壳聚糖应用于水处理的化学基础

合集下载

关于壳聚糖的溶解性以及应用PPT讲稿

关于壳聚糖的溶解性以及应用PPT讲稿
• 壳聚糖是一种阳离子型天然多糖,能与DNA形成聚电介质,因此壳聚
糖可用作基因转移工具。
• 3.1 在医药领域的应用
• 壳聚糖可以用来制备伤口覆盖膜,具有很
好的生物相容性和抗病毒性,并能促进创 面的愈合。例如,用壳聚糖制成的口腔溃 疡膜,疗效可靠,无不良反应。
• 壳聚糖及衍生物在人体内可生物降解,并
相类似,分子呈直链状,极性强,易结晶,但由于熔点高于其自身分 解温度,故不易得到非晶态的壳聚糖。
• 在特定的条件下,壳聚糖能发生水解、烷
基化、酰基化、羧甲基化、磺化、硝化、 卤化、氧化、还原、缩合和络合等化学反 应,可生成各种具有不同性能的壳聚糖衍 生物,从而扩大了壳聚糖的应用范围。
• 其结构为下图所示:
• 自1859年,法国人Rouget首先得到壳聚糖
后,这种天然高分子的生物官能性和相容 性、血液相容性、安全性、微生物降解性 等优良性能被各行各业广泛关注,在医药、
• 3.3 在生化领域的应用
• 壳 聚糖具有生物降解的特性,可制成可降解的薄膜。壳聚糖的游离氨
基,对各种蛋白质的亲和力非常高,可用来作为固定化酶、抗原、抗 体等的载体。改性甲壳素固定化酶不影响酶的活性,且有很高的催化 能力,可重复使用。
• 壳聚糖的外观是白色或淡黄色半透明状固体,但壳聚糖不溶于水和碱
溶液,也不溶于硫酸和磷酸。溶于质量分数为1%的乙酸溶液后形成 透明豁稠的壳聚糖胶体溶液是最重பைடு நூலகம்的性质之一。
• 壳聚糖无毒、无害,具有良好的保湿性、润湿性,但吸湿性较强,遇
水易分解。其吸湿性仅次于甘油,优于山梨醇和聚乙二醇。
• 壳聚糖的相对分子质量为10万到30万之间。壳聚糖分子结构与纤维素
• 方法:将壳聚糖用高温浓碱浸泡,然后洗

《壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用》

《壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用》

《壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用》壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用一、引言水凝胶是一种具有高度吸水性且能够保持其体积的三维网状聚合物,其在药物释放、生物材料、化妆品等多个领域有广泛的应用。

其中,壳聚糖和氧化海藻酸钠这两种生物材料制备的水凝胶因具有优异的生物相容性和生物降解性,成为近年来研究的热点。

本文将详细阐述壳聚糖/氧化海藻酸钠水凝胶的制备方法及其初步应用。

二、壳聚糖/氧化海藻酸钠水凝胶的制备1. 材料与试剂本实验所需材料包括壳聚糖、氧化海藻酸钠、交联剂等。

所有试剂均为分析纯,购买自国内知名化学试剂供应商。

2. 制备方法(1)将壳聚糖溶解在醋酸溶液中,形成壳聚糖溶液;(2)将氧化海藻酸钠溶解在去离子水中,形成氧化海藻酸钠溶液;(3)将两种溶液混合,加入适量的交联剂,搅拌均匀;(4)将混合溶液置于冰浴中,缓慢搅拌并逐渐升温,使溶液形成凝胶状态。

