,又∵S △PBE = 12S 矩形EBNP ,S △PFD =12S 矩形MPFD , ∴S △DFP =S △PBE =12×2×8=8, ∴S 阴=8+8=16,故选C .【点睛】 本题考查矩形的性质、三角形的面积等知识,解题的关键是证明S △PEB =S △PFD .二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系.14.【解析】根据弧长公式可得:=故答案为解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π,故答案为23π.15.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2 240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.16.2x(x﹣1)(x﹣2)【解析】分析:首先提取公因式2x再利用十字相乘法分解因式得出答案详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2)故答案为2x(x﹣1)(x﹣2)点解析:2x(x﹣1)(x﹣2).【解析】分析:首先提取公因式2x,再利用十字相乘法分解因式得出答案.详解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为2x(x﹣1)(x﹣2).点睛:此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.17.30【解析】【分析】由图象可以V甲=9030=3m/sV追=90120-30=1m/s故V乙=1+3=4m/s由此可求得乙走完全程所用的时间为:12004=300s则可以求得此时乙与甲的距离即可求出解析:30【解析】【分析】由图象可以V甲==3m/s,V追==1m/s,故V乙=1+3=4m/s,由此可求得乙走完全程所用的时间为:=300s,则可以求得此时乙与甲的距离,即可求出最后与甲相遇的时间.【详解】由图象可得V甲==3m/s,V追==1m/s,∴V乙=1+3=4m/s,∴乙走完全程所用的时间为:=300s,此时甲所走的路程为:(300+30)×3=990m.此时甲乙相距:1200﹣990=210m则最后相遇的时间为:=30s故答案为:30【点睛】此题主要考查一次函数图象的应用,利用函数图象解决行程问题.此时就要求掌握函数图象中数据表示的含义.18.【解析】试题分析:如图设AF的中点为D那么DA=DE=DF所以AF的最小值取决于DE的最小值如图当DE⊥BC时DE最小设DA=DE=m此时DB=m由AB=DA+DB 得m+m=10解得m=此时AF=2解析:15 2【解析】试题分析:如图,设AF的中点为D,那么DA=DE=DF.所以AF的最小值取决于DE的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.20.【解析】【分析】连接BD根据中位线的性质得出EFBD且EF=BD进而根据勾股定理的逆定理得到△BDC是直角三角形求解即可【详解】连接BD分别是ABAD的中点EFBD且EF=BD又△BDC是直角三角形解析:4 3【解析】【分析】连接BD,根据中位线的性质得出EF//BD,且EF=12BD,进而根据勾股定理的逆定理得到△BDC是直角三角形,求解即可.【详解】连接BD,E FQ分别是AB、AD的中点∴EF//BD,且EF=12BD4EF=Q8BD∴=又Q 8106BD BC CD ===,,∴△BDC 是直角三角形,且=90BDC ∠︒∴tanC=BD DC=86=43. 故答案为:43.三、解答题21.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n ,3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1, 4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73.∵﹣13<0, ∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大.(3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.22.(1)400;(2)补全条形图见解析;C 类所对应扇形的圆心角的度数为54°;(3)该校2000名学生中“家长和学生都未参与”有100人.【解析】分析:(1)根据A 类别人数及其所占百分比可得总人数;(2)总人数减去A 、C 、D 三个类别人数求得B 的人数即可补全条形图,再用360°乘以C 类别人数占被调查人数的比例可得;(3)用总人数乘以样本中D 类别人数所占比例可得.详解:(1)本次调查的总人数为80÷20%=400人; (2)B 类别人数为400-(80+60+20)=240,补全条形图如下:C 类所对应扇形的圆心角的度数为360°×60400=54°; (3)估计该校2000名学生中“家长和学生都未参与”的人数为2000×0N F N =100人. 点睛:本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从统计图中整理出进一步解题的信息.23.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B 点的坐标为(1.5,30),点B 的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km ;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103, ∴当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣13)=50,解得:x=1, 10+1=11=11点,∴小聪到达宾馆后,立即以30km/h 的速度按原路返回,那么返回途中他11点遇见小慧.24.分式方程的解为x=﹣34. 【解析】【分析】方程两边都乘以x (x+3)得出方程x ﹣1+2x=2,求出方程的解,再代入x (x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣34,检验:当x=﹣34时,x(x+3)=﹣2716≠0,所以分式方程的解为x=﹣34.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键. 25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。

