七年级数学几何体与展开图
人教版七年级数学上册《正方体展开图》教学设计

2、学生准备:制作一到两个正方体的小纸盒
教师活动学生活
动
设计意图
教学过一、创设问题情境,导入新课
同学们,各种精美的包装盒在我
们生活中随处可见.下面请欣赏精
美的礼品盒.制作这些图形都要经
历从平面图形设计到折叠成立体
图形的一个过程.那么设计相应的
平面图形的依据是什么?我们就
要从研究这些立体图形的平面展
开图入手.为此本节课我们先重点
研究正方体的表面展开图.
出示课题:正方体的表面展开图
(动画演示)
二、探究新知
学生欣
赏立精
美的礼
品盒图
形和动
画演示
图
学生沿
正方体
激发学生
的学习兴
趣,为探索
正方体的
展开图做
好铺垫
围成
展开
立体图形平面图形
1.下列图形中可以作为一个正方体展开图的是()
2.如图,有10个无阴影的正方形,从中选出1个和5个有阴影的正方形一起可以折成正方体包装盒,这样的无阴影的正方形共有多少个?
三、课堂小结
通过本节课的学习,你有哪些收获?
1、学会了简单几何体(如正方体)的平面展开图,知道按不同的方式展开会得到不同的展开图。
型去解
决问题,
使学生
灵活应
用知识,
解决问
题。
总结所学
知识,并对
学生进行
人生观,价
值观的教
育
(A) (B) (C) (D)。
人教版七年级上册数学作业课件 第四章 第2课时 从不同的方向看立体图形和立体图形的展开图 (3)

16.如图是一个长方体的展开图,每个面都标上了字 母,将展开图折叠时要求标字母的面应在外面,请 按要求填空:
(1)如果 A 面在长方体的底部,那么在上面的面 是 F面 ; (2)如果 F 面在前面,左面是 B,那么上面的面是 C面 ; (3)从右面看是 C 面,D 面在后面,那么在上面 的面是 A 面 .
14.如图是由若干个大小相同的小正方体堆砌而成 的几何体,那么从正面、左面、上面看到的图形中, 面积最小的是( B ) A.正面 B.左面 C.上面 D.都一样大
15.如图,5 个边长相等的小正方形拼成一个平面图 形,小丽手中还有一个同样的小正方形,她想将它 与图中的平面图形拼接在一起,从而可以构成一个 正方体的平面展开图,则小丽总共能有 4 种拼接 方法.
知识点二 立体图形的展开图 7.(2020-2021·北京期末)下列几何体的展开图中, 能围成圆柱的是( D )
8.一个几何体的侧面展开图如图所示,则该几何体 的底面是( B )
9.(2020·大庆中考)将正方体的表面沿某些棱剪开, 展成如图所示的平面图形,则原正方体中与数字 5 所在面相对的面上标的数字为( B ) A.1 B.2 C.3 D.4
17.如图是一个正方体纸盒的展开图,如果这个正方 体纸盒相对 2 个面上的式子的值相等,求 a,x,y 的值. 解:依题意,得 a=3, 5-x=2x-1,2y=y+1, ∴x=2,y=1. 故 a,x,y 的值分别为 3,2,1.
ห้องสมุดไป่ตู้
18.如图是由若干个相同的小正方体组成的一个几 何体从三个方向看得到的平面图形,则小正方体的 个数是 5 .
10.(2020·绵阳中考)下列四个图形中,不能作为正 方体的展开图的是( D )
11.将下面 4 个图用纸复印下来,然后沿所画线折起 来,把折成的立体图形的名称写在图下边的横线上:
几何图形初步章节复习(课件)七年级数学上册教材配套教学精品课件+分层练习(人教版)

2
从不同方向看立体图形
例2.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在
该位置小立方块的个数.请画出这个几何体的主视图和左视图.
解法一:先摆出这个几何体,再画出它的主视图和左
视图
例2.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在
该位置小立方块的个数.请画出这个几何体的主视图和左视图.