三、水凝胶的表征通过扫描电子显微镜(SEM)观察水凝胶的微观结构,并通过红外光谱(IR)分析水凝胶的化学结构。

结果表明,制备的壳聚糖/氧化海藻酸钠水凝胶具有三维网状结构,且化学结构符合预期。

四、初步应用1. 药物释放壳聚糖/氧化海藻酸钠水凝胶具有良好的药物载体性能,可用于药物释放。

将药物与水凝胶混合,制备成载药水凝胶。

通过模拟体内环境,观察药物的释放情况。

结果表明,载药水凝胶具有缓慢且持续的药物释放特性,可有效延长药物在体内的作用时间。

2. 伤口敷料壳聚糖/氧化海藻酸钠水凝胶具有良好的吸湿性和保湿性,可用于伤口敷料。

将水凝胶敷于伤口处,可吸收伤口渗出液,为伤口提供湿润的环境,促进伤口愈合。

同时,水凝胶的生物相容性和生物降解性也使其成为理想的伤口敷料材料。

五、结论本文成功制备了壳聚糖/氧化海藻酸钠水凝胶,并对其进行了表征。

该水凝胶具有优异的药物载体性能和伤口敷料应用潜力。

通过模拟体内环境的药物释放实验和伤口敷料实验,验证了其应用效果。

脱乙酰度≥95%,,粘度100-200 mpa.s壳聚糖的分子量

脱乙酰度≥95%,,粘度100-200 mpa.s壳聚糖的分子量

脱乙酰度≥95%、粘度100-200 mPa·s壳聚糖的分子量研究一、引言壳聚糖作为一种重要的多糖,在生物医学、食品、环保等众多领域有着广泛的应用。

其分子量的大小对其性能和应用有着重要的影响。

本文将详细讨论脱乙酰度≥95%、粘度100-200 mPa·s壳聚糖的分子量及其相关性质。

二、壳聚糖的基本性质壳聚糖是一种线性多糖,由N-乙酰葡萄糖胺通过β-1,4糖苷键连接而成。

其分子量分布广泛,可以从几千到几百万道尔顿不等。

壳聚糖的分子量对其溶解性、粘度、生物活性等性质有着重要的影响。

三、脱乙酰度与粘度的关系脱乙酰度是壳聚糖的一个重要参数,它反映了壳聚糖分子中乙酰基的含量。

研究表明,脱乙酰度与壳聚糖的溶解性、粘度等性质密切相关。

当脱乙酰度≥95%时,壳聚糖的溶解性和粘度都会显著增加。

同时,粘度也是壳聚糖分子量的一个重要指标。

粘度在100-200 mPa·s 范围内的壳聚糖,其分子量通常较高。

四、壳聚糖分子量的测定方法壳聚糖分子量的测定方法有多种,包括凝胶渗透色谱法、光散射法、粘度法等。

其中,凝胶渗透色谱法是一种常用的方法,它可以通过标准曲线法或普适校准法来确定壳聚糖的分子量。

光散射法则可以用来测定壳聚糖分子的均方根半径和第二维里系数,从而计算出分子量。

粘度法则是通过测定壳聚糖溶液的粘度来推算其分子量。

五、脱乙酰度≥95%、粘度100-200 mPa·s壳聚糖的应用脱乙酰度≥95%、粘度100-200 mPa·s的壳聚糖具有良好的溶解性和生物活性,因此在许多领域都有广泛的应用。

在生物医学领域,它可以作为药物载体、生物医用材料等;在食品领域,它可以作为食品添加剂、保鲜剂等;在环保领域,它可以作为水处理剂、土壤改良剂等。

这些应用都与壳聚糖的分子量密切相关,因此准确测定壳聚糖的分子量对于指导其应用具有重要意义。

六、前景与展望随着科技的不断发展,对壳聚糖的研究和应用也将不断深入。

壳聚糖ppt课件

壳聚糖ppt课件
2019 13
四 壳聚糖抑菌性能影响因素、机 理及应用
1 壳聚糖的抑菌性能影响因素
(1) 分子量对壳聚糖抑菌性能的影响:
壳聚糖分子量对其抑菌性能的影响初步认为与不同 分子量壳聚糖的不同作用机理及细菌的不同结构与特性有关。
(2)浓度对壳聚糖抑菌活性的影响:
水溶性壳聚糖的抗菌活性随其浓度的增加而增加, 且它的抗真菌活性强于抗细菌活性。
2019 9
3 水溶性甲壳素的热性质
水溶性甲壳素的玻璃化转变温度( Tg)是 219.6℃。而脱乙酰度为95.8l%的壳聚糖的玻璃 化温度是202.6℃。水溶性甲壳素的玻璃化转变温 度高于壳聚糖,主要是因为水溶性甲壳素含有较多 的乙酰基,分子间的作用较壳聚糖强,分子运动更 困难。从水溶性甲壳素和壳聚糖的热失重结果分析, 二者在60℃附近开始脱水,水溶性壳聚糖脱去总重 的4.61%,而壳聚糖脱去了3.69%,说明水溶性甲 壳素的亲水性更好,在环境条件下样品含水量高, 与水的作用更强。
(3)壳聚糖在农业中的应用
可做种子处理剂、生物农药
2019 17
(4)壳聚糖在医疗卫生中的应用
壳聚糖可用于伤口填料物质,具有杀菌、促进伤口 愈合、吸收伤口渗出物、不易脱水收缩,减少疤痕的生 成等作用。
(5)壳聚糖在环保中的应用
利用壳聚糖的抗菌性,可将壳聚糖用于生化水处理 方面。
(6)壳聚糖在化妆品中的应用
2019
-
19
6 金福生-壳聚糖抗菌成膜喷雾剂
简介:今福生是一种喷雾型分子级隐形敷料,喷洒在皮
肤、黏膜患处及损伤表面,通过全新的物理及生物双重抗 菌机制,隔离、杀灭病原微生物,同时促进组织修复与再 生。 作用机理:物理及生物双重抗菌机理。 使用范围:普通外科、皮肤科、妇产科、烧伤科、整形 美容外科、肛肠科、褥疮的预防与治疗、预防医院内感染 等。

