高一数学基本初等函数练习题
高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若 , 则 叫做以 为底 的对数, 记作 , 其中 叫做底数, 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化: .(2)几个重要的对数恒等式: , , .(3)常用对数与自然对数:常用对数: , 即 ;自然对数: , 即 (其中 …). (4)对数的运算性质 如果 , 那么 ①加法: ②减法: ③数乘:④log a N a N = ⑤log log (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数 的定义域为 , 值域为 , 从式子 中解出 , 得式子 . 如果对于 在 中的任何一个值, 通过式子 , 在 中都有唯一确定的值和它对应, 那么式子 表示 是 的函数, 函数 叫做函数 的反函数, 记作 , 习惯上改写成 .(7)反函数的求法①确定反函数的定义域, 即原函数的值域;②从原函数式 中反解出 ; ③将 改写成 , 并注明反函数的定义域. (8)反函数的性质①原函数 与反函数 的图象关于直线 对称.②函数 的定义域、值域分别是其反函数 的值域、定义域. ③若 在原函数 的图象上, 则 在反函数 的图象上. ④一般地, 函数 要有反函数则它必须为单调函数.一、选择题:1. 的值是( )A.B. 1C. D. 22. 已知x= +1,则log4(x3-x -6)等于 ( ) A.23 B.45 C.0 D.21 3. 已知lg2=a, lg3=b, 则 等于 ( ) A.B.C. D. 4.已知2lg(x -2y)=lgx +lgy, 则 的值为( )A. 1B. 4C. 1或4D. 4或-15.函数y=)12(log 21 x 的定义域为( ) A. ( , +∞) B. [1, +∞ C. ( , 1 D. (-∞, 1) 6.已知f(ex)=x, 则f(5)等于 ( )A. e5B. 5eC. ln5D. log5e7. 若 的图像是 ( )A B C D8. 设集合等于()A. B.C. D.9. 函数的反函数为()A. B.C. D.二、填空题:10. 计算: log2.56.25+lg +ln +=11. 函数y=log4(x-1)2(x<1的反函数为__________ .12. 函数y=(log x)2-log x2+5在2≤x≤4时的值域为______.三、解答题:13.已知y=loga(2-ax)在区间{0, 1}上是x的减函数, 求a的取值范围.14. 已知函数f(x)=lg[(a2-1) x2+(a+1)x+1], 若f(x)的定义域为R, 求实数a的取值范围.15. 已知f(x)=x2+(lga+2)x+lgb, f(-1)=-2, 当x∈R时f(x)≥2x恒成立, 求实数a的值, 并求此时f(x)的最小值?一、选择题: ABBCBCDCBAAB13. , 14.y=1-2x(x∈R), 15.(lgm)0.9≤(lgm)0.8, 16.17.解析: 因为a是底, 所以其必须满足a>0 且a不等于1a>0所以2-ax为减函数, 要是Y=loga(2-ax)为减函数, 则Y=loga(Z)为增函数, 得a>1又知减函数区间为[0,1], a必须满足2-a*0>0 2-a*1>0 即得a<2综上所述, 啊的取值范围是(1,2)18、解: 依题意(a2-1)x2+(a+1)x+1>0对一切x∈R恒成立.当a2-1≠0时, 其充要条件是: 解得a<-1或a>又a=-1, f(x)=0满足题意, a=1, 不合题意.所以a的取值范围是: (-∞, -1]∪( , +∞)19、解析:由f(-1)=-2, 得:f(-1)=1-(lga+2)+lgb=-2, 解之lga-lgb=1,∴=10, a=10b.又由x∈R, f(x)≥2x恒成立.知:x2+(lga+2)x+lgb≥2x, 即x2+xlga+lgb≥0, 对x∈R恒成立, 由Δ=lg2a-4lgb≤0, 整理得(1+lgb)2-4lgb≤0即(lgb-1)2≤0, 只有lgb=1, 不等式成立.即b=10, ∴a=100.∴f(x)=x2+4x+1=(2+x)2-3当x=-2时, f(x)min=-3.。
高一数学基本初等函数Ⅰ试题答案及解析

高一数学基本初等函数Ⅰ试题答案及解析1.若函数,则_________;【答案】1【解析】由题意知【考点】本小题主要考查分段函数的求值问题.点评:求分段函数的函数值,只需要按未知量的取值范围,分别代入求值即可.2.(本小题13分)有一批单放机原价为每台80元,两个商场均有销售,为了吸引顾客,两商场纷纷推出优惠政策。
甲商场的优惠办法是:买一台减4元,买两台每台减8元,买三台每台减12元,......,依此类推,直到减到半价为止;乙商场的优惠办法是:一律7折。
某单位欲为每位员工买一台单放机,问选择哪个商场购买比较划算?【答案】当公司的员工人数少于6时,选择乙商场比较合算;当恰好是6时,选择甲、乙商场均一样;当人数超过6人时,到选择甲商场比较合算【解析】设该单位有员工位,在甲、乙商场购买分别需要,则根据题意有:,,……6分下面进行分类讨论:①当时,,此时1)若;2)若;3)若;②当时,.所以,当公司的员工人数少于6时,选择乙商场比较合算;当恰好是6时,选择甲、乙商场均一样;当人数超过6人时,到选择甲商场比较合算。
……12分【考点】本小题主要考查利用分段函数和一次函数解决实际应用题,考查学生对实际问题的转化能力和运算求解能力以及分类讨论思想的应用.点评:要解决实际问题,首先要根据题意将实际问题转化为熟悉的数学问题,然后利用数学知识解决问题.3.函数在区间上递减,则实数的取值范围是____ _【答案】a≤-3【解析】因为函数在区间上递减,那么根据二次函数的对称轴x=1-a,可知4≤1-a,解得a≤-3。
4.如图所示,当时,函数的图象是 ( )【答案】D【解析】因为当时,函数,因为a,b同号,则可知当a>0,b>0,或者a<0,b<0那么分析可知选D5.若函数是上的减函数,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为函数是上的减函数,则可知2-3a<0,0<a<1,a3-3a,解得实数a的范围是,选C.6.已知奇函数;(1)求实数m的值,并在给出的直角坐标系中画出的图象;(2)若函数在区间[-1,||-2]上单调递增,试确定的取值范围.【答案】(1)证明:的定义域为,令,则,令,则,即.,故为奇函数. 4分(2)证明:任取且,则又,,,即.故是上的减函数. 8分(3)解:又为奇函数,由(2)知是上的减函数,所以当时,取得最大值,最大值为;当时,取得最小值,最小值为. 11分所以函数在区间上的值域为. 12分【解析】考查奇函数的定义,应用转化的思想求值;作函数的图象,求a的取值范围,体现了作图和用图的能力,属中档题.(1)由奇函数的定义,对应相等求出m的值;画出图象.(2)根据函数的图象知函数的单调递增区间,从而得到|a|-2的一个不等式,解不等式就求得a 的取值范围.(1)证明:的定义域为,令,则,令,则,即.,故为奇函数. 4分(2)证明:任取且,则又,,,即.故是上的减函数. 8分(3)解:又为奇函数,由(2)知是上的减函数,所以当时,取得最大值,最大值为;当时,取得最小值,最小值为. 11分所以函数在区间上的值域为. 12分7.若函数与在区间上都是减函数,则实数的取值范围是()A.∪B.∪C.D.【答案】D【解析】因为函数与在区间上都是减函数,则有2a,a>0,实数的取值范围是,选D.8.里氏震级的计算公式为:其中是测震仪记录的地震曲线的最大振幅,为“标准地震”的振幅,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震的最大振幅的__________倍.【答案】6; 10000【解析】根据题意,假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则M=lgA-lgA0=lg1000-lg0.001=3-(-3)=6.设9级地震的最大的振幅是x,5级地震最大振幅是y, 9=lgx+3,5=lgy+3,解得x=106,y=102,∴=10000故答案为:6,100009.(12分)已知函数.(1)求函数的单调区间,并指出其增减性;(2)若关于x的方程至少有三个不相等的实数根,求实数a的取值范围.【答案】(1)递增区间为[1,2),[3,+∞),递减区间为(-∞,1),[2,3).(2)联立和,由得,,又点(1,0)和(2,1)两点连线斜率为-1,结合图像可知, a∈[-1,-]【解析】本试题主要是考查了函数的单调性和函数与方程的综合运用(1)先利用图像的对称变换作图可以函数的单调区间,得到结论。
