五年级奥数--巧算
五年级奥数题及答案200道

第一讲小数的巧算[同步巩固演练]1、计算:7.93+(2.8-1.93)2、计算:7736-473+733、计算:3.71-2.74+4.7+5.29-0.26+6.34、计算:34×25×65、计算:8.25×186、计算:8.4÷5÷87、计算:49000÷1258、计算:(5.25+0.125+5.75)×89、计算下面各题⑴2.56-(1.65-0.97)⑵4.74+(1.26-0.77)⑶5.47-(1.47+0.84)⑷9.9×9.9+0.99⑸1.25×2.5×32009、计算:75×4.7+159×2.510、计算:4.25×5.24+1.52×2.5111、计算:7142.85÷3.7÷2.7×1.7×0.712、计算:1.25×17.6+36÷0.8+2.64×12.513、计算:176.2+348.3+42.47+252.5+382.2314、计算:(6.4×7.5×8.1)÷(3.2×2.5×2.7)15、计算:15.37×7.88-9.37×7.38+1.537×21.2-93.7×0.262[能力拓展平台]1、C.DE×A.B=A.CDE是用字母表示的一个小数乘法算式,题中每一个字母表示一个数字,如果A.CDE<C.DE,求A.B所表示的数。
2、计算:10-9-0.9-0.09-0.009-0.0009-0.000093、计算:15.37×7.88-9.37×7.88-15.37×2.12+9.37×2.124、计算:4.65×32+2.5×46.5+0.465×4305、计算:4.05+4.08+4.11+…+7.026、不计算,在□中填入“>”“<”或“=”:⑴0.3÷0.03×0.003÷0.0003□10÷100×1000÷1000⑵32.7÷0.25+2.51×10□32.7×4+2.51÷0.1⑶282.4÷0.999□282.4×0.9997、计算:(0.12+0.22+0.32+0.42)2÷(0.13+0.23+0.33+0.43)38、计算:⑴2.89×6.37+4.63×2.89 ⑵327×2.8+17.3×28[全讲综合训练]1、计算:⑴14.529+(2.471-3); ⑵38.68-(4.7-2.32)2、计算:44.8-21.7-24.7+16.43、计算:131-68-85+534、计算:34.5×8.23-34.5+2.77×34.55、计算:7.9×25+33×2.56、计算:23×(63÷23÷4)÷217、计算:18.3÷4+5.3×2.5+7.13×7.58、计算:243587×11119、计算:1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.1910、计算:(8.4×2.5+9.7)÷(1.05÷1.5+8.4÷0.28)11、计算:1.25×67.875+125×6.7875+1250×0.05337512、计算:172.4×6.2+2724×0.3813、计算:0.739×(48.8+20.3+51.2+4.7)×8.88÷73914、计算:6.03+6.06+6.09+6.12+…+7.9515、计算:41.2×8.1+11×9.25+537×0.1916、(全奥赛题)计算⑴3.51×49+35.1×5.1+49×51⑵784070+78407.1+7840.72+784.073+78.40717、(全国我爱少年夏令营计算题竞赛)⑴7-4.36+5.378⑵3.5×[6.8-(1.6+3.6÷0.9)]÷8418、(全国奥赛题)计算3.6×42.3×3.75-12.5×0.423×2819(我爱数学少年夏令营计算竞赛)⑴0.76+29.44×1.6⑵0.1+0.3+…+0.9+0.11+0.13+…+0.97+0.99参考答案第1讲小数的巧算[同步巩固演练]1、8.8原式=7.93-1.93+2.8=8.82、7336原式=7736-400=73363、17原式=(3.17+5.29)-(2.74+0.26)+(4.7+6.3)=9-3+11=174、5100原式=17×2×25×2×3=51×100=51005、14.8原式=8.25×(10+8)=82.5+66=148.56、0.21原式=8.4÷(5×8)=8.4÷40=0.217、392原式=(49000