是( A )
【2-2】如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,
其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左
面看到的形状图.
从正面看
从左面看
【2-3】如图是由一些相同的小正方体搭成的几何体从正面和上面看到的形
15
状图,搭这个几何体最少需要____个小正方体,最多需要____个小正方体.
三、角
1. 角的定义
(1) 有公共端点的两条射线组成的图形,叫做角;
(2) 角也可以看作由一条射线绕着它的端点旋转而形成的图形.
两条射线—角的边
公共端点—角的顶点
2. 角的表示
(1)角通常用三个字母及符号“∠”来表示,如上图中角可以表示为∠AOB或
∠BOA,表示顶点的字母O必须放在中间,其他两个字母A,B分别表示角的两
(2)平面图形的各部分都在同一平面内,如:
2.常见立体图形的分类
圆柱
柱体
棱柱
常见立体图形
球体
三棱柱
四棱柱
五棱柱
…
(命名依据底面的边数)
圆锥
锥体
棱锥
三棱锥
四棱锥
五棱锥
…
(命名依据底面的边数)
3.从不同方向看立体图形
我们从不同的方向观察一物体时,可能看到不同的图形. 其中,把从正
新人教版七年级几何图形初步练习专题(一)---三视图、展开图专题

三视图、展开图专题【题型一】从不同方向看几何体1、如图所示的立体图形从上面看到的图形是( )2、从左面看图中四个几何体,得到的图形是四边形的几何体共有( ) A. 1个 B. 2个 C. 3个 D. 4个3、从不同方向看一只茶壶,如图,下列选项中从上往下看的效果图是( )。
4、从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )。
A. 圆柱B. 三棱锥C. 球D. 圆锥5、由四个相同的小正方体搭建了一个积木,它的左视图和主视图均如图所示,则这堆积木不可能是( )6、由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( )A . 从正面看面积最大B . 从左面看面积最大C . 从上面看面积最大D . 三个视图的面积一样大AB CD从左面看 从上面看从正面看ABC D7、5个棱长为1的正方体组成图所示的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位). (2)画出从正面看和从左面看到的平面图形.8、如图,这个图形从正面看是__________,从左面看是__________,从上面看是__________.【题型二】正方体的展开与折叠1、如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .2、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是( )A .B .C .D .3、把如图中的三棱柱展开,所得到的展开图是( )A .B .C .D .4、下列四个图形中,是三棱柱的平面展开图的是( )A .B .C .D .5、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如1 2 3x y图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是( ).A. B. C. D6、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是( ) A .建 B .设C .和D .谐7、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A .我B .中C .国D .梦月8、一个正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( )9、下面四个图形中,经过折叠能围成如图所示的几何图形的是【 】10、若要使图中平面展开图按折叠成正方体后,相对面上两个数之和为6,x=_ ___, y=______.A。
山东省人教版七年级上册第四章几何图形初步认识--立体图形展开图与正方体展开图专项练习

立体图形展开图与正方体展开图跟踪训练一.选择题(共23小题)1.下列各图不是正方体表面展开图的是()A.B.C.D.2.如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.3.将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC4.如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.5.下列图形中,是圆锥侧面展开图的是()A.B.C.D.6.下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.8.如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC,且A、B、C分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是()A.B.C.D.9.