壳聚糖 脱乙酰基反应

壳聚糖 脱乙酰基反应

壳聚糖脱乙酰基反应
壳聚糖是一种常见的生物大分子,广泛存在于海洋和陆地生物体中。

壳聚糖的分子结构中存在大量的乙酰基,而脱乙酰基反应则是指将壳聚糖分子中的乙酰基去除的化学过程。

壳聚糖脱乙酰基反应可以通过多种方法实现,其中最常用的方法是水解反应。

在碱性条件下,水分子可以与壳聚糖中的乙酰基发生反应,生成乙酸和脱乙酰基的壳聚糖。

这种反应在生物体内由一些特定的酶催化,起到调节壳聚糖结构和功能的重要作用。

脱乙酰基反应可以改变壳聚糖的性质,影响其溶解性、胶凝性和生物活性。

通过控制脱乙酰基反应的条件,可以调整壳聚糖分子中乙酰基的含量,从而改变其溶解性和胶凝性。

此外,脱乙酰基反应还可以导致壳聚糖分子结构的改变,从而影响其生物活性。

壳聚糖脱乙酰基反应在生物医学领域有着广泛的应用。

例如,在药物传递系统中,壳聚糖可以作为载体来包裹药物分子,并通过脱乙酰基反应在特定条件下释放药物。

此外,在组织工程领域,壳聚糖可以作为支架材料,通过控制脱乙酰基反应来调控细胞的黏附和生长。

壳聚糖脱乙酰基反应是一种重要的化学反应,可以改变壳聚糖的性质和功能,具有广泛的应用前景。

通过深入研究壳聚糖脱乙酰基反应的机理和调控方法,我们可以进一步发展壳聚糖的应用,为生物
医学和组织工程等领域的发展做出贡献。

壳聚糖

壳聚糖

壳聚糖制备了壳聚糖(CTS)- 聚硅酸硫酸铁(PFSS)复合絮凝剂。

考察了复合絮凝剂组成、投加量、pH 值以及沉降时间对皂素废水深度处理的影响,通过絮凝试验,得出最佳工艺:复合絮凝剂(CTS-PFSS)投加量为12 .5mg / L,pH 值的范围为7.0,沉降时间为15 min,在此条件下COD、浊度的去除率分别达到93.9%和93. 3%。

标签:壳聚糖聚硅酸硫酸铁皂素废水皂素属于结构复杂的甾体类化合物,是生产甾体激素类药物的基础原料,由黄姜经发酵、酸解、萃取等工序生产得到[1]。

生产过程中排放的废水色度大、酸性强、有机物浓度高,处理难度较大,通过一次生化处理后COD浓度仍达3000mg/L左右,不能达到工业废水排放的最低标准,需要经过后续深度处理才能符合要求。

壳聚糖(CTS)是甲壳素的脱乙酰化产物,来源于甲壳类动物和真菌生物,壳聚糖分子链段中含有大量的氨基、羟基和N- 乙酰基,这些活性功能基团使壳聚糖通过氢键或盐键形成具有类似网状结构的笼形分子[2],其絮凝作用很强。

但壳聚糖具有分子量小,架桥能力差、成本高、难溶于水等缺点[3]。

聚硅酸硫酸铁(PFSS)是一种高效低耗无二次污染的新型无机高分子絮凝剂。

本文拟采用PFSS与CTS复配,制备复合絮凝剂,由此改变了壳聚糖架桥能力并降低处理成本,此絮凝剂在水处理过程中形成的絮体大且沉降快[4]。

1实验部分1.1试剂和仪器壳聚糖(脱乙酰度90%);NaSiO3(SiO21.8%),H2SO4质量分数为98%,Fe2(SO4)3、NaOH均为分析纯,聚合硫酸铁(PFS)按文献方法[5]制备[5]。