×8)÷(125×8)=392000÷1000=3928、89原式=(11+0.125)×8=11×8+8×0.125=88+1=899、(1)1.79原式=2.65-1.65+0.97=1.97(2)5.21原式=4.74+1.26-0.77=6-0.77=5.21(3)3.16原式=5.47-1.47-0.84=4-0.84=3.16(4)99原式=9.9×9.9+9.9×0.1=9.9×(9.9+0.1)=99(5)10000原式=(8×1.25)×(2.5×4)×100=10×10×100=1000010、750原式=2.5×141+159×2.5=2.5×300=75011、26.0852原式=22.27+3.8152=26.085212、850.85原式=7142.85÷(3.7×2.7)×1.7×0.7=7142.85÷9.99×1.7×0.7=715×1.7×0.7=850.8513、100原式=1.25×(17.6+264)+45=1.25×44+45=55+45=10014、1201.7原式=(176.2+348.3+252.5)+(42.47+382.23)=777+424.7=1201.715、18原式=(6.4÷3.2)×(7.5÷2.5)×(8.1÷2.7)=2×3×3=1816、60原式=15.3×(7.88+2.12)-9.37×(7.38+2.62)=153.7-93.7=60[能力拓展平台]1、0.1因为C.DE和A.CDE的尾数相同,且A、CDE<C、DE,可知A、B=0.12、0.00001原式=1-(0.9+0.09+0.009+0.0009+0.00009)=1-0.99999=0.000013、34.56原式=7.88×(15.37-9.37)-2.12×(15.37-9.37)=7.88×6-21.2×6=6×(7.88-2.12)=6×5.76=34.564、465原式=4.65×32+4.65×25+4.65×43=4.65×(32+25+43)=4.65×100=4655、553.5(4.05+7.02)×100÷2=553.56、(1)>(2)=(3)>7、90原式=(0.01+0.04+0.09+0.16)2÷(0.001+0.008+0.027+0.064)3=0.32÷0.13=0.09÷0.001=908、(1)31.79原式=2.89×(6.37÷4.63)=31.79(2)1400原式=32.7×28+17.3+28=28×(32.7+17.3)=28×50=14009、312500000原式=(0.6258×2)×0.625×8×0.625=10000000×3.125=312500000[全讲综合训练]1、(1)14原式=(14.529+2.471)-3=17-3=14(2)36.3原式=38.68-4.7+2.32=38.68+2.32-4.7=41-4.7=36.32、14.8原式=44.8+16.4-21.7-24.7=14.83、31原式=131-153+53=314 345原式=34.5×(8.23+2.77-1)=34.5×10=3455、280原式=25×(7.9+3.3)=25×11.2=25×4×2.8=2806、0.75原式=(23÷23)×(63÷21)÷4=1×3÷4=0.757、71.3原式=1.83×2.5+5.3×2.5+7.13×7.5=2.5×(1.83+5.3)+7.13×7.5=2.5×7.13+7.13×7.5=7.13×10=71.38、2706251579、103.25原式=5.5×5+15.15×5=5×(5.5+15.15)=5×20.65=103.2510、1原式=(21+9.7)÷(0.7+30)=30.7÷30.7=111、1000原式=125×0.67875+125×6.7875+125×0.53375=125×(0.67875+6.7875+0.53375)=125×8=100012、2104原式=172.4×6.2+172.4×3.8+100×3.8=172.4×(6.2+3.8)+380=1724+380=210413、1.11原式=0.739×125×8.88÷739=0.739×1000×1.11÷739=1.1114、454.35原式=(6.03+7.95)×65÷2=454.3515、537.5原式=41.2×8