韩老师特制了4个同样的立方块,并将它们如图A放置,然后又如图B放置,则图B 中四个底面正方形中的点数之和为()A.11 B.13 C.14 D.1610.图(1)是一个小正方体的表面展开图,小正方体从图(2)所示的位置依次翻到第1格、第2格、第3格、第4格,这时小正方体朝上一面的字是()A.梦B.水C.城D.美11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A. B.C.D.12.将如图所示的圆心角为90°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA 与OB重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()A.B.C.D.13.下列四个展开图中能够构成如图所示模型的是()A.B.C.D.14.如图是一个由六个小正方体组合而成的几何体,每个小正方体的六个面上都分别写着﹣1,0,1,﹣2,3,﹣4六个数字,现在能看到的数字全部标在面上,那么现在图中所有看不见的面上的数字和是()A.﹣15 B.10 C.8 D.﹣1215.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D.16.如图(1)是一个小正方体的表面展开图,小正方体从图(2)所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是()A.腾B.飞C.燕D.山17.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A.B.C.D.18.如图,哪一个是左边正方体的展开图()A.B.C.D.19.下列四个图形中,每个小正方形都标上了颜色.若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是()A.B.C.D.20.下列平面图中不能围成正方体的是()A. B.C.D.21.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.凉D.山22.把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为()A.Q B.R C.S D.T23.如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.二.填空题(共10小题)24.如果圆柱的侧面展开图是相邻两边长分别为6,16π的长方形,那么这个圆柱的体积等于.25.如图,5个边长相等的小正方形拼成一个平面图形,小丽手中还有一个同样的小正方形,她想将它与图中的平面图形拼接在一起,从而可以构成一个正方体的平面展开图,则小丽总共能有种拼接方法.26.圆锥有个面,它的侧面展开图是.27.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置水平桌面上,如图1.在图2中,将骰子向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子朝上一面的点数是.28.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,则x的值是.29.如图,矩形①、②、③、④都是圆柱的侧面展开图.这些圆柱的底面半径与高最接近相等的一个是(填序号).30.如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M,P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:(填序号).31.底面直径为m的圆柱体(如图),沿它的一条母线AB(也就是圆柱的高,且AB=h)剪开展平,则圆柱侧面展开后的面积为.32.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A、B、C均是棱的中点,现将纸盒剪开展成平面,则展开图可能是(错填得0分,少填酌情给分)33.如图(1),一个正方体的三个面上分别写有1、2、3,与它们相对的三个面上依次写有6、5、4.这个正方体的每一条棱处各嵌有一根金属条,每根金属条的质量数(单位:克)等于过该棱的两个面上所写数的平均数.(1)这个正方体各棱上所嵌金属条的质量总和为克.(2)沿这个正方体的某些棱(连同嵌条)剪开,得到图(2)所示的展开图,其周边棱上金属条质量之和的最小值为克.在图(2)中把这个正方体的六个面上原有的数字写出来(注:写字的这一面是原正方体的外表面).三.解答题(共7小题)34.操作探究:在一个正四面体(四个面都是等边三角形)上钻透一个圆孔,由于钻孔的位置不同,在四面体的展开图(如图四个连续的三角形)上看到的弧线或圆的数目也不同.探究:有几种“钻透”的情况?画出它们的展开图,并标出相应的弧线或圆.(要求:至少画出两种情况)35.现实生活中,我们常常能见到一些精美的纸质包装盒.现有一正方体形状的无盖纸盒,在盒底上印有一个兑奖的标志“吉”字,如图1所示.现请同学们用剪刀沿这个正方体纸盒的棱将这个纸盒剪开,使之展开成一平面图形.那么,能剪出多少种不同情况的展开图呢?