湖北省黄石市2020版数学中考一模试卷(II)卷

湖北省黄石市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017七上·新安期中) ﹣2017的倒数是()A . 2017B . ﹣2017C .D . ﹣2. (2分) (2017七下·石景山期末) 如果关于的二次三项式是完全平方式,那么的值为()A .B .C .D .3. (2分)今年5月份在贵阳召开了国际大数据产业博览会,据统计,到5月28日为止,来观展的人数已突破64000人次,64000这个数用科学记数法可表示为6.4×10n ,则n的值是()A . 3B . 4C . 5D . 64. (2分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三视图中面积最小的是()A . 主视图B . 左视图C . 俯视图D . 三种一样5. (2分) (2017八上·康巴什期中) 点P(4,5)关于y轴对称点的坐标是()A . (-4,-5)B . (-4,5)C . (4,-5)D . (4,5)6. (2分) (2019八下·如皋月考) 如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD 的周长是在14,则DM等于()A . 1B . 2C . 3D . 47. (2分) (2019八上·泗阳期末) 一次函数的图象不经过的象限是)A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)若用半径为9,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是()A . 1.5B . 2C . 3D . 69. (2分)方程的根是()A . =1B . =-1C .D .10. (2分)某市为节约用水,制定了如下标准:用水不超过20吨,按每吨1.2元收费;超过20吨,则超出部分按每吨1.5元收费.小明家六月份的水费是平均每吨1.25元,那么小明家六月份应交水费()A . 20元B . 24元C . 30元D . 36元二、填空题 (共6题;共6分)11. (1分)(2020·青浦模拟) 已知,那么的值为________.12. (1分)分解因式:x2﹣(x﹣3)2=________.13. (1分) (2018九上·柯桥期末) a、b、c是实数,点A(a-1、b)、B(a-2,c)在二次函数y=x2-2ax +1的图像上,则b、c的大小关系是:b________c(用“>”或“<”号填空).14. (1分)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c.若a=2,b=4,则c=________;若a=2,c=4,则b=________;若c=26,a:b=5:12,则a=________,b=________.15. (1分)(2017·润州模拟) 抛物线y=ax2+bx+3(a≠0)过A(4,4),B (2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是________.16. (1分)如图,五角星也可以看作是一个三角形绕中心O旋转________次得到的,每次旋转角度是________.三、解答题 (共8题;共92分)17. (10分)(2014·嘉兴) 计算下列各题(1)计算: +()﹣2﹣4cos45°;(2)化简:(x+2)2﹣x(x﹣3)18. (10分) (2017七下·门头沟期末) 为了更好的开展“我爱阅读”活动,小明针对某校七年级学生(共16个班,480名学生)课外阅读喜欢图书的种类(每人只能选一种书籍)进行了调查.(1)小明采取的下列调查方式中,比较合理的是________;理由是:________.A.对七年级(1)班的全体同学进行问卷调查;B.对七年级各班的语文科代表进行问卷调查;C.对七年级各班学号为3的倍数的全体同学进行问卷调查.(2)小明根据问卷调查的结果绘制了如下两幅不完整的统计图,根据图中提供的信息解答下列问题:①在扇形统计图中,“其它”所在的扇形的圆心角等于多少度;②补全条形统计图;③根据调查结果,估计七年级课外阅读喜欢“漫画”的同学有多少人.19. (10分)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:只需添加一个符合要求的正方形,并用阴影表示.20. (10分)(2012·宿迁) 如图,在四边形ABCD中,∠DAB=∠ABC=90°,CD与以AB为直径的半圆相切于点E,EF⊥AB于点F,EF交BD于点G,设AD=a,BC=b.(1)求CD的长度(用a,b表示);(2)求EG的长度(用a,b表示);(3)试判断EG与FG是否相等,并说明理由.21. (10分) (2019九上·张家港期末) 在Rt△ABC中,∠C=90°,c=4,a=2 ,解这个直角三角形.22. (15分)(2019·陕西模拟) 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是________千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.23. (11分)(2019·成都模拟) 阅读下面材料:小明遇到这样一个问题:如图1,在正方形ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若AB=6,AF=4EF,求CG的值与∠AFB的度数.他的做法是:过点E作EH∥AB交BG于点H,得到△BAF∽△HEF(如图2).(1) CG等于多少,∠AFB等于多少度;参考小明思考问题的方法,解决下列问题;(2)如图3,在矩形ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G,若AF=3EF,求的值;(3)如图4,在平行四边形ABCD中,E、F分别是边BC、CD上的点,BF和DE相交于点G,且AB=kAD,∠DAG=∠BAC,求出的值(用含k的式子表示)24. (16分)(2017·连云港模拟) 在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度向点B移动,同时另一个动点Q从点C出发,沿线段CA以某一速度向点A移动.(1)求该抛物线的解析式;(2)若经过t秒的移动,线段PQ被CD垂直平分,求此时t的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA的值最小?若存在,求出点M的坐标;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共92分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。