.1+(41.2+12.5)×1.9+11×9.25=41.2×(8.1+1.9)+12.5×1.9+11×9.25=412+1.25+(19+11)+11×8=412+88+1.25×30=500+37.5=537.516、(1)2850原式=3.15×49+3.51×51+49×51=3.51×(49+51)+49×51=351+50+51-51=300+2550=2850(2)8711803原式=862477.1+8703.2=871180.317、(1)8.018原式=7+5.378-4.36=12.378-4.36=8.018(2)0.05原式=3.5×[6.8—5.6]÷84=3.5×1.2÷84=0.0518、(1)4230原式=4.23×1.25×108—1.25×4.23×=4.23×1.25×(108—28)=4.23×1.25×80 =4.23×1000 =423019、(1)47.864原式=0.76+47.104=47.864(2)27.25原式=(0.1+0.9)×5÷2+(0.11+0.99)×45÷2 =2.5+24.75 =27.25思维能力训练1.甲、乙两校平均每人捐款185元,甲校50人,平均每人捐款203元,乙校平均每人捐款170元,乙校有多少人捐款?列方程解这道题。
五年级奥数:第16讲 巧算24

五年级奥数:第16讲巧算24同学们可能都玩过“数学24”的游戏,它把枯燥的基本数字计算变得趣味盎然,能大大提高计算能力和速度,使得思维灵活敏捷,是一种寓教于乐的智力竞赛游戏。
游戏规则:给定四个自然数,通过+,-,×,÷四则运算,可以交换数的位置,可以随意地添括号,但规定每个数恰好使用一次,连起来组成一个混合运算的算式,使最后得数是24。
“数学24”游戏通常是用扑克牌进行的,此时,给定的四个自然数就被限定在1~13范围内了。
“数学24”游戏可以1个人玩,也可以多个人玩,比如四个人玩,把扑克牌中的大、小王拿掉,剩下的52张牌洗好后,每人分13张,然后每人出一张牌,每张牌的点数代表一个自然数,其中J,Q,K分别代表11,12和13,四张牌表示四个自然数。
谁最先按游戏规则算出24,就把这四张牌赢走。
然后继续进行。
最后谁的牌最多谁获胜。
要想算得又快又准,这就要靠平时的基本功了。
最重要的有两条:一是熟悉加法口诀和乘法口诀,二是利用括号。
括号既能改变运算顺序,也可以改变运算符号。
请用下面例题中给出的四个数,按规则算出24。
例1 3,3,5,6。
解一:根据3×8=24,3已有,将另三个数凑成8,得3×(5+6-3)=24。
解二:根据6×4=24,6已有,将另三个数凑成4,得6×(5-3÷3)=24或6×(3×3-5)=24。
解三:还是根据3×8=24,把3和8各分成两数,得(6-3)×(3+5)=24。
解四:先把其中两数相乘,积不足24的用另两数补足,得3×5+3+6=24。
解五:先把其中两数相乘,积超过24的用另两数割去,得5×6-3-3=24。
例2 2,2,4,8。
解一:根据8×3=24,得8×[(2+4)÷2]=24或8×(4-2÷2)=24。
五年级奥数小数的巧算

五年级奥数小数的巧算五年级的小朋友们,咱们今天来聊聊奥数里小数的巧算!这可有意思啦,就像一场神奇的数字游戏。
我先给大家讲个事儿。
有一次我去超市买东西,看到一支铅笔标价15 元,一个笔记本标价 28 元。
我心想,如果我买 5 支铅笔和 3 个笔记本,得花多少钱呢?这时候小数的巧算就能派上用场啦!咱们先来看小数加法的巧算。
比如说,23 + 078 + 77 ,咱们可以把 23 和 77 先加起来,因为它们凑整正好是 10 ,然后再加 078 ,是不是一下子就简单多啦?再说说小数减法的巧算。
像 85 36 24 ,我们可以把 36 和 24 先加起来,得到 6 ,然后用 85 减去 6 ,这样计算就轻松不少。
还有乘法的巧算呢!比如 25×125×32 ,我们可以把 32 拆分成 4×8 ,然后让 25 和 4 相乘得 10 ,125 和 8 相乘得 10 ,最后 10×10 就是 100 ,是不是很神奇?除法的巧算也有妙招。
像 125÷025 ,我们可以把除数 025 乘以 4 变成 1 ,同时被除数 125 也乘以 4 变成 50 ,这样 50÷1 就等于 50 啦。
下面咱们来做几道练习题试试手。