请把剪开后展成的平面图形画出来,要求展开图中的标志“吉”字是正立着的.(其中一种的展开情况如图2,至少再画出六种不同情况的展开图)36.如图,正方体的每个面上都写有一个有理数,已知三对相对的两个面上的两个数之和相等,若15,9,﹣4的对面的数分别是x,y,z,求2x﹣3y+z的值.37.如图,在无阴影的方格中选出两个画出阴影,使它们与图中四个有阴影的正方形一起可以构成正方体表面的不同展开图(填出三种答案).38.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.39.以下哪些图形经过折叠可以围成一个棱柱?40.如图所示是长方体的表面展开图,折叠成一个长方体.(1)与字母F重合的点有哪几个?(2)若AD=4AB,AN=3AB,长方形DEFG的周长比长方形ABMN的周长少8,求原长方体的容积.参考答案与试题解析一.选择题(共23小题)1.解:A、是正方体表面展开图,不符合题意;B、是正方体表面展开图,不符合题意;C、是正方体表面展开图,不符合题意;D、有“田”字格,不是正方体表面展开图,符合题意.故选:D.2.解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B 错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D3.解:将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.4.解;AB是正方体的边长,AB=1,故选:B.5.解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.6.解:A、另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.7.解:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,无法组成长方体,故此选项不合题意;故选:C.8.解:选项A、C、D折叠后都符合题意,只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故选B.9.解:根据四个图形的点数,可推断出来,点4对面是点2;点5对面是点1;点6对面是点3.则图B中四个底面正方形中的点数是1,3,6,6,1+3+6+6=16,则图B中四个底面正方形中的点数之和为16.故选D.10.解:第一次翻转梦在下面,第二次翻转中在下面,第三次翻转国在下面,第四次翻转城在下面,城与梦相对,故选:A.11.解:亲自动手折一折,再发挥空间想象力,可以得出正确的结果是C.故选C.12.解:A、B一定重合,与A、B相邻的两个阴影一定在A所在的母线重合,而另一端一定与圆锥的底面相交,即靠近A、B两点的两个空白部分无法围成环并且紧贴底面.故选B.13.解:选项A、B中折叠后带图案的三个面不能相交于同一个点,与原立方体不符;选项D中折叠后图案的位置不符,所以正确的是C.故选C.14.解:(﹣1+0+1﹣2+3﹣4)×6﹣(1+3﹣4+0+3﹣1+0﹣4+1﹣2+1﹣1+0)=﹣15.故选A.15.解:通过具体折叠结合图形的特征,判断图中的线段折叠后只能平行,所以折叠成正方体后的立体图形是B.故选B.16.解:由图1可得,“祝”和“飞”相对;“愿”和“山”相对;“燕”和“腾”相对;由图2可得,小正方体从图2的位置依次翻到第3格时,“祝”在下面,则这时小正方体朝上面的字是“飞”.故选B.17.解:动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选:B.18.解:根据有图案的表面之间的位置关系,正确的展开图是D.故选D.19.解:选项C中红色面和绿色面都是相邻的,故不可能是一个正方体两个相对面上的颜色都一样,故选C.20.解:A、围成几何体时,有两个面重合,故不能围成正方体.B、C、D均能围成正方体.故选A.21.解:对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,与“建”字相对的字是“山”.故选D.22.解:由图可得,宽为3的长方形是R,则从左侧看到的面为B.故选B.23.解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选D.24.解:①底面周长为6高为16π,π×()2×16π=π××16π=144;②底面周长为16π高为6,π×()2×6=π×64×6=384π.答:这个圆柱的体积可以是144或384π.故答案为:144或384π.25.解:如图所示:故小丽总共能有4种拼接方法.故答案为:4.26.解:圆锥有二个面组成,它的侧面展开图是扇形.故答案为:二,扇形.27.解:根据题意可知连续3次变换是一循环.所以10÷3=3…1.所以是第1次变换后的图形,即按上述规则连续完成10次变换后,骰子朝上一面的点数是5.故应填:5.28.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∵标注了字母A的面是正面,∴左右面是标注了x2与3x﹣2的面,∴x2=3x﹣2,解得x1=1,x2=2.故答案为:1或2.29.