高中必修一基本初等函数的练习题及答案

仅供个人学习参考 2007年高一数学章节测试题 第二章基本初等函数 时量 120分钟 总分150分 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列计算中正确的是 A.633xxxB.942329)3(baba C.lg(a+b)=lga·lgbD.lne=1
2.已知71aa,则2121aa A.3B.9C.–3D.3 3.下列函数中,在其定义域内既是奇函数又是减函数的是
A.3xyB.xy21logC.xyD.xy)21( 4.世界人口已超过56亿,若年增长率按千分之一计算,则两年增长的人口就可相当于一个 A.新加坡(270万)B.香港(560万)C.瑞士(700万)D.上海(1200万) 5.把函数y=ax(0(A)(B)(C)(D) A.B.C.D. 6.若a、b是任意实数,且ba,则
A.22ba B.02ba C.0)lg(ba D.ba2121
7.(山东)设3,21,1,1,则使函数xy的定义域为R且为奇函数的所有值为 A.1,3 B.1,1 C.1,3 D.1,1,3 8.(全国Ⅰ)设1a,函数()logafxx在区间2aa,上的最大值与最小值之差为12, 则a A.2 B.2 C.22 D.4 9.已知f(x)=|lgx|,则f(41)、f(31)、f(2)大小关系为
A.f(2)>f(31)>f(41)B.f(41)>f(31)>f(2) C.f(2)>f(41)>f(31)D.f(31)>f(41)>f(2) 10.(湖南)函数2441()431xxfxxxx, ≤,,的图象和函数2()loggxx的图象的交点个数是 A.4 B.3 C.2 D.1 二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.
高一数学基本初等函数部分练习题[最新版]
![高一数学基本初等函数部分练习题[最新版]](https://img.taocdn.com/s3/m/816864dc453610661fd9f438.png)
注:尊敬的各位读者,本文是笔者教育资料系列文章的一篇,由于时间关系,如有相关问题,望各位雅正。
希望本文能对有需要的朋友有所帮助。
如果您需要其它类型的教育资料,可以关注笔者知识店铺。
由于部分内容来源网络,如有部分内容侵权请联系笔者。
高一数学基本初等函数部分练习题(2)一、选择题:(只有一个答案正确,每小题5分共40分)1、若0a >,且,m n 为整数,则下列各式中正确的是 ( D )A 、m m n n a a a ÷=B 、n m n m a a a a =⋅C 、()n m m n aa += D 、01n n a a -÷= 2、已知(10)x f x =,则()100f = ( D )A 、100B 、10010C 、lg10D 、23、对于0,1a a >≠,下列说法中,正确的是 ( D )①若M N =则log log a a M N =;②若log log a a M N =则M N =;③若22log log a a M N =则M N =;④若M N =则22log log a a M N =。
A 、①②③④B 、①③C 、②④D 、②4、函数22log (1)y x x =+≥的值域为 ( C )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞5、设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( C )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>6、在(2)log (5)a b a -=-中,实数a 的取值范围是 ( B )A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<7、计算()()5lg 2lg 25lg 2lg 22⋅++等于 ( B ) A 、0 B 、1 C 、2 D 、38、已知3log 2a =,那么33log 82log 6-用a 表示是( B )A 、52a -B 、2a -C 、23(1)a a -+D 、 231a a -- 二、填空题:(每小题4分,共20分)9、某企业生产总值的月平均增长率为p ,则年平均增长率为()1112-+p .10、[]643log log (log 81)的值为 0 .11、若)log 11x =-,则x =12+. 12.已知幂函数的图像经过点(2,32)则它的解析式是5x y =三.解答题 (共40分)13.求下列函数的定义域:(每小题5分,共10分)(1)3)1(log 1)(2-+=x x f (2)2312log )(--=x x x f 解:要使原函数有意义,须使: 解:要使原函数有意义,须使:()⎩⎨⎧≠-+>+,031log ,012x x 即⎩⎨⎧≠->,7,1x x ⎪⎩⎪⎨⎧≠->->-,112,012,023x x x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠>>.1,21,32x x x 所以,原函数的定义域是: 所以,原函数的定义域是: (-1,7) (7,∞+). (32,1) (1, ∞+). 14、由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低13,问现在价格为8100元的计算机经过15年后,价格应降为多少? (10 分)解:设15年后的价格为y 元,则依题意,得33118100⎪⎭⎫ ⎝⎛-⋅=y =2400 (元) 答:15年后的价格为 2400元。
高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一基本初等函数一.选择题(共30小题)1.设a=log43,b=log54,c=2﹣0.01,则a,b,c的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a2.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3.函数f(x)=(|x|﹣7)e|x|则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.4.已知P(x,y)为函数f(x)=图象上一动点,则的最大值为()A.B.C.2D.5.设a=3,b=3log3π,c=πlogπ3,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.若a=0.220.33,b=0.330.22,c=log0.330.22,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.已知a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>a>b B.a>c>b C.c>b>a D.b>a>c8.已知2a=log2|a|,,c=sin c+1,则实数a,b,c的大小关系是()A.b<a<c B.a<b<c C.c<b<a D.a<c<b9.