湖北省黄石市2019-2020学年第五次中考模拟考试数学试卷含解析

湖北省黄石市2019-2020学年第五次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.湿地旅游爱好者小明了解到鄂东南市水资源总量为42.4亿立方米,其中42.4亿用科学记数法可表示为( ) A .42.4×109B .4.24×108C .4.24×109D .0.424×1082.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a 元/千克,乙种糖果的单价为b 元/千克,且a >b.根据需要小明列出以下三种混合方案:(单位:千克) 甲种糖果 乙种糖果 混合糖果 方案1 2 3 5 方案2 3 2 5 方案32.52.55则最省钱的方案为( ) A .方案1 B .方案2C .方案3D .三个方案费用相同3.如图,⊙O 的半径OC 与弦AB 交于点D ,连结OA ,AC ,CB ,BO ,则下列条件中,无法判断四边形OACB 为菱形的是( )A .∠DAC=∠DBC=30°B .OA ∥BC ,OB ∥AC C .AB 与OC 互相垂直D .AB 与OC 互相平分4.若圆锥的轴截面为等边三角形,则称此圆锥为正圆锥,则正圆锥侧面展开图的圆心角是( ) A .90° B .120° C .150° D .180°5.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( ) A .8.1×106B .8.1×105C .81×105D .81×1046.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( ) A .12%7%%x += B .(112%)(17%)2(1%)x ++=+ C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+7.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=28.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个B.2个C.3个D.4个9.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,1510.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分11.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB 上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.312.研究表明某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×106二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果方程x2-4x+3=0的两个根分别是Rt△ABC的两条边,△ABC最小的角为A,那么tanA的值为_______.14.如果将“概率”的英文单词probability中的11个字母分别写在11张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母b的概率是________.15.如图,点A、B、C、D在⊙O上,O点在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD= ▲ °.16.计算:1850-的结果为_____.17.要使分式51x-有意义,则x的取值范围为_________.18.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE 的度数为()A.144°B.84°C.74°D.54°三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=22,求EB的长.20.(6分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B 级:75分﹣89分;C 级:60分﹣74分;D 级:60分以下)(1)写出D 级学生的人数占全班总人数的百分比为 ,C 级学生所在的扇形圆心角的度数为 ;(2)该班学生体育测试成绩的中位数落在等级 内;(3)若该校九年级学生共有500人,请你估计这次考试中A 级和B 级的学生共有多少人?21.(6分)如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由;②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.22.(8分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =,求O e 的半径.23.(8分)今年 3 月 12 日植树节期间, 学校预购进 A 、B 两种树苗,若购进 A 种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.(1)求购进A、B 两种树苗的单价;(2)若该单位准备用不多于8000 元的钱购进这两种树苗共30 棵,求A 种树苗至少需购进多少棵?24.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,求⊙O的半径.25.(10分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.26.(12分)观察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的规律,写出第⑥个等式:_____;(2)模仿上面的方法,写出下面等式的左边:_____=502;(3)按照上面的规律,写出第n个等式,并证明其成立.27.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A 型的概率是多少?并估计这3000人中大约有多少人是A 型血?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】42.4亿=4240000000,用科学记数法表示为:4.24×1. 故选C . 【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 2.A 【解析】 【分析】求出三种方案混合糖果的单价,比较后即可得出结论. 【详解】方案1混合糖果的单价为235a b+,方案2混合糖果的单价为225a b+,方案3混合糖果的单价为2.5 2.552a b a b++=.∵a>b,∴2232525a b a b a b+++<<,∴方案1最省钱.故选:A.【点睛】本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.3.C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等边三角形,∴OA=AC=OC=BC=OB,∴四边形OACB是菱形;即A选项中的条件可以判定四边形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即B选项中的条件可以判定四边形OACB是菱形;(3)由OC和AB互相垂直不能证明到四边形OACB是菱形,即C选项中的条件不能判定四边形OACB 是菱形;(4)∵AB与OC互相平分,∴四边形OACB是平行四边形,又∵OA=OB,∴四边形OACB是菱形,即由D选项中的条件能够判定四边形OACB是菱形.故选C.4.D【解析】试题分析:设正圆锥的底面半径是r,则母线长是2r,底面周长是2πr,设正圆锥的侧面展开图的圆心角是n°,则=2πr ,解得:n=180°.故选D .考点:圆锥的计算. 5.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】 810 000=8.1×1. 故选B . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 6.D 【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%), ∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +, ∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值. 7.A 【解析】分析:设原计划每天施工x 米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x 米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.8.C【解析】【分析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB 段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.【详解】解:①小明家距学校4千米,正确;②小明上学所用的时间为12分钟,正确;③小明上坡的速度是210.283-=-千米/分钟,错误;④小明放学回家所用时间为3+2+10=15分钟,正确;故选:C.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.9.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.10.D【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.详解:将数据重新排列为17、18、18、20、20、20、23,所以这组数据的众数为20分、中位数为20分,故选:D.点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.11.