解:由题意得,底面半径与高最接近相等应该是宽等于长的π倍,则底面半径与高最接近相等的一个是④.30.解:圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.31.解:圆柱的侧面积=π•mh.故答案为:π•mh.32.解:选项A、C、D折叠后都符合题意;只有选项B折叠后两个画一条线段与另一个画一条线段的三角形不交于一个顶点,•与正方体三个画一条线段的三角形交于一个顶点不符.故答案为:ACD.33.解:(1)正方体各棱的质量为:(1+2)÷2=1.5克,(1+3)÷2=2克,(1+4)÷2=2.5克,(1+5)÷2=3克,(6+2)÷2=4克,(6+3)÷2=4.5克,(6+4)÷2=5克,(6+5)÷2=5.5克,(2+3)÷2=2.5克,(3+4)÷2=3.5克,(4+5)÷2=4.5克,(2+5)÷2=3.5克.1.5+2+2.5+3+4+4.5+5+5.5+2.5+3.5+4.5+3.5=42克.故这个正方体各棱上所嵌金属条的质量总和为42克;(2)如图所示:3+4.5+5+4.5+4=21克,42﹣21=21克.故答案为:42,21.34.解:有3种“钻透”的情况,作图(其中两种情况:面面、点面)如下:35.解:能剪出8种不同情况的展开图,作图如下:36.解:∵x+15=y+9=z﹣4,∴x﹣y=﹣6,y﹣z=﹣13.∴2x﹣3y+z=2(x﹣y)﹣(y﹣z)=1.故2x﹣3y+z的值为:1.37.解:根据正方体的展开图作图:38.解(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为acm,则长与宽相等为5acm,∵长方体纸盒所有棱长的和是880cm,∴4(a+5a+5a)=880,解得a=20cm,∴这个长方体纸盒的体积为:20×100×100=200000立方厘米.39.解:(1)中间是三个矩形,矩形两边分别是四边形,故(1)不能围成棱柱;(2)中间是四个矩形,矩形两边分别是四边形,故(2)能围成棱柱;(3)中间是四个矩形,矩形一边有两个四边形,另一边没有四边形,故(3)不能为成棱柱;(4)中间是三个矩形,矩形两边分别是四边形,故(4)不能围成棱柱;答:(2)经过折叠可以围成一个棱柱.40.解:(1)与F重合的点是B.(2)设长方体的长、宽、高分别为x、y、z.根据题意得:解得:.∴原长方体的容积=4×8×12=384.。
七年级上册数学同步培优:第11讲 图形的展开与折叠 --提高班

第11讲 图形的展开与折叠⎧⎪⎨⎪⎩几何体的展开图展开与折叠展开图折叠成几何体相对的面知识点1:几何体的展开图常见的几何体的展开图有圆柱、圆锥、棱柱、正方体、棱锥。
特殊:球没有展开图 圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面)。
圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面)正方体的表面展开图一共有11种可能。
【典例】1.如图所示的正方体的展开图是( )A. B. C. D.【方法总结】1.判断特定正方体的展开图首先判断是否是正确的展开图模型,其次通过相邻面的位置、方向来确定正确的展开图.2.解决几何体的展开图的相关问题只需要记清楚不同立体图形的展开图的模型。
【随堂练习】1.(2018•武汉模拟)如图所示的正方体的展开图是()A. B. C. D.2.(2018•平谷区二模)如图所示是一个三棱柱纸盒.在下面四个图中,只有一个展开图是这个纸盒的展开图,那么这个展开图是()A.B.C.D.3.(2017秋•诸城市期末)如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.4.(2017秋•阜宁县期末)如果有一个正方体,它的展开图可能是下面四个展开图中的()A. B. C.D.知识点2 展开图折叠成几何体【典例】1.将下面的纸片沿虚线折叠,不能折成长方体盒子的是()A. B. C. D.【方法总结】展开图折叠成几何体是将几何体展开的对应的操作,解决这类型题首先能够找到正确的几何体展开图,其次找出相邻、相对的面。
【随堂练习】1.(2018•河北二模)如图1,观察一个正方体骰子,其中点数1与6相对,点数2与5相对,点数3与4相对,现在图2中①、②、③、④中的某一处画○,然后去掉其余3处后,能围成正方体骰子的是()A.①B.②C.③D.④2.(2017秋•西城区期末)某礼品包装商店提供了多种款式的包装纸片,将它们沿实线折叠(图案在包装纸片的外部,内部无图案),再用透明胶条粘合,就折成了正方体包装盒,小明用购买的纸片制作的包装盒如右图所示,在下列四种款式的纸片中,小明所选的款式的是()A.B.C.D.3.(2017秋•彭泽县期中)将如图所示的平面图形折成立方体后可能是()A.B.C.D.知识点3:正方体的相对两个面正方体展开图找相对面的方法:(1)中间隔“一”是对面:中间相隔一个正方形的两个正方形是相对面;(2)“Z”字两端是对面:呈“Z”字形排列的四个正方形首尾两个正方形是相对面;(3)间二、拐角邻面知:中间隔两个正方形的两个正方形是相邻面,呈拐角形状的三个小正方形,只有一个相邻正方形的两个正方形是相邻面。
七年级数学上册第四章几何图形初步4.1几何图形4.1.1第2课时从不同方向看立体图形与立体图形的展开