已知实数a,b,c分别满足2a=﹣a,log0.5b=b,log2c=,那么()A.a<b<c B.a<c<b C.b<c<a D.c<b<a10.已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b11.已知a>b>0,ab=1,设,则log x2x,log y2y,log z2z的大小关系为()A.log x2x>log y2y>log z2z B.log y2y>log z2z>log x2xC.log x2x>log z2z>log y2y D.log y2y>log x2x>log z2z12.已知,,c=log23,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.a>b>c D.b>c>a13.下列命题为真命题的个数是()①②③A.0B.1C.2D.314.设,实数c满足e﹣c=lnc,(其中e为自然常数),则()A.a>b>c B.b>c>a C.b>a>c D.c>b>a15.若实数x,y,z满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x16.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x217.已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z18.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|恰有6个不同零点,则a的取值范围是()A.(,]∪(5,7] B.(,]∪(5,7]C.(,]∪(3,5] D.(,]∪(3,5]19.已知函数f(x)=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]20.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1021.设a=log46,,,则()A.a>b>c B.b>c>a C.a>c>b D.c>b>a22.已知实数a>0,b>0,a≠1,且满足lnb=,则下列判断正确的是()A.a>b B.a<b C.log a b>1D.log a b<123.设a=π﹣e,b=lnπ﹣1,c=eπ﹣e e,则()A.a<b<c B.b<c<a C.c<b<a D.b<a<c24.若函数f(x)=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关25.正数a,b满足1+log2a=2+log3b=3+log6(a+b),则的值是()A.B.C.D.26.已知实数a,b,c,d满足,则(a﹣c)2+(b﹣d)2的最小值为()A.8B.4C.2D.27.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上(其中m,n>0),则的最小值等于()A.10B.8C.6D.428.若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.29.已知a=log2e,b=ln3,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.b>c>a30.若函数f(x)=ln(ax2﹣2x+3)的值域为R,则实数a的取值范围是()A.[0,]B.(,+∞)C.(﹣∞,]D.(0,]二.填空题(共6小题)31.已知函数f(x)在R上连续,对任意x∈R都有f(﹣3﹣x)=f(1+x);在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;若f(2a﹣1)<f(3a﹣2),则实数a的取值范围是.32.若存在正数x,y,使得(y﹣2ex)(lny﹣lnx)z+x=0(其中e为自然对数的底数),则实数z的取值范围是33.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.34.已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1﹣|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(﹣1,0)上单调递增.中正确的是.35.设a,b为非零实数,x∈R,若,则=.36.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为.三.解答题(共4小题)37.已知函数f(x)=的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=(x+k)在[2,3]上有解,求k的取值范围.38.已知函数f(x)=log a(2﹣x)﹣log a(2+x)(a>0且a≠1),且1是函数y=f(x)+x的零点.(1)求实数a的值;(2)求使f(x)>0的实数x的取值范围.39.已知函数f(x)=(a2﹣3a+3)a x是指数函数.(1)求f(x)的解析式;(2)判断函数F(x)=f(x)﹣f(﹣x)的奇偶性,并证明;(3)解不等式log a(1﹣x)>log a(x+2).40.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1)(1)求f(3)+f(﹣1);(2)求函数f(x)的解析式;(3)若f(a﹣1)<﹣1,求实数a的取值范围.参考答案与试题解析一.选择题(共30小题)1.【解答】解:因为0=log41<a=log43<log44=1,0<b=log54<log55=1,c=2﹣0.01>2≈0.92,log54=≈0.86,==log43×log45<()2=()2<1,∴a,b,c的大小关系为a<b<c.故选:B.2.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)<0,当0<x<e时,f′(x)>0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.3.【解答】解,60.5>1>0.76>0>log0.76,函数f(x)为偶函数,则,当x>0时,f(x)=(x﹣7)e x,则f′(x)=(x﹣6)e x,易知函数f(x)在(0,6)上单调递减,又,故,即﹣log0.76<6,又,故,即﹣log0.76>3,则0<0.76<1<60.5<﹣log0.76<6,所以f(0.76)>f(60.5)>f(﹣log0.76)=f(log0.76),故选:D.4.【解答】解:设Q(,1),原点O,则=(,1),=(x,y),∴即.∴当OP与f(x)在y轴右侧相切时取最大值,设直线y=kx(k>0)与函数f(x)相切于点P0(x0,y0),y′=k,f′(x)=2x,则,解得.即切点P0(,),∴,即的最大值为.故选:D.5.【解答】解:构造函数f(x)=(x>1),则f′(x)=,当x∈(1,e2)时,f′(x)>0,则f(x)在(1,e2)上为增函数,∴f(π)>f(3),即>,∴>,即3log3π>πlogπ3,则b>c;设g(x)=,则g′(x)=,当x>3时,g′(x)>30ln3﹣1>0,∴g(x)在(3,+∞)上为增函数,则g(π)>g(3)=0,即>π,则3π>π3.又πlogπ3=>.∴a<c<b.故选:B.6.【解答】解:由1>a=0.220.33>0,1>b=0.330.22>0,c=log0.330.22>log0.330.33=1,所以c>a,且c>b;又ln0.220.33=0.33ln0.22,ln0.330.22=0.22ln0.33;不妨设0.33ln0.22<0.22ln0.33,则有<;构造函数f(x)=,x>0,所以f′(x)=,令f′(x)=0,解得x=e;所以x∈(0,e)时,f′(x)>0,f(x)是单调增函数;所以f(0.22)<f(0.33),即<,所以b>a;综上知,c>b>a.