比如 46 + 098 + 54 ,大家想想怎么巧算?还有 78 29 11 ,这道题又该怎么做呢?对啦,咱们再回到开头我去超市买东西的事儿。
经过小数巧算,我很快就算出 5 支铅笔要花 75 元,3 个笔记本要花 84 元,一共是 159 元。
这样我心里就有数啦,带够钱才能把它们带回家。
小朋友们,掌握了小数的巧算,不仅能在考试中节省时间,在生活里也能像我这样快速算出买东西要花多少钱,可有用啦!大家要多练习,让自己的计算变得又快又准!相信你们都能成为小数巧算的小高手!。
小学五年级数学思维训练(奥数)《长方体和正方体巧算体积》讲解及练习题(含答案)

长方体和正方体巧算体积专题简析:物体所占空间的大小叫物体的。
长方体和正方体的物体都占一定的空间。
长方体所含体积的数量正好等于长、宽、高的乘积,所以,长方体的体积=长×宽×高=横截面面积×长=底面积×高例1 把一块棱长为6分米的正方体钢坯,熔铸成横截面是9平方分米的长方体钢材。
铸成的钢材有多长?分析与解答:把正方体钢坯熔铸成长方体后,虽说形状变了,可体积没有变,正方体钢坯的体积就是长方体钢材的体积。
所以先求出正方体的体积,也就是长方体的体积。
用体积除以长方体钢材的横截面面积,就可以求出长方体钢材的长度了。
方法总结:抓住体积不变这个隐藏的量,熔铸前体积等于熔铸后的体积,再根据“体积÷横截面积=长”这个公式,从而轻松解决问题。
随堂练习:把一个棱长10厘米的正方体橡皮泥,重新捏成一个高和宽都是2厘米的长方体,这个长方体的长是多少分米?例2 一只长15分米、宽12分米的长方体玻璃钢中,有10分米深的水。
放入一块棱长为3分米的正方体铁块,铁块全部浸没在水中并且水未溢出,这时,水面升高了几厘米?分析与解答:将物体放入容器中,水面的高度肯定上升,上升的水的体积其实就是物体的体积。
本题可以先求出正方体铁块的体积,也就是增加的水的体积,再用这个体积除以容器的底面积从而求出水面上升的高度了。
方法总结:要明白一点:当物体完全沉没在水中时,物体的体积=上升的水的体积。
随堂练习:一个长方体容器,底面积是200平方厘米,高10厘米,里面盛有5厘米深的水。
现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3 如图,一个长方体,高截去2cm,表面积就减少了48平方分析与解答:当高少了2cm后,首先明白表面积少了哪些面?应该是前后左右四个小面,因为上面虽然也少了,但又多出来一个上面,所以少了4个小面,因为剩下的部分是一个正方体,所以这四个小面是完全相等的,故用48除以4从而得出一个小面的面积,再用一个小面的面积除以2,从而能求出正方体的棱长,也是原长方体的长和宽,接着求出原长方体的高,最后求出体积。
五年级奥数(教案)第1讲:速算与巧算(二)

=2×3×3
=18
练习2:[8分]
计算:
[1]16÷3.2÷2.5
[2]12.5×36.8÷3.68
[3][7.5×5.1×8.4]÷[1.7×4.2×2.5]
[4]9.3×3.2÷3.23×6.46÷1.6÷3.1
分析:
[1][2]两个题目主要是利用除法的性质来解题。[3][4]两个题目跟例题的类型也是一样的,先变成有倍数关系的两个数相除,然后再把结果相乘,最后得出结果。
是不是也需要花相当长的时间呢?那么对于这种类型的题目有没有更简便
的方法呢?思考一下。
生:老师我发现,被除数里数字与除数里的数字存在着倍数关系。
师:谁和谁存在倍数关系?
生:4.8与2.4,7.5与2.5,8.1与2.7。
师:是的,正好存在三对倍数关系的数。从这里出发,我们可以怎么去思考呢?
生:我们可以分别相除,然后再把结果相乘,这样和原来的结果是一样的。
一、复习导入[3分]
师:同学们,上节课我们学了什么?
生:速算与巧算。
师:是的,主要学了哪些速算的方法呢?
生:特殊的数字相乘能够凑整。
师:是的,特殊的数字,比如说25和4相乘等于100,125和8相乘等于1000。
这些特殊的数字,其实在小数里也是适用的。所以当看到特殊数字的时候,
我们可以直接将它们凑在一起,使计算变得简便,如果没有这样的两个数,
师:这个就是解题的关键。现在会做了吗?
生:最后我们可以利用乘法分配律的逆运算来解答,[7.2+2.8]×11.11=10×
11.11=111.1。
师:这是第一小题,接下来看第二小题,不仅有乘法,加法,还有减法,对吗?