PHS-3C型酸度计; JJ-4六连同步电动搅拌器;STA-A1Z型浊度仪;HH-6 COD 测定仪;电子天平(0.0001g)。

1.2复合絮凝剂的制备将一定体积的聚合硫酸铁(PFS)溶液加入用硅酸钠现制的的聚合硅酸(PS)中,保证n(Fe ):n (Si )=1:1,混合均匀,在40OC、频率约为50/min恒温振荡器中反应2.5h,静置陈化3h,得到碱化度为1.5的PFSS产物。

壳聚糖复合絮凝剂在工业污水处理中的应用研究

壳聚糖复合絮凝剂在工业污水处理中的应用研究

壳 聚 糖 与 传 统 的化 学 絮凝 剂 相 比, 有 投 加 量 具
( n ) 5 . m / ,S为 12m / ; Z 为 81 gL S 5 g L 原水 : O 为 CD 22 8m / ,S为 2 6m / , 厂 制 革 废 水 : O 为 4 g L S 4 g L 某 CD
wa twae ssu id.r l raig rs t h w d ta e o a d w t h r dt n lf c u a ts c sP s e trwa tde r ete tn eul s o e h twh n c mp r ih tet ii a l c n u h a AC,CO } s e a o o l D,S S
a d rmo a ae o h sf e u a twe tu 0% .2 n e v lr t t i o c l n p l f l n 一 0% ,t ete t o to i o c l tWa e u e y4 h rai c s ft sf e ua Srd c d b 0% ~5 ng h l n 0% ,a d n i e o d p l to e ra e raey.1e fr .t i fo e ln So b iu c n mi d e v rn na e ei t s c n ol in d c s d ge t l lr o s u e I e e hsl e u a ti fo vo s e o o c a n io me tlb n l s. n t K e wo d c ioa c mp st n fo c l t wae r ame t y rs ht n s o o io c u a i l n t rte t n
聚合 氯化 铝 ( A ) 聚 丙 烯 酰 胺 ( A ; A + PC; P M) P C

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况一、本文概述《羧甲基壳聚糖的性能及应用概况》这篇文章旨在全面介绍羧甲基壳聚糖(Carboxymethyl Chitosan,简称CMC)的基本性能及其在各个领域的应用情况。

羧甲基壳聚糖是一种由壳聚糖经过化学改性得到的水溶性多糖衍生物,具有良好的水溶性、生物相容性、生物可降解性和独特的物理化学性质。

由于其独特的性质,羧甲基壳聚糖在医药、食品、环保、农业和化妆品等多个领域得到了广泛应用。

本文将系统介绍羧甲基壳聚糖的基本性质、合成方法、改性技术,以及在不同领域中的应用实例和研究进展,以期为相关领域的研究人员和企业提供有价值的参考信息,推动羧甲基壳聚糖在各领域的应用和发展。

二、羧甲基壳聚糖的基本性质羧甲基壳聚糖(Carboxymethyl chitosan,简称CMC)是一种重要的壳聚糖衍生物,具有一系列独特的物理化学性质。

其最基本的性质源于其分子结构中的氨基和羧基官能团,这些官能团赋予了CMC出色的水溶性、离子交换能力和生物活性。

羧甲基壳聚糖的溶解性相较于未改性的壳聚糖有了显著提升。

由于羧甲基的引入,CMC在水中的溶解度大大增加,可以在广泛的pH值范围内溶解,这使得其在各种水溶液体系和生物应用中具有更大的灵活性。

CMC具有良好的离子交换能力。

其分子中的羧基可以发生电离,产生带有负电荷的离子,从而与带有正电荷的离子进行交换。

这种离子交换性质使得CMC在重金属离子吸附、水处理、药物载体等领域具有广泛的应用前景。

羧甲基壳聚糖还表现出良好的生物相容性和生物活性。

其分子结构中的氨基和羧基可以与生物体内的多种物质发生相互作用,如蛋白质、多糖、核酸等,从而显示出良好的生物相容性。

其生物活性使得CMC在生物医药、组织工程、生物传感器等领域具有潜在的应用价值。

羧甲基壳聚糖的基本性质使其在多个领域具有广泛的应用前景。

随着科学技术的不断发展,对CMC的研究和应用将会越来越深入,其在各个领域的应用也将不断拓展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