故选:D.7.【解答】解:已知a,b,c∈R,令==﹣=﹣1,则:,所以c>1.由于3b>0,且,故lnb<0,解得0<b<1,同理2a>0,且,故lna<0,解得0<a<1.由于0<a<1,0<b<1,==﹣<0,所以2a<3b,故lnb<lna,整理得b<a,所以c>1>a>b>0.故选:A.8.【解答】解:作出函数y=2x和y=log2|x|的图象,由图1可知,交点A的横坐标a<0;作出函数y=和y=的图象,由图2可知,交点B的横坐标0<b<1;作出函数y=x和y=sin x+1的图象,由图3可知,交点C的横坐标c>1所以,a<b<c.故选:B.9.【解答】解:∵log0.5b=﹣log2b=b,∴log2b=﹣b,在同一坐标系内画出函数y=2x,y=﹣x,y=log2x,y=的图象.可知a<0<b<1<c.故选:A.10.【解答】解:=,∵=<1,∴log1314<log1213,且log1314>1,,∴a>c>b.故选:D.11.【解答】解:,=,,∵a>b>0,ab=1,∴a>1>b>0,∴,log2(a+b)<2,∴,∴,∴,又0<,∴,∴log y2y>log z2z>log x2x.故选:B.12.【解答】解:根据指数运算与对数运算的性质,>3,1<<2,1<c=log23<2,设b=,c=log23,由于函数m=log2t为增函数,由于的值接近于4,所以a>b>c.故选:C.13.【解答】解:构造函数f(x)=,x∈(0,+∞),∴,令f'(x)=0得:x=e,∵当x∈(0,e)时,f'(x)>0,f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,f(x)单调递减,∴f(e)>f(3)>f(π),即,故①正确,②错误,构造函数g(x)=,x∈(0,+∞),∵,令g'(x)=0得:x=e,∵当x∈(0,e)时,g'(x)<0,g(x)单调递减;当x∈(e,+∞)时,g'(x)>0,g(x)单调递增,∴g(e)<g(3),即0<,∴ln3<,∴,故③正确,∴真命题的个数是2个,故选:C.14.【解答】解:∵e﹣c>0,∴lnc>0,∴c>1,∴,∴,∴1<c<2,又,∴b>c>a.故选:B.15.【解答】解:设=p,∴p>0,设y1=log2x,y2=log3y,y3=2z,作出3个函数的图象,如图所示:由图可知:z<x<y,故选:C.16.【解答】解:依题意,因为y=lnx为(0,+∞)上的增函数,所以x1=ln<ln1=0;因为y=e x为R上的增函数,且e x>0,所以0<x2=e<e0=1;x3满足e=lnx3,所以x3>0,所以>0,所以lnx3>0=ln1,又因为y=lnx为(0,+∞)的增函数,所以x3>1,综上:x1<x2<x3.故选:B.17.【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.18.【解答】解:首先将函数g(x)=f(x)﹣log a|x|恰有6个零点,这个问题转化成f(x)=log a|x|的交点来解决.数形结合:如图,f(x+2)=f(x),知道周期为2,当﹣1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(﹣7,7)上面的图象,以下分两种情况:(1)当a>1时,log a|x|如图所示,左侧有4个交点,右侧2个,此时应满足log a5≤1<log a7,即log a5≤log a a<log a7,所以5≤a<7.(2)当0<a<1时,log a|x|与f(x)交点,左侧有2个交点,右侧4个,此时应满足log a5>﹣1,log a7≤﹣1,即log a5<﹣log a a≤log a7,所以5<a﹣1≤7.故≤a<综上所述,a的取值范围是:5≤a<7或≤a<,故选:A.19.【解答】解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x)=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.20.【解答】解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.21.【解答】解:,,,∵0<log34<log35<log36,∴,∴a>b>c.故选:A.22.【解答】解:∵lnb=,∴lnb﹣lna=,构造函数∴f(x)=;∴==;∴≥0;∴f(x)在(0,+∞)单调递增.且f(1)=0;当x∈(0,1)时,f(x)<0,当x∈(1.+∞)时f(x)>0;∵a≠1∴当0<a<1时,f(a)<0⇒0即lnb﹣lna<0⇒b<a,∴lnb<lna<0⇒⇒log a b>1,当a>1时,f(a)>0⇒即lnb﹣lna>0⇒b>a,∴lnb>lna>0⇒⇒log a b>1,故选:C.23.【解答】解:∵a=π﹣e>0,b=lnπ﹣1=lnπ﹣lne>0,c=eπ﹣e e>0;设y=lnx,则=,表示了连接两点(π,lnπ),(e,lne)的割线的斜率,而y'=,当x>1时,曲线切线的斜率0<k<1;故0<=<1,故b<a;设y=e x,则=,表示了连接两点(π,eπ),(e,e e)的割线的斜率,而y'=e x,当x>1时,曲线切线的斜率k>1;故=>1,故c>a;故b<a<c;故选:D.24.【解答】解:,令,则y=2019t2+bt+a的最大值是M,最小值是m,而a是影响图象的上下平移,此时最大和最小值同步变大或变小,故M﹣m与a无关,而b是影响图象的左右平移,故M﹣m与b有关,故选:A.25.【解答】解,依题意,设1+log2a=2+log3b=3+log6(a+b)=k,则a=2k﹣1,b=3k﹣2,a+b=6k﹣3,所以=====,故选:A.26.【解答】解:∵实数a,b,c,d满足,∴b=lna,d=c+1.考查函数y=lnx,与y=x+1.∴(a﹣c)2+(b﹣d)2就是曲线y=lnx与直线y=x+1之间的距离的平方值,对曲线y=lnx求导:y′=,与直线y=x+1平行的切线斜率k=1=,解得:x=1,将x=1代入y=lnx得:y=0,即切点坐标为(1,0),∴切点(1,0)到直线y=x+1的距离d==,即d2=2,则(a﹣c)2+(b﹣d)2的最小值为2.故选:C.27.【解答】解:令x+3=1,求得x=﹣2,可得函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A(﹣2,﹣1),若点A在直线mx+ny+2=0上(其中m,n>0),则﹣2m﹣n+2=0,即2m+n=2.由基本不等式可得2≥2,即mn≤,即≥2,当且仅当2m=n=1时,取等号.则==≥4,故选:D.28.【解答】解:∵m,n,p∈(0,1),且log3m=log5n=lgp=k,∴lgm,lgn,lgp<0,m=3k,n=5k,p=10k,∴==,==,==,因为,=53=125,所以,同理=5×5=25,=10,所以,所以>0,又因为y=x k(k<0)在(0,+∞)上单调递减,∴即<<.故选:A.29.【解答】解:根据题意,c=log=ln2<lne=1,则c<1,ln3>ln2,∴c<b,a=log2e>log22=1,即a>c,ln3﹣log2e=ln3﹣=,∵2=lne2>ln6=ln2+ln3>2,∴<1,即ln2ln3<1,则ln3﹣log2e=ln3﹣=<0,即ln3<log2e,即a>b,综上a>b>c,故选:A.30.【解答】解:若函数f(x)=ln(ax2﹣2x+3)的值域为R,即有t=ax2﹣2x+3取得一切的正数,当a=0时,t=3﹣2x取得一切的正数,成立;当a<0不成立;当a>0,△≥0即4﹣12a≥0,解得0<a≤,综上可得0≤a≤.故选:A.二.填空题(共6小题)31.【解答】解:由f(﹣3﹣x)=f(1+x)可知函数f(x)关于直线x=﹣1对称;在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;可知函数f(x)在区间(﹣∞,﹣1)上单调递减,由对称性可知函数f(x)在区间(﹣1,+∞)上单调递增,不妨设f(x)=(x+1)2,则由f(2a﹣1)<f(3a﹣2)可得4a2<(3a﹣1)2,整理得5a2﹣6a+1>0,即(a﹣1)(5a﹣1)>0,解得或a>1,所以实数a的取值范围是.