精品推荐小学五年级奥数小数的巧算 相遇问题专练

简便计算1、5.6×9.92、783÷2.5÷0.43、373÷64÷25÷1254、37.2×93+37.2×6+372×0.15、8.1×1.3-8÷1.3+1.9×1.3+11.9÷1.36、2000×200120012001-2001×200020002000 姓名:7、10.37×3+1.5×19.268、 2018×20192019-2019×2018×20189、2.005×390+20.05×41+200.5×210、206.412÷10.3÷8.93×1030×89.3÷20.641211、512.1024÷0.51212、(8.95×5.32×4.31×8.79×5.3)÷(0.895×5.32×0.431×8.79×0.53)相遇问题1.甲、乙两地相距300千米,客车从甲地开往乙地,每小时行40千米,1小时后,货车从乙地开往甲地,每小时行60千米。
货车出发几小时后与客车相?2. 甲、乙两船分别从相距550千米的A、B两港相向开出,甲船每小时行30千米,出发2小时后,乙船才从B港开出,速度为每小时40千米。
乙船开出几小时后与甲船相遇?3. 客车和货车同时从A、B两地相向开出,客车每小时行60千米,货车每小时行80千米。
两车在距中点30千米处相遇。
求A、B两地相距多少千米?4. 甲、乙两辆汽车同时从两地出发,相向而行。
甲汽车每小时行50千米,乙汽车每小时行55千米。
两车在距中点15千米处相遇。
求两地之间的距离是多少千米?5. 两辆汽车从相距500千米的两城同时出发,相向而行。
五年级下册数学奥数整数巧算人教版
用简便方法计算 (3)70÷25+30÷25
= (70+30)÷25 = 100÷25 =4
(2)2600÷25 = (2600×4)÷(25×4) = 10400÷100 = 104
整数的速算与巧算
问题情境
第8讲
整数巧算
例1:计算 99+999+9999+99999
=100+1000+10000+100000-1-1-1-1 =111100-1-1-1-1 =111100-4 =111096
将99、999、9999、99999看成100、 1000、10000、100000,多加的最后要减去。
=(70+30)÷4 =100÷4 =25
例5:用简便方法计算 (4) 1300÷25
=(1300×4)÷(25×4) = 5200÷100 = 52
用简便方法计算 (1)640÷(16÷10)
= 640÷16×10 = 40×10 = 400
(2)500÷200×4 = 500×4÷200 = 2000÷200 = 10
= 103×(96÷16) = 103×6 = 618
例3:用简便方法计算 (3) 101×99
= (100+1)×99 = 100×99+1×99 = 9900+99 = 9999
例3:用简便方法计算
(4) 444×25
= 111×4×25 = 111×(4×25) = 111×10043;6+…+98+100)-(1+3+5+…+97+99)
= 2-1+4-3+6-5+…+98-97+100-99 = 1+1+1+…+1+1 = 50
2022-2023学年小学五年级奥数(全国通用)测评卷01《速算和巧算》(解析版)
【五年级奥数举一反三—全国通用】测评卷01《速算和巧算》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共7小题,满分21分,每小题3分)1.(2015•创新杯)计算:2.3÷0.08÷1.25=()A.230 B.23 C.2.3 D.0.23【分析】根据除法的性质简算即可.【解答】解:2.3÷0.08÷1.25=2.3÷(0.08×1.25)=2.3÷0.1=23故选:B.2.(2009•华罗庚金杯)下面有四个算式:①0.6+=②0.625=③+===④3×4=14其中正确的算式是()A.①和②B.②和④C.②和③D.①和④【分析】①循环小数加、减要根据“四舍五入”取其近似值再计算,0.6中的6不能与中的循环节中的1相加,答案不正确.②把分数化成小数,用分子除以分母5÷8=0.625;或把小数0.625化成分数并化简是,答案正确.③根据分数加、减法的计算法则,把异分数分母化成同分数分数再加、减,分子不变,只把分子相加、减,答案不正确.④把两个带分数化成假分数再相乘,结果再化成带分数,正确.【解答】解:①0.6+=不正确;②0.625=正确;③+===不正确;④3×4=14正确.故选:B.3.(2003•创新杯)2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1的计算结果是()A.2002 B.2003 C.2004 D.4005【分析】四个数一组相互抵消,2000是被4整除的,也就是说2000以后的数都可以相互抵消,因为2002÷2=1001,不是偶数组,即有一组不能被抵消,最后剩下2003+2002﹣2001=2004.