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.12.C【解析】解:,故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.13或24【解析】解方程x2-4x+3=0得,x1=1,x2=3,①当3是直角边时,∵△ABC最小的角为A,∴tanA=13;②当3是斜边时,根据勾股定理,∠A 的邻边=4=;所以tanA 的值为13或4. 14.211【解析】分析:让英文单词probability 中字母b 的个数除以字母的总个数即为所求的概率.详解:∵英文单词probability 中,一共有11个字母,其中字母b 有2个,∴任取一张,那么取到字母b 的概率为211. 故答案为211. 点睛:本题考查了概率公式,用到的知识点为:概率等于所求情况数与总情况数之比.15.1.【解析】试题分析:∵四边形OABC 为平行四边形,∴∠AOC=∠B ,∠OAB=∠OCB ,∠OAB+∠B=180°.∵四边形ABCD 是圆的内接四边形,∴∠D+∠B=180°.又∠D =12∠AOC ,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB )=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.16.【解析】分析:根据二次根式的性质先化简,再合并同类二次根式即可.详解:原式=﹣点睛:此题主要考查了二次根式的加减,灵活利用二次根式的化简是解题关键,比较简单.17.x≠1【解析】由题意得x-1≠0,∴x≠1.故答案为x≠1.18.B【解析】正五边形的内角是∠ABC=()521805-⨯=108°,∵AB=BC ,∴∠CAB=36°,正六边形的内角是∠ABE=∠E=()621806-⨯=120°,∵∠ADE+∠E+∠ABE+∠CAB=360°,∴∠ADE=360°–120°–120°–36°=84°,故选B .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2;【解析】【分析】(1)根据正方形的性质得到∠GAD=∠EAB ,证明△GAD ≌△EAB ,根据全等三角形的性质证明;(2)根据正方形的性质得到BD ⊥AC ,,根据勾股定理计算即可.【详解】(1)在△GAD 和△EAB 中,∠GAD=90°+∠EAD ,∠EAB=90°+∠EAD , ∴∠GAD=∠EAB ,在△GAD 和△EAB 中,GAD EAB AD AB AC AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAD ≌△EAB ,∴EB=GD ;(2)∵四边形ABCD 是正方形,AB=5,∴BD ⊥AC ,∴∠DOG=90°,OA=OD=12BD=2, ∵,∴OG=OA+AG=2, 由勾股定理得,∴【点睛】本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.20.(1)4%;(2)72°;(3)380人【解析】【分析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).21.(1)y=﹣18x2﹣14x+3;(2)①点D坐标为(﹣32,0);②点M(32,0).【解析】【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ和△CDO全等②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.【详解】(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得366016400a b c a b c c -+⎧⎪++⎨⎪⎩===, 解得:18143a b c ⎧-⎪⎪⎪-⎨⎪⎪⎪⎩=== , ∴抛物线解析式为:y=-18x 2-14x+3; (2)①存在点D ,使得△APQ 和△CDO 全等,当D 在线段OA 上,∠QAP=∠DCO ,AP=OC=3时,△APQ 和△CDO 全等,∴tan ∠QAP=tan ∠DCO ,OC OD OA OC=, ∴3 63OD =, ∴OD=32, ∴点D 坐标为(-32,0). 由对称性,当点D 坐标为(32,0)时, 由点B 坐标为(4,0),此时点D (32,0)在线段OB 上满足条件. ②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB ,∴BD=BC=5,∴OD=BD-OB=1,则点D 坐标为(-1,0)且AD=BD=5,连DN ,CM ,则DN=DM ,∠NDC=∠MDC ,∴∠NDC=∠DCB ,∴DN ∥BC , ∴1AN AD NC DB ==, 则点N 为AC 中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM-OD=32 ∴点M (32,0) 【点睛】 本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.22.4 【解析】【分析】已知△ABC 是等腰三角形,根据等腰三角形的性质,作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,在Rt △OBH 中,用半径表示出OH 的长,即可用勾股定理求得半径的长.【详解】作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,2OH OA AH r =-=-,3BH =222OH BH OB +=,即()(222223r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.23.(1)购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵(2)A 种树苗至少需购进 1 棵【解析】【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B 种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进 A 种树苗的单价为x 元/棵,购进 B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进A 种树苗的单价为200 元/棵,购进 B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1 棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.24.(1)证明见解析;(2)15 2【解析】试题分析:(1)由切线性质及等量代换推出∠4=∠5,再利用等角对等边可得出结论;(2)由已知条件得出sin∠DEF和sin∠AOE的值,利用对应角的三角函数值相等推出结论.试题解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD为切线,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,连接OE,∵DB=DE,∴EF=12BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3 ,∴22534-=∴sin∠DEF=DFDE=45,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=45 AEAO=,∵AE=6,∴AO=15 2.【点睛】本题考查了圆的性质,切线定理,三角形相似,三角函数等知识,结合图形正确地选择相应的知识点与方法进行解题是关键.25.(1)7000辆;(2)a的值是1.【解析】【分析】(1)设一月份该公司投入市场的自行车x辆,根据损坏率不低于10%,可得不等量关系:一月初投入的自行车-一月底可用的自行车≥一月损坏的自行车列不等式求解;(2)根据三月底可使用的自行车达到7752辆,可得等量关系为:(二月份剩余的可用自行车+三月初投入的自行车)×三月份的损耗率=7752辆列方程求解.【详解】解:(1)设一月份该公司投入市场的自行车x辆,x﹣(7500﹣110)≥10%x,解得x≥7000,答:一月份该公司投入市场的自行车至少有7000辆;(2)由题意可得,[7500×(1﹣1%)+110(1+4a%)](1﹣14a%)=7752,化简,得a2﹣250a+4600=0,解得:a1=230,a2=1,∵1%20%4a<,解得a<80,∴a=1,答:a的值是1.【点睛】本题考查了一元一次不等式和一元二次方程的实际应用,根据一月底的损坏率不低于10%找出不等量关系式解答(1)的关键;根据三月底可使用的自行车达到7752辆找出等量关系是解答(2)的关键. 26.6×10+4=8248×52+4【解析】【分析】(1)根据题目中的式子的变化规律可以解答本题;(2)根据题目中的式子的变化规律可以解答本题;(3)根据题目中的式子的变化规律可以写出第n个等式,并加以证明.【详解】解:(1)由题目中的式子可得,第⑥个等式:6×10+4=82,故答案为6×10+4=82;(2)由题意可得,48×52+4=502,故答案为48×52+4;(3)第n个等式是:n×(n+4)+4=(n+2)2,证明:∵n×(n+4)+4=n2+4n+4=(n+2)2,∴n×(n+4)+4=(n+2)2成立.【点睛】本题考查有理数的混合运算、数字的变化类,解答本题的关键是明确有理数的混合运算的计算方法.27.(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=1050×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=126 5025,3000×625=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.。