壳聚糖应用于水处理的化学基础 摘要:壳聚糖在污水处理中可用作絮凝剂、吸附剂和重金属离子螯合剂。该文详细介绍了壳聚糖与污水中的几种主要污染物水溶性染料、蛋白质、微生物和重金属离子相互作用的机理,着重讨论了影响壳聚糖吸附絮凝重金属离子的主要因素。

关键词:壳聚糖;吸附;絮凝;水处理;机理 壳聚糖(chitosan)是甲壳素(chitin)的脱乙酰化产物,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖。壳聚糖具有优良的 生物相容性和生物可降解性,在医药、化工、食品、环保等方面具有许多应用价值。在水处理方面,壳聚糖可用作吸附剂、絮凝剂、重金属离子螯合剂等。其最大优点是不会产生二次污染,目前最大用量是作为无毒的阳离子絮凝剂处理有机废水和螯合废水中的有毒金属离子。

1 壳聚糖对有机物的作用 壳聚糖是直链型的高分子聚合物,由于分子中存在游离氨基,在稀酸溶液中被质子化,从而使壳聚糖分子链上带上大量正电荷,成为一种典型的阳离子絮凝剂。

壳聚糖作为絮凝剂,其絮凝机理主要是: ①桥联作用:絮凝分子借助离子键、氢键同时 结合了多个颗粒分子,因而起到“中间桥梁”的作用,把这些颗粒联结在一起从而使之形成网状结构沉淀下来; ②电中和作用:水中的胶粒一般带负电荷,当带有正电荷的链状生物大分子絮凝剂靠近胶粒时,中和其表面上的部分电荷,使胶粒脱稳,相互之间发生碰撞而沉淀; ③基团反应:絮凝剂大分子中的某些活性基团与被絮凝物质相应的基团发生化学反应,聚集成大分子而沉淀下来。壳聚糖作为絮凝剂与其他合成高分子絮凝剂相比,更易被环境中的微生物降解,不会产生二次污染。

壳聚糖含有大量的羟基和氨基,可与其他有机分子,如蛋白质、氨基酸、核酸、酚类化合物、醌类化合物、脂肪酸等形成氢键、共价键或配位键而牢固结合。壳聚糖对有机物的吸附有物理吸附、化学吸附和离子交换吸附。化学吸附是单层吸附,有选择性。物理吸附是通过静电引力、疏水交互作用、范德华力等的吸附,是多层吸附。甲壳素和壳聚糖在溶液中与废水中的离子进行离子交换反应是离子交换吸附,为等当量交换吸附。

1.1对各种染料的吸附 G.Mckay对壳聚糖吸附染料性能作过详细的研究,并对其吸附染料的机理做了系统的分析。其研究表明:壳聚糖对染料的吸附平衡等温线不是单一的Langmuir和Freundlich等温线,它更符合Langmuir和Freundlich等温线的复合型式,称之为 General等温线。壳聚糖对染料的吸附过程可分为下列5步:

(1)由搅拌设备产生的混合过程; (2)染料从液相到壳聚糖颗粒外表面的质量转移; (3)在相的边界层内的反应; (4)在颗粒内孔洞中的质量转移; (5)在吸附状态下的扩散,即颗粒内部扩散。 Wu等认为,颗粒间的扩散是一种重要的吸附机制。通常根据体系的不同情况,吸附有效速率由上述5步中的一步 或几步决定。譬如在系统中总的溶质浓度很高时,质量转移速率由第(5)步控制,而当系统中液相浓度较低时,则由第(1)(2)(3)步控制,即所谓的液相质量转移过程控制,通常是以过程中较慢的那一步为控制步骤。 壳聚糖对酸性染料、活性染料、媒染料、直接染料都具有一定的吸附性。与甲壳素相比,壳聚糖具有大量的游离氨基,因此对酸性染料、活性染料的吸附效果优于甲壳素。Shimizu等的研究发现壳聚糖(脱乙酰度为60%)对酸性染料ChromeVio- let的吸附量是甲壳素的8倍。这是因为染料分子结构中羟基 上的氧原子与壳聚糖中氨基(包括酰胺基)上的氢形成了更多 的氢键,从而使两者的吸附量不同。壳聚糖对碱性染料的吸附效果较差,这是由于壳聚糖与碱性染料之间不能生成氢键,亦无离子交换吸附之故。