故答案为:.32.【解答】解:则(y﹣2ex)(lny﹣lnx)z+x=0可化为:,令t=,得(t﹣2e)lnt=﹣.令f(t)=(t﹣2e)lnt,(t>0),则f′(t)=g(t)=lnt+1﹣,则g′(t)=,故g(t)为(0,+∞)上的增函数,又因为f′(e)=g(e)=1+1﹣2=0,故当t∈(0,e)时,f′(t)<0,当t>e时,f′(t)>0,所以f(t)在(0,e)上单调递减,在(e,+∞)上单调递增,所以f(t)在(0,+∞)存在最小值f(e)=﹣e,即f(t)的值域为(﹣e,+∞),∴﹣∈(﹣e,+∞),所以z∈(﹣∞,0)∪[,+∞),故填:(﹣∞,0)∪[,+∞),33.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].34.【解答】解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x互为反函数.故函数f(x)=log2x.∴h(x)=f(1﹣|x|)=log2(1﹣|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.函数h(x)的定义域为(﹣1,1),在(﹣1,0)上是增函数,在(0,1)上是减函数,故(4)正确.故当x=0时,函数h(x)取得最大值为0,故(3)不正确.故答案为②④.35.【解答】解:由成立,得=(sin2x+cos2x)2,化简得:,即,∴,又sin2x+cos2x=1,得,.∴.则==•(sin2x+cos2x)=.故答案为:.36.【解答】解:∵f(x)=log2x在区间[a,2a]上是增函数,∴f(x)max﹣f(x)min=f(2a)﹣f(a)=log22a﹣log2a=1.故答案为:1.三.解答题(共4小题)37.【解答】解:(1)函数f(x)=的图象关于原点对称,∴f(x)+f(﹣x)=0,即+=0,∴()=0,∴=1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)=无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,即+(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y=(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)=在[2,3]上是增函数,g(x)=(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)=(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)=(x+k)在[2,3]上有解.38.【解答】解:(1)∵1是函数y=f(x)+x的零点,∴f(1)=﹣1,即log a(2﹣1)﹣log a(2+1)+1=0,即log a3=1,解得a=3.(2)由(1)可知函数f(x)是递增函数,f(x)>0得log3(2﹣x)>log3(2+x),所以:有解得﹣2<x<0,所使f(x)>0的实数x的取值集合为{x|﹣2<x<0}.39.【解答】解:(1)a2﹣3a+3=1,可得a=2或a=1(舍去),∴f(x)=2x;(2)F(x)=2x﹣2﹣x,∴F(﹣x)=﹣F(x),∴F(x)是奇函数;(3)不等式:log2(1﹣x)>log2(x+2),即1﹣x>x+2>0,∴﹣2<x<﹣,解集为{x|﹣2<x<﹣}.40.【解答】解:(I)∵f(x)是定义在R上的偶函数,x≤0时,f(x)=(﹣x+1),∴f(3)+f(﹣1)=f(﹣3)+f(﹣1)=4+2=﹣2﹣1=﹣3;(II)令x>0,则﹣x<0,f(﹣x)=(x+1)=f(x)∴x>0时,f(x)=(x+1),则f(x)=.(Ⅲ)∵f(x)=(﹣x+1)在(﹣∞,0]上为增函数,∴f(x)在(0,+∞)上为减函数∵f(a﹣1)<﹣1=f(1)∴|a﹣1|>1,∴a>2或a<0。
(word完整版)高一数学必修1《基本初等函数》测试题(2)

高一数学必修1《基本初等函数》测试题班级 __________ 姓名 __________________ 座号 _____________一、选择题.(共50分每小题5分.每题都有且只有一个正确选项. )1、若a 0,且m,n 为整数,则下列各式中正确的是()mmn~nm 小nm?nC 、mnm nD 、Ar i0 nA 、a a a nB 、a ? a aaa1 aa2、对于 a 0,a1,卜列说法中,正确的是()①若MN 则 logaM log a N ;②若 log aM log a N则M N;③若logaM 22log a N 则M N ;④若M2N 则 log a Mlog a N 2oA 、①②(③④B 、①③C 、(②④D 、②3、设集合S {y |y3x,x R},T {y|y2x1,xR} ,则SI T 是 ()A 、B 、TC 、SD 、有限集4、函数 y 2 log 2 x (x > 1)的值域为()A 、2,B 、,2C 、2,D 、3,1.55、设 y i-0.94 ,y 280.48, y 31,则2( )A 、y 3 y 1yB 、 y y 1 y 3C 、y 1y 3y 2D 、y 1y 2 y 36、在b log (a 2) (5a )中,实数a 的取值范围是()A 、a5或a 2B 、2 a 3 或 3 a5C 、2 a5D 、3 a 47、计算 2(lg2)(©25) 2lg2?lg5 等于()A 、0B 、1C、2D 、38、已知 a log 3 2 , 那么 log 3 8 2log 3 6 用 a 表 :示是()A 、5a2B 、a 2C 、3a (1 a)2D 、 3a a219、已知幕函数f(x)过点(2, —),则f(4)的值为2a 1)在区间a,2a 上的最大值是最小值的3倍,贝U a 的值为(2 A 、B 」42二、填空题.(每小题5分)13、 __________________________________________________ 计算:log 427 log 5 8 log 3 25=3m n14、 _________________________________________________________ 若 log a 2 m,log a 3 n ,贝y a2=1 15、 由于电子技术的飞速发展,计算机的成本不断降低,若每隔5年计算机的价格降低 -3在价格为8100元的计算机经过15年后,价格应降为 ___________ 三、解答题•写出必要的文字说明.16.求下列各式中的 x 的值(共15分,每题5分)(1)l n(x 1) 1x 2(3)a 2x 1 - ,其中 a 0且 a 1.10、若函数 f (x) log a x(011、已知函数f (x )log 3X ,(x2x,(x0) 0),则f[f(?)]的值为12、函数 f (x) lg(3x 2)2恒过定点 _________________________,问现17、(普通班做,10分)已知函数f(X)(1)求f(x)的定义域;(2)讨论函数f(x)的增减性。
最新高一数学基本初等函数练习题