2020年湖北省黄石市中考数学试卷(有详细解析)

2020年湖北省黄石市中考数学试卷班级:___________姓名:___________得分:___________一、选择题(本大题共10小题,共30.0分)1.3的相反数是()A. 3B. −3C. 13D. −132.下列图形中,既是中心对称又是轴对称图形的是()A. B. C. D.3.如图所示,该几何体的俯视图是()A. B. C. D.4.下列运算正确的是()A. 8a−3b=5abB. (a2)3=a5C. a9÷a3=a3D. a2⋅a=a35.函数y=1x−3+√x−2的自变量x的取值范围是()A. x≥2,且x≠3B. x≥2C. x≠3D. x>2,且x≠36.不等式组{x−1<−32x+9≥3的解集是()A. −3≤x<3B. x>−2C. −3≤x<−2D. x≤−37.在平面直角坐标系中,点G的坐标是(−2,1),连接OG,将线段OG绕原点O旋转180°,得到对应线段OG′,则点G′的坐标为()A. (2,−1)B. (2,1)C. (1,−2)D. (−2,−1)8.如图,在Rt△ABC中,∠ACB=90°,点H、E、F分别是边AB、BC、CA的中点,若EF+CH=8,则CH的值为()A. 3B. 4C. 5D. 69.如图,点A、B、C在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D、E,若∠DCE=40°,则∠ACB的度数为()A. 140°B. 70°C. 110°D. 80°10.若二次函数y=a2x2−bx−c的图象,过不同的六点A(−1,n)、B(5,n−1)、C(6,n+1)、D(√2,y1)、E(2,y2)、F(4,y3),则y1、y2、y3的大小关系是()A. y1<y2<y3B. y1<y3<y2C. y2<y3<y1D. y2<y1<y3二、填空题(本大题共6小题,共18.0分)11.计算:(13)−1−|1−√2|=______.12.因式分解:m3n−mn3=______.13.据报道,2020年4月9日下午,黄石市重点园区(珠三角)云招商财富推介会上,我市现场共签项目20个,总投资137.6亿元.用科学记数法表示137.6亿元,可写为______元.14.某中学规定学生体育成绩满分为100分,按课外活动成绩、期中成绩、期末成绩2:3:5的比,计算学期成绩.小明同学本学期三项成绩依次为90分、90分、80分,则小明同学本学期的体育成绩是______分.15.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则BC⏜的长等于______.16.匈牙利著名数学家爱尔特希(P.Erdos,1913−1996)曾提出:在平面内有n个点,其中每三个点都能构成等腰三角形,人们将具有这样性质的n个点构成的点集称为爱尔特希点集.如图,是由五个点A、B、C、D、O构成的爱尔特希点集(它们为正五边形的任意四个顶点及正五边形的中心构成),则∠ADO的度数是______.三、解答题(本大题共9小题,共102.0分)17.先化简,再求值:x2+2x+1x2−1−xx−1,其中x=5.18.如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房AB的楼顶,测量对面的乙栋楼房CD的高度.已知甲栋楼房AB与乙栋楼房CD的水平距离AC=18√3米,小丽在甲栋楼房顶部B点,测得乙栋楼房顶部D点的仰角是30°,底部C点的俯角是45°,求乙栋楼房CD的高度(结果保留根号).19.如图,AB=AE,AB//DE,∠DAB=70°,∠E=40°.(1)求∠DAE的度数;(2)若∠B=30°,求证:AD=BC.(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a)、20.如图,反比例函数y=kxB两点,点C在第四象限,BC//x轴.(1)求k的值;(2)以AB、BC为边作菱形ABCD,求D点坐标.21.已知:关于x的一元二次方程x2+√mx−2=0有两个实数根.(1)求m的取值范围;(2)设方程的两根为x1、x2,且满足(x1−x2)2−17=0,求m的值.22.我市将面向全市中小学开展“经典诵读”比赛.某中学要从2名男生2名女生共4名学生中选派2名学生参赛.(1)请列举所有可能出现的选派结果;(2)求选派的2名学生中,恰好为1名男生1名女生的概率.23.我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.24.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A、D的⊙O分别交AB、AC于点E、F.(1)求证:BC是⊙O的切线;(2)若BE=8,sinB=5,求⊙O的半径;13(3)求证:AD2=AB⋅AF.25.在平面直角坐标系中,抛物线y=−x2+kx−2k的顶点为N.(1)若此抛物线过点A(−3,1),求抛物线的解析式;(2)在(1)的条件下,若抛物线与y轴交于点B,连接AB,C为抛物线上一点,且位于线段AB的上方,过C作CD垂直x轴于点D,CD交AB于点E,若CE=ED,求点C坐标;(3)已知点M(2−4√3,0),且无论k取何值,抛物线都经过定点H,当∠MHN=60°3时,求抛物线的解析式.答案和解析1.B解:根据相反数的概念及意义可知:3的相反数是−3.2.D解:A、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;B、既不是中心对称图形,又不是轴对称图形,故本选项不符合题意;C、不是中心对称图形,是轴对称图形,故本选项不符合题意;D、既是中心对称图形,又是轴对称图形,故本选项符合题意;3.B解:该几何体的俯视图是4.D解:A.不是同类项不能合并,选项错误;B.原式=a2×3=a6,选项错误;C.a9÷a3=a9−3=a6,选项错误;D.a2⋅a=a2+1=a3,选项正确.5.A解:根据题意得:x−2≥0,且x−3≠0,解得x≥2,且x≠3.解:不等式组{x −1<−3 ①2x +9≥3 ②, 由①得:x <−2,由②得:x ≥−3,则不等式组的解集为−3≤x <−2,7. A解:由题意G 与G′关于原点对称,∵G(−2,1),∴G′(2,−1),8. B解:∵在Rt △ABC 中,∠ACB =90°,点H ,E ,F 分别是边AB ,BC ,CA 的中点, ∴EF =12AB ,CH =12AB , ∵EF +CH =8,∴CH =EF =12×8=4,9. C解:如图,在优弧AB 上取一点P ,连接AP ,BP ,∵CD ⊥OA ,CE ⊥OB ,∴∠ODC =∠OEC =90°,∵∠DCE =40°,∴∠AOB =360°−90°−90°−40°=140°,∴∠P =12∠AOB =70°,∵A 、C 、B 、P 四点共圆,∴∠P +∠ACB =180°,∴∠ACB =180°−70°=110°,10.D解:∵二次函数y=a2x2−bx−c的图象过点A(−1,n)、B(5,n−1)、C(6,n+1),∴抛物线的对称轴直线x满足2<x<2.5,抛物线的开口向上,∴抛物线上离对称轴水平距离越大的点,对应函数值越大,∵D(√2,y1)、E(2,y2)、F(4,y3),则y2<y1<y3,11.4−√2解:原式=3−(√2−1)=3−√2+1=4−√2.12.mn(m+n)(m−n)解:原式=mn(m2−n2)=mn(m+n)(m−n).13.1.376×1010解:137.6亿元=137********元=1.376×1010元,14.85解:90×22+3+5+90×32+3+5+80×52+3+5=85(分),15.