染料废水一般为带电荷的胶体溶液,根据胶体化学原理,胶体的稳定性大小与胶体颗粒的ζ电位有关,而胶体颗粒的ζ电位随溶液的pH值改变而有不同值,因此溶液的pH值会对胶体颗粒的絮凝产生直接的影响。在酸性条件下,壳聚糖对染料的吸附机制是化学吸附,壳聚糖分子链上的-NH2,在酸性溶液中被质子化形成-NH3+,该官能团与活性染料阴离子间 有很强静电相互作用;在碱性条件下,化学吸附与物理吸附都存在,-OH成为主要的活性基团,染料分子同时可以通过范德华力、氢键等与壳聚糖发生吸附形成沉降。

水溶性壳聚糖pH在3~6时色度去除率较好,对印染废水的处理在偏酸性条件下有利,主要是因为水溶性壳聚糖属阳离子型絮凝剂,有利于吸附阴离子染料。

Brent Smith等对壳聚糖吸附多种染料进行了测试,试图了解染料的化学官能团和染料分子量对吸着的相关性。测试结果表明:分子量增加时,吸着能力显著下降,而分子结构对吸着作用的影响,由于测试染料数目有限且分子量的影响占优势,而未能得到一般性的结论。染料的化学结构也会影响壳聚糖对其的吸附能力,但目前几乎没有这方面的相关研究。

1.2对蛋白质的吸附 壳聚糖可与蛋白质、氨基酸、脂肪酸等以氢键结合而形成复合物。作为高分子絮凝剂,壳聚糖可用来分离和回收食品加工厂废水中的蛋白质等有机物,使废水中的固形物减少70%~ 98%。

蛋白质的分子链上带有碱性基团(如氨基),也有酸性基团(如羧基),因此是两性化合物,在pH大于等电点的溶液中是阴性离子,而食品工业中的蛋白质的等电点多数是在酸性 范围。因此在中性或微酸性条件下,壳聚糖与蛋白质经吸附絮凝形成复合物。在碱性条件下,壳聚糖的氨基被还原为中性,而蛋白质胶粒仍带负电荷,两者静电引力被破坏,蛋白质溶解,而壳聚糖不溶解,两者被分开。用添加了壳聚糖的吸附剂回收食品厂废水中的蛋白质高达97%。

1.3对微生物的絮凝 壳聚糖絮凝微生物主要为两个方面的因素: (1)壳聚糖作为阳离子型聚电解质与细胞表面的某些有机物形成氢键而吸附; (2)静电作用。细胞壁表面一般带负电荷,与阳离子型絮 凝剂发生电性中和而沉降。Hughes等通过实验发现,由于氢键和静电作用的选择性,壳聚糖在絮凝微生物上也有一定的选择性。壳聚糖对大肠肝菌、酵母菌、枯草肝菌等菌类有强的絮凝能力。

1.4壳聚糖对卤素的吸附 壳聚糖用碘—碘化钾水溶液处理时,因吸附作用,呈现明亮的紫红色。壳聚糖不但能吸附碘,也能吸附溴,在极性溶液中的吸附量比在非极性溶液中大得多。壳聚糖用苯乙烯接枝后,对碘和溴的吸附都增加,其中溴的增加更明显。壳聚糖 吸附碘的现象与淀粉和碘的作用相似,但作用机理不同。以 α-1,4糖甙键联接的淀粉主链成螺旋形与碘形成包接物呈 色;而以β-1,4糖甙键联接的壳聚糖吸附碘时,是分子中氨基 与碘形成了n-σ型电荷转移络合物,形成这种络合物的作用 机理与聚酰胺—碘间的作用相同。

2 壳聚糖对金属离子的作用 2.1壳聚糖与金属离子作用机理 Muzzarelli认为,壳聚糖和金属离子通过3种形式发生结合,即离子交换、吸附和螯合。例如钙离子交换是占优势的过程,而其他金属离子则是以吸附和螯合为主。