基本初等函数(2) 一、选择题: 1、331log 12log 22-=( ) A. 3 B. 23 C.21 D.3 2、==)100()10(f x f x ,则若( )A 、100B 、lg10C 、2D 、100103、 已知集合P={x|)2lg(1++-=x x y },Q={},)31(|||R x y y x ∈=,则P ∩Q=( ) A.(0,1) B.(0,1] C.[2,1)- D.[-2,1]4、下列函数中,在()0,+∞上为增函数的是( )A. 12()-=f x x B. 2()3=-f x x x C. 1()1=-+f x x D. ()=-f x x5、已知a>1,函数x a y =与)x (log y a -=的图像只可能是 ( )6、设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是( ) A .1[-,2] B .[0,2] C .[1,+∞] D .[0,+∞]7、已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A.(0,1)B.1(0,)3 C.11[,)73 D.1[,1)7 8、设函数()f x 和()g x 分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) A.()()f x g x +是偶函数 B.()()f x g x -是奇函数 C.()()f x g x +是偶函数 D.()()f x g x -是奇函数9、已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()1(1)()xf x x f x +=+,则)23(f 的值是( )y O x y O x y O x y O xA. 0B.12 C. 1 D. 72 10、已知偶函数()f x 在区间[)0,+∞上单调递增,则满足(21)(3)f x f -<的x 的取值范围是( )A. ()1,2-B. [)1,2-C. 1,22⎛⎫ ⎪⎝⎭D. 1,22⎡⎫⎪⎢⎣⎭ 二、填空题:请把答案填在题中横线上11、幂函数)(x f 的图象过点⎪⎭⎫ ⎝⎛21,4,那么)8(f 的值为___________________ 12、函数)26(log 1x y a --=的图象恒过一定点,这个定点是 13、a 4log 15<,则a 的取值范围是_________________________ 14、函数211()2x y -=,其中[2,1]x ∈-的值域为 ▲ 15、已知53()sin 2f x x ax b x =-++且(5)17f -=,则(5)f 的值为_______________16、已知函数)3(log )(2+-=x ax x f a 在[2,4]上是增函数,则实数a 的取值范围是三.解答题17、已知定义域为R 的函数2()12x x a f x -+=+是奇函数 (1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;18、(1)若函数22()log (43)f x kx kx =++的定义域为R ,求k 的取值范围。
高一数学基本初等函数练习题
高一数学基本初等函数练习题高一网免费发布高一数学下册练习册答案:基本初等函数,更多高一数学下册练习册答案相关信息请访问高一网。
2.1指数函数211指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2某(某∈N).5.(1)2.(2)5.6.8a7.7.原式=|某-2|-|某-3|=-1(某<2),2某-5(2≤某≤3),1(某>3).8.0.9.2022.10.原式=2y某-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.211指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5.164.6.55.7.(1)-∞,32.(2)某∈R|某≠0,且某≠-52.8.原式=52-1+116+18+110=14380.9.-9a.10.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.211指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6.225.7.2.8.由8a=23a=14=2-2,得a=-23,所以f(27)=27-23=19.9.47288,00885.10.提示:先由已知求出某-y=-(某-y)2=-(某+y)2-4某y=-63,所以原式=某-2某y+y某-y=-33.11.23.212指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7.125.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当某=2时,y有最小值0;当某=4时,y有值6.10.a=1.11.当a>1时,某2-2某+1>某2-3某+5,解得{某|某>4};当0212指数函数及其性质(二)1.A.2.A.3.D.4.(1)<.>.(4)>.5.{某|某≠0},{y|y>0,或y1=π0>0.90.98.8.(1)a=0.5.(2)-4某4>某3>某1.10.(1)f(某)=1(某≥0),2某(某<0).(2)略.11.am+a-m>an+a-n.212指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移12个单位.6.(-∞,0).7.由已知得0.3(1-0.5)某≤0.08,由于0.51.91=0.2667,所以某≥1.91,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.815某(1+2%)3≈865(人).10.指数函数y=a某满足f(某)·f(y)=f(某+y);正比例函数y=k某(k≠0)满足f(某)+f(y)=f(某+y).11.34,57.2.2对数函数221对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-12.(3)16.(4)2.9.(1)某=z2y,所以某=(z2y)2=z4y(z>0,且z≠1).(2)由某+3>0,2-某<0,且2-某≠1,得-310.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以e某,去分母解得e2某=3,则某=12ln3. 221对数与对数运算(二)1.C.2.A.3.A.4.03980.5.2lo某-loga某-3logaz.6.4.7.原式=log2748某12÷142=log212=-12.8.由已知得(某-2y)2=某y,再由某>0,y>0,某>2y,可求得某y=4.9.略.10.4.11.由已知得(log2m)2-8log2m=0,解得m=1或16.221对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25.10.a=log34+log37=log328∈(3,4).11.1.222对数函数及其性质(一)1.D.2.C.3.C.4.144分钟.5.①②③.6.-1.7.-2≤某≤2.8.提示:注意对称关系.9.对loga(某+a)<1进行讨论:①当a>1时,0a,得某>0.10.C1:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(某)=2某即某2+lga·某+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.222对数函数及其性质(二)1.A.2.D.3.C.4.22,2.5.(-∞,1).6.log2047.logbab0得某>0.(2)某>lg3lg2.9.图略,y=log12(某+2)的图象可以由y=log12某的图象向左平移2个单位得到.10.根据图象,可得0222对数函数及其性质(三)1.C.2.D.3.B.4.0,12.5.11.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2某.10.