第2课时从不同方向看立体图形与立体图形的展开图1.[xx·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[xx·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[xx·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[xx·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[xx·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48(本资料素材和资料部分来自网络,供参考。
七年级数学华师大版立体图形展开图习题附答案
第四章之立体图形的展开图(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠不可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm28.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线A.n-3 B.n-2 C.(3)2n nD.n(n-3)二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形“”的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.答案:一、选择题1.A 2.C 3.C 4.A 5.D 6.D 7.C 8.C 9.A 10.A 二、填空题11.(n-2)12.球13.100cm214.圆15.3个16.左视图17.等边三角形• 18.27三、解答题19.解:主视图:左视图:20.解:略.21.解:主视图:左视图:俯视图:22.解:圆台由三个面组成,面与面相交成两条曲线,六棱柱由8个面组成,面与面相交成18条直线.23.解:左视图:俯视图:24.解:(1)面F.(2)面E.(3)面F.25.解:(1)有5种情况:(2)8、9、10、11.。
第四章 几何图形初步章节复习(课件)七年级数学上册教材配套教学课件(人教版)
″
=17°+6.6′
6.6
°
60
=17+
=5719′12″
【点睛】按1°=60′,1′=60″,先把度化成分,再把分化成秒.
(小数化整
=17.11.
数)
1
1
【点睛】按1″= ′,1′= °先把秒化成分,再把分化成度.
60
60
(整数化小数)
2
2
∴MN=CM+CN=4+3=7(cm).
A
M
C
N
B
(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的
长度吗?并说明理由;
1
猜想:MN= acm.
2
A
M
C
N
B
证明:同(1)可得
11CM= AC,C= BC,22
1
1
1
1
∴MN=CM+CN= AC+ BC= (AC+BC)= a(cm).
经过两点有一条直线,并且只有一条直线.
2.直线、射线、线段的联系与区别
3.基本作图
(1)作一线段等于已知线段;
(2)利用尺规作图作一条线段等于两条线段的和、差.
4.线段的中点
C是线段AB的中点,
1
AC=BC= AB,
2
AB=2AC=2BC.
A
C
B
5. 有关线段的基本事实 两点之间,线段最短.
6.连接两点的线段的长度,叫做这两点间的距离.
5
的中点,求DE的长.
3
解:∵AC=15cm,CB= AC,
5
3
∴CB= ×15=9cm,
人教版七年级数学上册第4章4.1几何图形4.1.1立体图形与平面图形第2课时折叠展开与从不同的方向观察几何体备
4.1 几何图形4.1.1立体图形与平面图形第3课时立体图形的展开图置疑导入归纳导入复习导入类比导入图4-1-73生活中,我们经常见到正方体形状的物体.将他们完全展开后形状是怎样的?下面我们先来将你面前的正方体盒子沿棱剪开,看看能得到一个什么样的平面图形?[说明与建议] 说明:利用常见的正方体是怎样制作的这一问题作为切入点,激发学生的兴趣,并通过动手操作让学生深刻认识正方体的面、棱之间的关系,调动学生的积极性.建议:让学生思考并动手操作,将正方体沿棱展开,再给出本节课的课题并板书:立体图形的展开图.活动内容:回答下列问题.问题1:同学们,在我们日常生活中,随处都可以见到五花八门的包装盒,你能说出几种你所见到过的包装盒的名字吗?你能说出下面几种包装盒的几何图形的名字吗?图4-1-74问题2:像上面的这几种包装盒,你知道将其拆开后会展开成什么样的平面图形吗?问题3:如果给你一些展开的包装盒的纸板,你能不能把它们恢复成完整的包装盒呢?[说明与建议] 说明:利用学生感兴趣的生活中常见的实物,贴近学生的生活,培养学生的学习兴趣,激发学生的求知欲,让学生在不知不觉中感受学习数学的乐趣,同时也让学生进一步体会了展开与折叠的两个互逆的过程,这也为新课的学习做好铺垫.建议:问题1是从学生生活中常见到的实物——几个不同形状的包装盒出发提问,首先由学生回答完成;问题2、3学生思考交流后由代表尝试回答,根据学生回答的情况教师适当引导,从而引出新课.