√52π解:∵每个小方格都是边长为1的正方形,∴AB=2√5,AC=√10,BC=√10,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=√5,∴BC⏜的长为:90⋅π×√5180=√52π,16.18°解:∵这个五边形由正五边形的任意四个顶点及正五边形的中心构成,∴根据正五边形的性质可得OA=OB=OC=OD,AB=BC=CD,∴△AOB≌△BOC≌△COD(SSS),∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC,∠AOB=∠BOC=∠COD,∵正五边形每个角的度数为:(5−2)×180°5=108°,∴∠OAB=∠OBA=∠OBC=∠OCB=∠OCD=∠ODC=54°,∴∠AOB=∠BOC=∠COD=(180°−2×54°)=72°,∴∠AOD=360°−3×72°=144°,∵OA=OD,∴∠ADO=(180°−144°)=18°,17.解:原式=(x+1)2(x+1)(x−1)−xx−1=x+1x−1−xx−1=1x−1,当x=5时,原式=14.18.解:如图所示:由题意得:BE=AC=18√3,CE=AB,∠DBE=30°,∠CBE= 45°,在Rt△EDB中,∠DBE=30°,DEBE=tan30°,∴DE=BE×tan30°=18√3×√33=18,在Rt△ABC中,∠ABC=90°−45°=45°,∴△ABC是等腰直角三角形,∴CE=AB=AC=18√3,∴CD=DE+CE=18+18√3(米);答:乙栋楼房CD的高度为(18+18√3)米.19.解(1)∵AB//DE,∠E=40°,∴∠EAB=40°,∵∠DAB=70°,∴∠DAE=30°;(2)证明:在△ADE与△BCA中,{∠B=∠DAE AB=AE∠BAC=∠E,∴△ADE≌△BCA(ASA),∴AD=BC.20.解:(1)∵点A(1,a)在直线y=2x上,∴a=2×1=2,即点A的坐标为(1,2),∵点A(1,2)是反比例函数y=kx(k≠0)的图象与正比例函数y=2x图象的交点,∴k=1×2=2,即k的值是2;(2)由题意得:2x=2x,解得:x=1或−1,经检验x=1或−1是原方程的解,∴B(−1,−2),∵点A(1,2),∴AB =√(1+1)2+(2+2)2=2√5,∵菱形ABCD 是以AB 、BC 为边,且BC//x 轴, ∴AD =AB =2√5,∴D(1+2√5,2).21. 解:(1)∵关于x 的一元二次方程x 2+√mx −2=0有两个实数根, ∴△=[√m]2−4×1×(−2)=m +8≥0,且m ≥0, 解得:m ≥0.(2)∵关于x 的一元二次方程x 2+√mx −2=0有两个实数根x 1、x 2, ∴x 1+x 2=−√m ,x 1⋅x 2=−2,∴(x 1−x 2)2−17=(x 1+x 2)2−4x 1⋅x 2−17=0,即m +8−17=0, 解得:m =9.22. 解:(1)用列表法表示所有可能出现的结果情况如下:(2)共有12种可能出现的结果,其中“一男一女”的有8种, ∴P (一男一女)=812=23. 23. 解:(1)设每头牛值x 两银子,每只羊值y 两银子,根据题意得:{5x +2y =192x +5y =16, 解得:{x =3y =2. 答:每头牛值3两银子,每只羊值2两银子.(2)设购买a 头牛,b 只羊,依题意有3a +2b =19,b =19−3a2,∵a,b都是正整数,∴①购买1头牛,8只羊;②购买3头牛,5只羊;③购买5头牛,2只羊.24.解:(1)如图,连接OD,EF,则OA=OD,∴∠ODA=∠OAD,∵AD是∠BAC的平分线,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD//AC,∴∠ODB=∠C=90°,∵点D在⊙O上,∴BC是⊙O的切线;(2)∵∠BDO=90°,∴sinB=ODBO =ODBE+OD=513,∴OD=5,∴⊙O的半径为5;(3)连接EF,∵AE 是直径,∴∠AFE =90°=∠ACB ,∴EF//BC ,∴∠AEF =∠B ,又∵∠AEF =∠ADF ,∴∠B =∠ADF ,又∵∠OAD =∠CAD ,∴△DAB∽△FAD , ∴AD AB =AF AD ,∴AD 2=AB ⋅AF .25. 解:(1)把A(−3.1)代入y =−x 2+kx −2k , 得−9−3k −2k =1.解得k =2,∴抛物线的解析式为y =−x 2−2x +4;(2)设C(t,−t 2−2t +4),则E(t,−t 22−t +2),设直线AB 的解析式为y =kx +b ,把A(−3,1),(0,4)代入得到,{−3k +b =1b =4, 解得{k =1b =4, ∴直线AB 的解析式为y =x +4, ∵E(t,−t 22−t +2)在直线AB 上, ∴−t 22−t +2=t +4,解得t=−2,∴C(−2,4).(3)由y=−x2+kx−2k=k(x−2)−x2,当x−2=0时,x=2,y=−4,∴无论k取何值,抛物线都经过定点H(2,−4),二次函数的顶点N(k2,k24−2k),①如图1中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G,若k2>2时,则k>4,∵M(2−4√33,0),H(2,−4),∴MI=4√33,HI=4,∴tan∠MHI=4√334=√33,∴∠MHI=30°,∵∠MHN=60°,∴∠NHI=30°,即∠GNH=30°,由图可知,tan∠GNH=GHGN =k2−2k24−2k+4=√33,解得k=4+2√3或4(不合题意舍弃).②如图3中,过点H作HI⊥x轴于I,分别过H,N作y轴,x轴的垂线交于点G.若k2<2,则k<4,同理可得,∠MHI=30°,∵∠MHN=60°,∴NH⊥HI,−2k═−4,即k24解得k=4(不符合题意舍弃).=2,则N,H重合,不符合题意舍弃,③若k2综上所述,抛物线的解析式为y=−x2+(4+2√3)x−(8+4√3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