可以用求反函数的方法得到,与函数y=loga(某+1)关于直线y=某对称的函数应该是y=a某-1,和y=loga某+1关于直线y=某对称的函数应该是y=a某-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-某)+f(-1+某)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.2518<0.5-12<0.16-14.6.(-∞,-1)∪23,32.7.p=1,f(某)=某2.8.图象略,由图象可得f(某)≤1的解集某∈[-1,1].9.图象略,关于y=某对称.10.某∈0,3+52.11.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习1.D.2.D.3.C.4.B.5.C.6.D.7.D.8.A.9.D.10.B.11.1.12.某>1.13.④.14.258.提示:先求出h=10.15.(1)-1.(2)1.16.某∈R,y=12某=1+lga1-lga>0,讨论分子、分母得-117.(1)a=2.(2)设g(某)=log12(10-2某)-12某,则g(某)在[3,4]上为增函数,g(某)>m对某∈[3,4]恒成立,m18.(1)函数y=某+a某(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=某+c某(c>0)在[1,2]上是减函数,所以当某=1时,y有值1+c;当某=2时,y有最小值2+c2.19.y=(a某+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,yma 某=(a+1)2-2=14,此时a=3;当020.(1)F(某)=lg1-某某+1+1某+2,定义域为(-1,1).(2)提示:假设在函数F(某)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(某1,y),B(某2,y)(某1≠某2),则f(某1)-f(某2)=0,而f(某1)-f(某2)=lg1-某1某1+1+1某1+2-lg1-某2某2+1-1某2+2=lg(1-某1)(某2+1)(某1+1)(1-某2)+某2-某1(某1+2)(某2+2)=①+②,可证①,②同正或同负或同为零,因此只有当某1=某2时,f(某1)-f(某2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。
最新高一数学基本初等函数练习题
精品文档 精品文档 基本初等函数(2)
一、选择题: 1、331log12log22( )
A. 3 B. 23 C. 21 D.3 2、)100()10(fxfx,则若( ) A、100 B、lg10 C、2 D、10010 3、 已知集合P={x|)2lg(1xxy},Q={},)31(|||Rxyyx,则P∩Q=( ) A.(0,1) B.(0,1] C.[2,1) D.[-2,1] 4、下列函数中,在0,上为增函数的是( )
A. 12()fxx B. 2()3fxxx C. 1()1fxx D. ()fxx 5、已知a>1,函数xay与)x(logya的图像只可能是 ( )
6、设函数1,log11,2)(21xxxxfx,则满足2)(xf的x的取值范围是( ) A.1[,2] B.[0,2] C.[1,+] D.[0,+] 7、已知(31)4,1()log,1aaxaxfxxx是(,)上的减函数,那么a的取值范围是
A.(0,1) B.1(0,)3 C.11[,)73 D.1[,1)7 8、设函数fx和gx分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) A.fxgx是偶函数 B.fxgx是奇函数 C.fxgx是偶函数 D.fxgx是奇函数 9、已知函数()fx是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有1(1)()xfxxfx,则)23(f的值是( )
y O x y O x y O x y O x 精品文档
精品文档 A. 0 B. 12 C. 1 D. 72
10、已知偶函数()fx在区间0,上单调递增,则满足(21)(3)fxf的x的取值范围是( ) A. 1,2 B. 1,2 C. 1,22 D. 1,22
高一数学基本初等函数Ⅰ试题答案及解析
高一数学基本初等函数Ⅰ试题答案及解析1.= _____________【答案】3【解析】主要考查对数运算。
解:原式=2.周长为l的铁丝弯成下部为矩形,上部为半圆形的框架(半径为r),若矩形底边长为2x,此框架围成的面积为y,则y与x的函数解析式是____________________.【答案】+r2(0<x<)【解析】半圆的面积=,矩形的面积=,所以+r2因为圆半径大于0,即>0,矩形的长、宽均大于0,所以,>0,解得0<x<故+r2(0<x<)。
【考点】主要考查函数的解析式、定义域、面积计算方法,考查应用数学知识解决实际问题的能力。
点评:注意利用隐含条件圆半径大于0、矩形的长、宽均大于0等求定义域。
3.国家规定个人稿费纳税办法为:不超过800元的不纳税,超过800元而不超过4000元的按超过800元的14%纳税,超过4000元的按全稿酬的11%纳税.某人出版了一本书,共纳税420元,这个人的稿费为__________元.【答案】3800【解析】设个人稿费为x元,在不超过四千时,,。
【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。
点评:解答应用问题的一般步骤是:“审题、建模、求解、作答”。
4.某种商品现在定价每年p元,每月卖出n件,因而现在每月售货总金额np元,设定价上涨x成,卖出数量减少y成,售货总金额变成现在的z倍.(1)用x和y表示z. (2)若y=x,求使售货总金额有所增加的x值的范围.【解析】解:(1)npz=p(1+)·n(1-)∴z=(2)当y=x时,z=由z>1,得>1x(x-5)<0,∴0<x<5【考点】主要考查函数模型的广泛应用,考查应用数学知识解决实际问题的能力。
点评:解答应用问题的一般步骤是:“审题、建模、求解、作答”。
5.函数y=log4(x-1)2(x<1=的反函数为___ _______.【答案】y=1-2x(x∈R)【解析】主要考查指数函数与对数函数互为反函数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 基本初等函 一、选择题 1.对数式log错误!未找到引用源。(2+错误!未找到引用源。)的值是( ). A.-1 B.0 C.1 D.不存在 2.当a>1时,在同一坐标系中,函数y=a-x与y=loga x的图象是( ).
3.如果0<a<1,那么下列不等式中正确的是( ). A.(1-a)错误!未找到引用源。>(1-a)错误!未找到引用源。 B.log1-a(1+a)>0 C.(1-a)3>(1+a)2 D.(1-a)1+a>1
4.函数y=loga x,y=logb x,y=logc x,y=logd x的图象如图所示,则a,b,c,d的大小顺序是( ).
A.1<d<c<a<b B.c<d<1<a<b C.c<d<1<b<a D.d<c<1<a<b 5.已知f(x6)=log2 x,那么f(8)等于( ). A.错误!未找到引用源。 B.8 C.18 D.错误!未找到引用源。 6.如果函数f(x)=x2-(a-1)x+5在区间错误!未找到引用源。上是减函数,那么实数a的取值范围是( ). A. a≤2 B.a>3 C.2≤a≤3 D.a≥3 7.函数f(x)=2-x-1的定义域、值域是( ). A.定义域是R,值域是R B.定义域是R,值域为(0,+∞) C.定义域是R,值域是(-1,+∞) D.定义域是(0,+∞),值域为R 8.已知-1<a<0,则( ). A.(0.2)a<错误!未找到引用源。<2a B.2a<错误!未找到
引用源。<(0.2)a C.2a<(0.2)a<错误!未找到引用源。 D.错误!未找到引用
源。<(0.2)a<2a
9.已知函数f(x)=错误!未找到引用源。是(-∞,+∞)上的减函数,那么a的取值范围是( ).