工业废水中往往含有许多重金属离子,壳聚糖分子结构中含有大量的氨基,此基团中的N原子上的孤对电子,可投入到重金属离子的空轨道中,通过配位键结合,形成很好的螯合 物,能捕集许多重金属离子。 壳聚糖能通过分子中的氨基与Pb(Ⅱ),C(rVI),Cu(Ⅱ)等 重金属离子形成稳定的螯合物,但一般不能络合钙金属和钙土金属离子。壳聚糖上的-NH2和-OH与Pb(Ⅱ)、C(rVI)、Cu (Ⅱ)等重金属离子形成稳定的五环状螯合物,使直链的壳聚糖形成交链的高聚物如图1所示。

有研究者认为,壳聚糖的4个糖基螯合1个Cu2+;1个 Fe3+与壳聚糖的2个糖残基配位,还带3分子H2O;1个Ni2+与 壳聚糖的3个氨基葡萄糖残基上的N和C3OH上的O结合,形成6个配位键结构的壳聚糖N(iⅡ)配位聚合物;1个La3+与 壳聚糖的5个氨基葡萄糖残基上的N和C3OH上的O结合, 形成10个配位键结构的壳聚糖N(iⅡ)配位聚合物。

从壳聚糖对铜离子的吸附动力学可以看出壳聚糖对重金属离子的作用属于物理吸附过程。对金属离子的吸附平衡 等温线符合Langmuir和Freundlich等温式。

傅民等以具有相同的脱乙酰度、不同分子量的壳聚糖作为吸附剂,来测定在不同壳聚糖用量、不同试液浓度条件下,壳聚糖对亚铁离子的吸附。通过红外光谱和紫外光谱证实,亚铁离子与壳聚糖之间发生了配位作用。其产物结构推测为图1A结构。

2.2研究情况 作为重金属离子的富集剂,壳聚糖显示了优异的性能。壳聚糖可通过其分子结构中的氨基和羟基与Hg2+、Cd2+、Cu2+、Ni2+、Zn2+等金属离子形成较稳定的螯合物,因此可有效地除去工业废水中的有毒重金属离子。

壳聚糖对过度金属离子有很强的富集能力,其螯合量顺序为: Pd2+>Au3+>Hg2+>Pt4+>Pb2+>Mo(Ⅵ)>Zn2+>Ag+>Ni2+>Cu2+> Cd2+>Co2+>Mn2+>Fe2+>Cr3+

壳聚糖对部分金属离子的最大吸附量见表1。 壳聚糖作为一种天然的高分子聚电介质,它的优越性还表现在对废水中的一些难去除金属离子或去除效率较低的金属离子具有较好的吸附螯合性能。Hg在溶液中的存在形态非常复杂,当含有Cl-时,可生成HgCl+、HgCl2、HgCl3+和 HgCl24-。日本大阪大学的Yoshihide Kawamura等曾对壳聚糖吸附Hg(Ⅱ)的特性作了较深入的研究,结果表明壳聚糖吸附 Hg(Ⅱ)的量要比目前使用的去除Hg(Ⅱ)最佳的UR-120H螯合树脂高出14倍。Jansson-Charrier对壳聚糖吸附的研究表明每克壳聚糖最多可以吸附400mgV(Ⅳ),同时对吸附条件如 pH、金属离子初始浓度、壳聚糖颗粒尺寸和搅拌速度的影响进行了研究。Guzma„n J等研究发现pH为3.0~3.5是壳聚糖吸附V的最佳条件。

以壳聚糖为原料制备的吸附剂还能吸附、富集放射性核素,可用作放射性废液的去污剂,金玉仁等采用壳聚糖对含 锕系和镧系元素废水的处理进行了研究,调节其pH为5时磁性壳聚糖对锕系和镧系元素的吸收率为95%~99%。此外,还可用其从海水中提取同位素铀。Mariell等对影响壳聚糖去 除工业废水中铀的一些工艺参数进行了研究。通过研究锝(99Tc)的化学类似物铼(75Re)在壳聚糖上的吸附,可预测壳聚 糖对235U或239Pu核裂变所产生的锝(99Tc)的吸附行为。Kim E等研究发现,壳聚糖对锝铼有显著的吸附作用,主要是因为溶液中ReO-4与壳聚糖上的-NH3+基团在双向扩散层上产生了电子对。

2.3影响因素 壳聚糖与金属配位或对金属吸附能力除受溶液的pH值、离子强度影响外,还与壳聚糖本身的性质如脱乙酰度、分子量和粒子大小有关,同时还受操作温度、时间、配比的影响。下面就其中主要的几点进行讨论。

相关文档
最新文档