教材母题——教材第119页练习第3题下列图形中可以作为一个正方体的展开图的是( )图4-1-75【模型建立】正方体的表面展开后有11种图形:对的面.正方体相对的面展开前与展开后都不可能相邻,更不可能有公共边和公共顶点.注意:若展开图中出现以下图案,就不能围成正方体.图4-1-76【变式变形】1.[长春中考] 下列图形中,是正方体表面展开图的是(C)图4-1-77图4-1-782.[汕尾中考] 如图4-1-78所示是一个正方体的展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是(D)A.我B.中C.国D.梦3.[鸡西中考] 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图4-1-79),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的表面展开图可能是(C)图4-1-79 图4-1-804.[德州中考] 如图4-1-81所示给定的是纸盒的外表面,图4-1-82能由它折叠而成的是(B)图4-1-81 图4-1-824-1-27[命题角度1] 圆柱、圆锥、棱柱、棱锥的表面展开图圆柱、圆锥、棱柱、棱锥的表面展开图如下:注意:同一个立体图形按照不同的方式展开得到的平面图形是不一样的.例下面四个图形是多面体的展开图,其中是四棱锥的展开图的是(C)图4-1-83[命题角度2] 正方体的表面展开图正方体的表面展开后有11种图形:注意:若展开图中出现以下图案,就不能围成正方体:图4-1-84例[温州中考] 下列个图中,经过折叠能围成一个正方体的是(A)图4-1-85[命题角度3] 正方体的表面展开图中各正方形的对应关系正方体相对的面在正方体的表面展开图中其中间应当间隔1个正方形,反过来要在正方体中成为相对的面,这两个正方形无论怎样折叠都不会有相邻的边和顶点.图4-1-86例[贵阳中考] 一个正方体的表面展开图如图4-1-86所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与写有“成”字的面相对的面上的字是(B)A.中B.功C.考D.祝P118练习1.如图,右面三幅图分别是从哪个方向看这个棱柱得到的?[答案] (1)从上面看;(2)从正面看;(3)从左面看.2.如图,把相应的立体图形与它的展开图用线连起来.[答案] 如图所示:3.下列图形中可以作为一个正方体的展开图的是( )[答案] C[当堂检测]1. 【2011•龙岩】如图可以折叠成的几何体是()A.三棱柱 B.四棱柱C.圆柱 D.圆锥2. 如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是()A B C D3.下列四个图中,是三棱锥的表面展开图的是()A B C D4. 【2011•呼和浩特】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是( )A B C D5. 小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是()AA B C D参考答案:1. A2. C3. B4. C5. C正方体的平面展开图正方体是我们最常见的一种简单的立体图形,你研究过它的平面展开图?一、图形分类正方体的平面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四情形.1. 1-4-1型:展开图有3行,中间一行有4个正方形,其余两行均1个正方形,如图1中所示.图12. 2-3-1型:展开图有3行,中间一行有3个正方形,第1行有2个正方形,第3行有1个正方形,如图2中所示.图23. 2-2-2型:展开图有3行,每一行均有2个正方形,如图3所示.图3 图44. 3-3型:展开图有2行,每一行均有3个正方形,如图4所示.二、规律探究1.排在同一条直线上的小正方形,与同一个正方形相连的两个正方形折叠后,位置关系怎样?2.正方体的平面展开图中最多只能出现几个正方形有一个公共点的情形,最多只能出现几个正方形与一个正方形相邻的情形?3.当上下、左右四个面展开成一条直线时,前后两个面不可能分布在其同侧,对吗?4.原来处于相对位置上的两个面,展开后的正方形有公共顶点和公共边吗?反之,展开图中有一个公共顶点或一条公共边的两个正方形,在折叠成正方体后,必将成为相邻的两个面吗?5.当从正方体的某顶点出发,最多只能观察到几个面?能同时看到两个相对的面吗?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汤阴一中初中部 第1页共2页
1.如下图,下列图形全部属于柱体的是( ) A.B. C.D. 2.将如图所示的直角梯形绕直线l旋转一周,得到的几何体是( ) A.B. C.D. 3.下列四个图形中,是三棱柱的平面展开图的是( ) A.B. C.D. 4.下面6个图形是正方体的表面展开图的有( ) A.2个 B.3个 C.4个 D.5个 5.从如图的纸板上11个无阴影的正方形中选1个(将其余10个都剪去),与图中5个有阴影的正方形折成一个正方体,不同的选法有( ) A.6种 B.5种 C.4种 D.3种 6.如图,下列四个选项的图形折叠后,能得到如图正方体的是( )
A.B.