// // 湖北省黄石市大冶市金湖街办中考数学模拟试卷 一、选择题(本题有10个小题,每小题3分,共30分) 1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是( ) A.﹣3 B.﹣2 C.0 D.3 2.下列运算正确的是( ) A.a3+a3=2a6 B.(x2)3=x5 C.2a6÷a3=2a2 D.x3•x2=x5 3.2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为( ) A.0.6×1013元 B.60×1011元 C.6×1012元 D.6×1013元 4.下列四个立体图形中,左视图为矩形的是( )

A.①③ B.①④ C.②③ D.③④ 5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位

数是( ) A.7 B.6 C.5 D.4

6.不等式组的解集在数轴上表示正确的是( )

A. B. C. D. 7.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的

底面半径r为( )

A.5cm B.10cm C.20cm D.5πcm 8.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范

围是( ) A.m> B.m< C.m≥ D.m≤ 9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变

换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是( ) A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17 10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的( ) // // A.点M B.点N C.点P D.点Q 二、填空题(本题有6个小题,每小题3分,共18分) 11.已知a+b=3,a﹣b=5,则代数式a2﹣b2的值是 . 12.在函数中,自变量x的取值范围是 . 13.二次函数y=﹣x2+2x﹣3图象的顶点坐标是 .

14.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,

则AB的长是 .

15.从2、3、4、5中任意选两个数,记作a和b,那么点(a,b)在函数y=图象上的概率是 . 16.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,An,…记点An

的横坐标为an,若a1=2,则a2= ,a2016= ;若要将上述操作无限次地进行下去,

则a1不可能取的值是 .

三、解答题(本题有19个小题,共72分) 17.计算:﹣+|﹣|+2sin45°+π0+()﹣1.