【解答】解:2003+2002﹣2001﹣2000+1999+1998﹣1997﹣1996+…+7+6﹣5﹣4+3+2﹣1=2003+(2002﹣2001)+(﹣2000+1999)+(1998﹣1997)+…+(6﹣5)+(﹣4+3)+(2﹣1)=2003+1﹣1+1+…+1﹣1+1=2003+1=2004故选:C.4.0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的()A.交换律B.结合律C.分配律【分析】本题考查的是乘法运算律的运用.【解答】解:乘法分配律:(a+b)×c=a×c+b×c所以0.65×201=0.65×(200+1)=0.65×200+0.65运用了乘法的分配律.故选:C.5.与0.456×2.1的结果相同的算式是()A.4.56×21 B.21×0.0456 C.45.6×0.21 D.456×0.021【分析】根据积不变的规律,其中一个因数的小数点向右(左)移动多少位,另一个因数的小数点就要向左(右)移动多少位,据此分析解答即可.【解答】解:0.456×2.1=4.56×0.21=0.0456×21=45.6×0.021=456×0.0021故选:B.6.与61.2÷3.4计算结果相同的是()A.6.12÷0.34 B.612÷0.34C.0.612×0.034 D.612÷34【分析】根据商不变的性质,被除数和除数同时乘以或除以一个数(0除外),商不变,据此分析解答即可.【解答】解:61.2÷3.4=612÷34故选:D.7.105×18=100×18+5×18运用了()A.乘法交换律B.乘法结合律C.乘法分配律【分析】本题考查的是乘法运算律的运用.【解答】解:105×18=(100+5)×18=100×18+5×18运用了乘法分配律.故选:C.二.填空题(共10小题,满分30分,每小题3分)8.(2018•其他模拟)计算:3﹣5+7﹣9+11﹣13+…+1995﹣1997+1999=1001.【分析】本题可以从后往前算.【解答】解:3﹣5+7﹣9+11﹣13+……+1995﹣1997+1999=1999﹣1997+1995﹣1993+……+11﹣9+7﹣5+3=(1999﹣1997)+(1995﹣1993)+……+(11﹣9)+(7﹣5)+3=2+2+2+……+2+3=2×499+3=10019.(2018•其他模拟)a=4,b=25,则a+b=,a×b=,a÷b=.【分析】根据题意可知我们运用加法的分配律、乘法的交换律和结合律即可解答.【解答】解:a+b=[(a+b)×]÷=(40+25)÷=a×b=[(a×)×(b×)]÷(×)=(40×25)÷=a÷b=(a×)÷(b×)=40÷25=故:答案见上面的计算结果.10.(2017•育苗杯)计算39.07﹣22.78÷3.4=32.37.【分析】这题有减法,有除法,要先算除法,再算减法.【解答】解:39.07﹣22.78÷3.4=39.07﹣6.7=32.3711.(2018•迎春杯)算式(20.17﹣12.02÷6)×6的计算结果是109.【分析】根据乘法的分配律简算即可.【解答】解:(20.17﹣12.02÷6)×6=20.17×6﹣12.02÷6×6=121.02﹣12.02=109故答案为:109.12.(2017•其他杯赛)计算:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=14070.【分析】应用加法交换律、加法结合律和减法的性质,求出算式的值是多少即可.【解答】解:(2017﹣1)+(2016﹣2)+…+(2011﹣7)=2016+2014+2012+2010+2008+2006+2004=2010×7=14070故答案为:14070.13.(2016•其他杯赛)计算:91.5+19.8+80.2=191.5.【分析】应用加法结合律,求出算式的值是多少即可.【解答】解:91.5+19.8+80.2=91.5+(19.8+80.2)=91.5+100=191.5故答案为:191.5.14.(2016•其他杯赛)计算:(102.4+89.6﹣38×5)×(2016﹣126×16)=0.【分析】首先根据126×16=2016,求出2016﹣126×16的值是0;然后根据:0和任何数相乘都得0,可得:算式的值是0.【解答】解:(102.4+89.6﹣38×5)×(2016﹣126×16)=(102.4+89.6﹣38×5)×(2016﹣2016)=(102.4+89.6﹣38×5)×0=0故答案为:0.15.(2018•陈省身杯)计算200﹣(16+17+18+…+23+24)=20.【分析】凑整计算,通过移多补少将16~24求和,变为9个20求和,据此解答即可.【解答】解:200﹣(16+17+18+…+23+24)=200﹣9×20=200﹣180=2016.(2018•其他模拟)计算:53.3÷0.23÷0.91×16.1÷0.82=5000.【分析】通过分析式中数据可知,53.3能被0.82除尽,16.1能被0.23除尽,由此根据交换律及结合律进行巧算即可.【解答】解:53.3÷0.23÷0.91×16.1÷0.82=(53.3÷0.82)×(16.1÷0.23)÷0.91=65×70÷0.91=13×5×10×7÷0.7÷1.3=10×5×10×10=5000故答案为:5000.17.(2007•迎春杯)计算:379×0.00038+159×0.00621+3.79×0.121= 1.59.