C.D.
7.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正
方体的表面展开图如图所示,那么在这个正方体中,和“创”相对的
字是( )
A.文 B.明 C.城 D.市
8.如图,是一个正方体的表面展开图,在正方体中写有“心”字的那一
面的相对面的字是( )
A.祝 B.你 C.事 D.成
9.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制
作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组
成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则
它的表面展开图可能是( )
A.B.
C.D.
10.六个面分别标有“我”、“是”、“初”、“一”、“学”、“生”的正方体有
三种不同放置方式,则“是”和“学”的相对面分别是( )
A.“生”和“一” B.“初”和“生” C.“初”和“一” D.“生”和“初”
11.下列表面展开图对应的几何体的名称依次为
汤阴一中初中部 第2页共2页
(
A.圆柱,五棱柱,圆锥,四棱柱 B.圆柱,五棱柱,圆锥,四棱锥
C.圆锥,六棱柱,圆柱,四棱柱 D.圆锥,五棱柱,圆柱,四棱锥 12.下列图形经过折叠可以围成一个棱柱的是( ) A.B. C.D. 13.如图是一个正方体的表面展开图,把它折叠成一个正方体时,与点M重合的点是( ) A.点J B.点J和点B C.点J和点A D.点B 14.将棱长为1的小正方体组成如图所示的几何体,已知该几何体共由8个小正方体组成,则该几何体的表面积是( )平方单位. A.34 B.32 C.27 D.25 15.如图是一个由棱长为2 cm的正方体组成的几何体的俯视图,小正方形中的数字表示在该位置的正方体的个数,则这个几何体的表面积为( ) A.B.C.D. 16.一个四棱柱的主视图、俯视图及相关数据如图所示,则其左视图 的周长为( )单位. A.18 B.24 C.26 D.32 17.下列四个图形中,是三棱柱的表面展开图的是( ) A.B. C.D. 18.下列各图经过折叠后不能围成正方体的是( )
A.B.
C.D.
19.如图,它需再添一个面,折叠后才能围成一个正方体,下图中的
黑色小正方形分别由四位同学补画,其中正确的是( )
A.B.
C.D.
20.如图,是一个正方体的表面展开图,则原正方体中与“程”字所在
的面相对的面上标的字是( )
A.享 B.众 C.课 D.系
21.如图,是一个正方体的表面展开图,则原正方体中与“打”字所在
的面相对的面上标的字是( )
A.绿B.城 C.郑 D.州
22.一个正方体的表面展开图如图所示,六个面上各有一字,连起来
的意思是“构建和谐社会”,把它折成正方体后,与“会”相对的字是
( )
A.构 B.建 C.和 D.谐
23.图中表面展开图折叠成正方体后,相对面上两个数之和为6,则
x,y的值分别为( )
A.3,4 B.4,3 C.4,5 D.5,3