18.先化简,再求值:(1﹣)÷,其中x=﹣1. 19.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下

半圆弧的中点,连接AD交BC于F,若AC=FC. (1)求证:AC是⊙O的切线: (2)若BF=8,DF=,求⊙O的半径r. // // 20.解方程组:. 21.在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他

们只能选两人打第一场. (1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率; (2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率. 22.小明听说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,

现在可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你帮助小明解决以下问题: (1)求A、C之间的距离;(参考数据=4.6) (2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时间到达武昌客运站,小明应该选择哪种乘车方案?请说明理由.(不计候车时间)

23.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品

每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系. (1)请解释图中点D的横坐标、纵坐标的实际意义; (2)求线段AB所表示的y1与x之间的函数表达式; (3)当该产品产量为多少时,获得的利润最大?最大利润是多少?

24.如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MN⊥

CM交射线AD于点N. (1)当F为BE中点时,求证:AM=CE;

(2)若==2,求的值;

(3)若==n,当n为何值时,MN∥BE? // // 25.如图,已知双曲线y=与直线y=x相交于A、B两点,点C(2,2)、D(﹣2,﹣2)在直线y=x上. (1)若点P(1,m)为双曲线y=上一点,求PD﹣PC的值(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M,N两点间的距离为) (2)若点P(x,y)(x>0)为双曲线上一动点,请问PD﹣PC的值是否为定值?请说明理由.(参考公式:若a≥0,b≥0,则a+b≥2) (3)若点P(x,y)(x>0)为双曲线上一动点,连接PC并延长PC交双曲线另一点E,当P点使得PE=4时,求P的坐标. //

// 湖北省黄石市大冶市金湖街办中考数学模拟试卷 参考答案与试题解析 一、选择题(本题有10个小题,每小题3分,共30分) 1.在数﹣3,﹣2,0,3中,大小在﹣1和2之间的数是( ) A.﹣3 B.﹣2 C.0 D.3 【考点】有理数大小比较. 【分析】根据有理数的大小比较法则比较即可. 【解答】解:根据0大于负数,小于正数,可得0在﹣1和2之间, 故选:C.

2.下列运算正确的是( ) A.a3+a3=2a6 B.(x2)3=x5 C.2a6÷a3=2a2 D.x3•x2=x5 【考点】整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 【分析】根据合并同类项的法则,幂的乘方,单项式乘单项式,单项式除以单项式的法则进行解答.. 【解答】解:A、应为a3+a3=2a3,故本选项错误; B、应为(x2)3=x6,故本选项错误; C、应为2a6÷a3=2a3,故本选项错误; D、x3•x2=x5正确. 故选D.

3.2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为( ) A.0.6×1013元 B.60×1011元 C.6×1012元 D.6×1013元 【考点】科学记数法—表示较大的数. 【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 【解答】解:将6万亿用科学记数法表示为:6×1012. 故选:C.

4.下列四个立体图形中,左视图为矩形的是( )

A.①③ B.①④ C.②③ D.③④ 【考点】简单几何体的三视图. 【分析】根据左视图是分别从物体左面看,所得到的图形,即可解答. 【解答】解:长方体左视图为矩形;球左视图为圆;圆锥左视图为三角形;圆柱左视图为矩形; 因此左视图为矩形的有①④. 故选:B.

5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位

数是( ) A.7 B.6 C.5 D.4 【考点】中位数;算术平均数. 【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数. 【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5, ∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3, ∴这一组数从小到大排列为:3,4,4,5,6,6,7, ∴这组数据的中位数是:5. // // 故选C.

6.不等式组的解集在数轴上表示正确的是( ) A. B. C. D. 【考点】在数轴上表示不等式的解集;解一元一次不等式组. 【分析】根据不等式的基本性质来解不等式组,两个不等式的解集的交集,就是该不等式组的解集;然后把不等式的解集根据不等式解集在数轴上的表示方法画出图示.

【解答】解:不等式组的解集是﹣1≤x≤3,其数轴上表示为: 故选B

7.如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的

底面半径r为( )

A.5cm B.10cm C.20cm D.5πcm 【考点】圆锥的计算. 【分析】由圆锥的几何特征,我们可得用半径为30cm,面积为300πcm2的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,据此求得圆锥的底面圆的半径. 【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,

则由题意得R=30,由Rl=300π得l=20π; 由2πr=l得r=10cm; 故选B.

8.在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范

围是( ) A.m> B.m< C.m≥ D.m≤ 【考点】反比例函数图象上点的坐标特征. 【分析】首先根据当x1<0<x2时,有y1<y2则判断函数图象所在象限,再根据所在象限判断1﹣3m的取值范围. 【解答】解:∵x1<0<x2时,y1<y2, ∴反比例函数图象在第一,三象限, ∴1﹣3m>0,

解得:m<. 故选B.

9.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变

换.已知抛物线经过两次简单变换后的一条抛物线是y=x2+1,则原抛物线的解析式不可能的是( ) A.y=x2﹣1 B.y=x2+6x+5 C.y=x2+4x+4 D.y=x2+8x+17 【考点】二次函数图象与几何变换.

相关文档
最新文档