【分析】先把算式变形为379×0.00038+379×0.00121+159×0.00621,再运用乘法的分配律进行简算即可.【解答】解:379×0.00038+159×0.00621+3.79×0.121=379×0.00038+379×0.00121+159×0.00621=379×(0.00038+0.00121)+159×0.00621=379×0.00159+159×0.00621=0.00379×159+159×0.00621=(0.00379+0.00621)×159=0.01×159=1.59;故答案为:1.59.三.计算题(共6小题,满分18分,每小题3分)18.(2016•中环杯)计算:(20.15+40.3)×33+20.15.【分析】先把403变形为20.15×2,再根据乘法的分配律简算即可.【解答】解:(20.15+40.3)×33+20.15=(20.15+20.15×2)×33+20.15=20.15×3×33+20.15=20.15×(3×33+1)=20.15×100=201519.计算(1)24×2×125×25(2)125×32×25×2013【分析】根据乘法的交换律与结合律简算即可.【解答】解:(1)24×2×125×25=3×(8×125)×(2×25)=3×1000×50=150000(2)125×32×25×2013=(125×8)×(4×25)×2013=1000×100×2013=20130000020.(2018•学而思杯)2.8×27+28×2.9+2.8×44【分析】首先把28×2.9化成2.8×29,然后应用乘法分配律,求出算式的值是多少即可.【解答】解:2.8×27+28×2.9+2.8×44=2.8×27+2.8×29+2.8×44=2.8×(27+29+44)=2.8×100=28021.(2017•春蕾杯)计算①0.8÷9+0.1÷9=0.1;②201.7×4.5+2017×0.35+20.17×20=2017;③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=0.4.【分析】①根据除法的性质简算即可.②首先把2017×0.35、20.17×20分别化成201.7×3.5+201.7×2,然后根据乘法分配律计算即可.③首先计算小括号里面的算式,然后计算乘法和减法即可.【解答】解:①0.8÷9+0.1÷9=(0.8+0.1)÷9=0.9÷9=0.1②201.7×4.5+2017×0.35+20.17×20=201.7×4.5+201.7×3.5+201.7×2=201.7×(4.5+3.5+2)=201.7×10=2017③(0.1+0.2+0.3+0.4)×(1+0.1+0.2+0.3)﹣(1+0.1+0.2+0.3+0.4)×(0.1+0.2+0.3)=1×1.6﹣2×0.6=1.6﹣1.2=0.422.计算:2015+201.5+20.15+985+98.5+9.85.【分析】应用加法结合律、乘法分配律,求出算式的值是多少即可.【解答】解:2015+201.5+20.15+985+98.5+9.85=(2015+201.5+20.15)+(985+98.5+9.85)=(20.15×100+20.15×10+20.15)+(9.85×100+9.85×10+9.85)=20.15×(100+10+1)+9.85×(100+10+1)=20.15×111+9.85×111=(20.15+9.85)×111=30×111=333023.(2003•创新杯)计算:0.79×0.46+7.9×0.24+11.4×0.079.【分析】先把算式变形为0.79×0.46+0.79×2.4+1.14×0.79,再根据乘法的分配律简算即可.【解答】解:0.79×0.46+7.9×0.24+11.4×0.079=0.79×0.46+0.79×2.4+1.14×0.79=0.79×(0.46+1.14+2.4)=0.79×4=(0.8﹣0.01)×4=0.8×4﹣0.01×4=3.2﹣0.04=3.16四.解答题(共6小题,满分31分)24.(5分)(2015•奥林匹克)计算:(12×21×45×10.2)÷(15×4×0.7×51)【分析】运用除法性质及乘法交换律、结合律简算.【解答】解:(12×21×45×10.2)÷(15×4×0.7×51)=(12÷4)×(21÷0.7)×(45÷15)×(10.2÷51)=3×30×3×0.2=5425.(5分)(2018•学而思杯)903+899+902+897+904+898【分析】方法一:应用加法交换律和加法结合律,求出算式的值是多少即可.方法二:首先把每个加数都化成900与某个数的和(或差)的形式;然后应用加法交换律和加法结合律,求出算式的值是多少即可.【解答】解:方法一:903+899+902+897+904+898=(903+897)+(902+898)+(899+904)=1800+1800+1803=5403方法二:903+899+902+897+904+898=(900+3)+(900﹣1)+(900+2)+(900﹣3)+(900+4)+(900﹣2)=(900+900+900+900+900+900)+(3﹣1+2﹣3+4﹣2)=5400+3=540326.(5分)(1996•其他杯赛)376+385+391+380+377+389+383+374+366+378=3799.【分析】将给出的数字写成以380为标准的数,再相加减即可求解.【解答】解:376+385+391+380+377+389+383+374+366+378=380×10﹣(4+3+6+14+2)+(5+11+9+3)=3800+28﹣29=3799.故答案为:3799.27.(5分)(1995•其他杯赛)0.×0.=.【分析】通过0.101×0.19=0.01919,0.0101×0.019=0.0001919,0.00101×0.0019=0.000001919,可以发现小数与小数相乘,积的0的个数等于每个因数零的个数(零的个数是指到第一不为零的之前所有的0,包含小数点前的那一个零)之和,所以该题继而解决.【解答】解:0.×0.=故答案为:.28.(5分)(2015•春蕾杯)(1)10.44÷1.2×0.3= 2.61;(2)[0.5×(6+0.6)﹣0.5]÷2.5= 1.12.【分析】(1)根据除法的性质计算即可.(2)根据乘法运算定律和除法的性质计算即可.【解答】解:(1)10.44÷1.2×0.3=10.44÷(1.2÷0.3)=10.44÷4=2.61(2)[0.5×(6+0.6)﹣0.5]÷2.5=[0.5×(6+0.6﹣1)]÷2.5=0.5×5.6÷2.5=0.5÷2.5×5.6=0.2×5.6=1.12故答案为:2.61、1.12.29.(6分)(2017•学而思杯)(1)解方程:3(15﹣2x)+12=85﹣10x (2)计算:4.02×16+33×4.02﹣4.9×20.2.【分析】(1)根据等式的性质解方程即可;(2)根据乘法的分配律简算即可.【解答】解:(1)3(15﹣2x)+12=85﹣10x45﹣6x+12=85﹣10x10x﹣6x=85﹣574x=28x=7(2)4.02×16+33×4.02﹣4.9×20.2=4.02×(16+33)﹣49×2.02=4.02×49﹣49×2.02=49×(4.02﹣2.02)=49×2=98。
五年级奥数专题 速算与巧算二(学生版)
学科培优数学速算与巧算二学生姓名授课日期教师姓名授课时长知识定位本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
重点难点:找出题目中可以进行“凑整”的数。
利用运算律或者公式调整运算顺序。
考点:做复杂、多个数的连加计算时,利用运算律或者公式,尽量避免进位。
适当调整运算顺序。
知识梳理一、巧算的几种方法:分组凑整法:就是将算式中的数分成若干组,使每组的运算结果都是整十、整百、整千......的数,再将各组的结果求和(差)加补凑整法1、移位凑整法:先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加。
2、借数凑整法:有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。
其他类型的巧算二、基本运算律及公式:两个运算律:一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
人教版五年级奥数 小数的巧算
小数的巧算训练目标巧算也是简便运算,在小数的四则运算中,可以根据数的特点,通过数的分解、合并改变原变原来的运算顺序,从而达到简便计算的目的。
一道计算题的肩膀算法常常不止一种,有时也运用四则运算的定律、性质或利用和、差、积、商的变化规律,使计算简便。
典型例题例题1 计算:4.25—1.64+8.75—9.36=?分析与解答:利用交换律(在同一级运算中,改变运算顺序,结果不变)和减法的运算性质(一个数分别减去两个数等于这个数减去这两个数的和),即可巧妙解答该题。
解:原式=(4.25+8.75)—(1.64+9.36)例题2 计算:45.3×8.77—45.3+2.23×45.3=?分析与解答:这道题可以应用()的逆运算,提取()来计算。
把45.3看成(),把相同因数45.3提出来,不同的因数相加减。
解:原式=例题3 计算:200.5×0.82—20.05×4.5—20.05×3.7=?分析与解答:这道题不能直接用乘法分配律,但是观察后,我们发现因数的数字组成是一样的,小数点的位置不同,先用积不变的性质定理整理后,再用乘法分配律计算。
解:原式=例题4 计算:0.9+9.9+99.9+999.9=?分析与解答:这道题看上去很复杂,但仔细观察可发现,他们都离整数很近,可以采用化零为整书的方法使其简便。
解:原式=例题5 计算:11.8×43—860×0.09=?分析与解答:这道题看上去没有简便方法,可是通过变化,可以得到简便的效果,可以用乘积不变的性质使算式发生变化。
解:原式=基础练习1.计算。
(1)18.63+5.68+41.37+10.2+29.8 (2)3.18+4.57+2.82+5.432.计算。
(1)4.75+(2.25-3.5+5.9)(2)9.83-(4.74+1.83)(3)9.54-1.68+0.46-1.32 (4)1991+199.1+19.91+1.9913.计算。