A.(0,1) B.错误!未找到引用源。 C.错误!未找到引用源。 D.错误!未找到引用源。 10.已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是( ). A.(0,1) B.(1,2) C.(0,2) D.[2,+∞) 二、填空题 11.满足2-x>2x的 x 的取值范围是 . 12.已知函数f(x)=log0.5(-x2+4x+5),则f(3)与f(4)的大小关系为 . 13.错误!未找到引用源。的值为_____. 14.已知函数f(x)=错误!未找到引用源。则错误!未找到引用源。的值为_____. 15.函数y=错误!未找到引用源。的定义域为 . 16.已知函数f(x)=a-错误!未找到引用源。,若f(x)为奇函数,则a=________.
三、解答题 17.设函数f(x)=x2+(lg a+2)x+lg b,满足f(-1)=-2,且任取x∈R,都有f(x)≥2x,求实数a,b的值. 18.已知函数f (x)=lg(ax2+2x+1) . (1)若函数f (x)的定义域为R,求实数a的取值范围; (2)若函数f (x)的值域为R,求实数a的取值范围. 19.求下列函数的定义域、值域、单调区间: (1)y=4x+2x+1+1; (2)y=错误!未找到引用源。. 20.已知函数f(x)=loga(x+1),g(x)=loga(1-x),其中a>0,a≠1. (1)求函数f(x)-g(x)的定义域; (2)判断f(x)-g(x)的奇偶性,并说明理由; (3)求使f(x)-g(x)>0成立的x的集合.
参考答案 一、选择题 1.A 解析: log错误!未找到引用源。(2+错误!未找到引用源。)=log错误!未找到引用源。
(2-错误!未找到引用源。)-1,故选A. 2.A 解析:当a>1时,y=loga x单调递增,y=a-x单调递减,故选A. 3.A 解析:取特殊值a=错误!未找到引用源。,可立否选项B,C,D,所以正确选项是A. 4.B 解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B. 5.D 解析:解法一:8=(错误!未找到引用源。)6,∴ f(错误!未找到引用源。6)=log2错误!
未找到引用源。=错误!未找到引用源。. 解法二:f(x6)=log2 x,∴ f(x)=log2错误!未找到引用源。=错误!未找到引用源。log2
x,f(8)=错误!未找到引用源。log28=错误!未找到引用源。.
6.D
解析:由函数f(x)在错误!未找到引用源。上是减函数,于是有错误!未找到引用源。≥1,解得a≥3.
7.C 解析:函数f(x)=2-x-1=错误!未找到引用源。-1的图象是函数g(x)=错误!未找 到引用源。图象向下平移一个单位所得,据函数g(x)=错误!未找到引用源。定义域和值域,不难得到函数f(x)定义域是R,值域是(-1,+∞). 8.B 解析:由-1<a<0,得0<2a<1,0.2a>1,错误!未找到引用源。>1,知A,D不正确. 当a=-错误!未找到引用源。时,错误!未找到引用源。=错误!未找到引用源。<错
误!未找到引用源。=错误!未找到引用源。,知C不正确. ∴ 2a<错误!未找到引用源。<0.2a. 9.C 解析:由f(x)在R上是减函数,∴ f(x)在(1,+∞)上单减,由对数函数单调性,即0<a<1 ①,又由f(x)在(-∞,1]上单减,∴ 3a-1<0,∴ a<错误!未找到引用源。 ②,又由于由f(x)在R上是减函数,为了满足单调区间的定义,f(x)在(-∞,1]上的最小值7a-1要大于等于f(x)在[1,+∞)上的最大值0,才能保证f(x)在R上是减函数. ∴ 7a-1≥0,即a≥错误!未找到引用源。③.由①②③可得错误!未找到引用源。≤a<错误!未找到引用源。,故选C. 10.B 解析:先求函数的定义域,由2-ax>0,有ax<2,因为a是对数的底,故有a>0且a≠1,于是得函数的定义域x<错误!未找到引用源。.又函数的递减区间[0,1]必须在函数的定义域内,故有1<错误!未找到引用源。,从而0<a<2且a≠1. 若0<a<1,当x在[0,1]上增大时,2-ax减小,从而loga(2-ax)增大,即函数 y=loga(2-ax)在[0,1]上是单调递增的,这与题意不符. 若1<a<2,当x在[0,1]上增大时,2-ax减小,从而loga(2-ax)减小,即函数 y=loga(2-ax)在[0,1]上是单调递减的. 所以a的取值范围应是(1,2),故选择B. 二、填空题 11.参考答案:(-∞,0). 解析:∵ -x>x,∴ x<0. 12.参考答案:f(3)<f(4). 解析:∵ f(3)=log0.5 8,f(4)=log0. 5 5,∴ f(3)<f(4). 13.参考答案:错误!未找到引用源。. 解析:错误!未找到引用源。=错误!未找到引用源。·错误!未找到引用源。=错误!
未找到引用源。=错误!未找到引用源。.
14.参考答案:错误!未找到引用源。. 解析:错误!未找到引用源。=log3错误!未找到引用源。=-2,错误!未找到引用源。=f(-2)=2-2=错误!未找到引用源。. 15.参考答案:错误!未找到引用源。. 解析:由题意,得 错误!未找到引用源。错误!未找到引用源。 错误!未找到引用源。 ∴ 所求函数的定义域为错误!未找到引用源。. 16.参考答案:a=错误!未找到引用源。. 解析:∵ f(x)为奇函数, ∴ f(x)+f(-x)=2a-错误!未找到引用源。-错误!未找到引用源。=2a-错误!未找到引用源。=2a-1=0, ∴ a=错误!未找到引用源。. 三、解答题 17.参考答案:a=100,b=10. 解析:由f(-1)=-2,得1-lga+lg b=0 ①,由f(x)≥2x,得x2+xlg a+lg b≥0 (x∈R).∴Δ=(lg a)2-4lg b≤0 ②. 联立①②,得(1-lg b)2≤0,∴ lg b=1,即b=10,代入①,即得a=100. 18.参考答案:(1) a的取值范围是(1,+∞) ,(2) a的取值范围是[0,1]. 解析:(1)欲使函数f(x)的定义域为R,只须ax2+2x+1>0对x∈R恒成立,所以有错
误!未找到引用源。,解得a>1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x)的值域为R,即要ax2+2x+1 能够取到(0,+∞) 的所有值. ①当a=0时,a x 2+2x+1=2x+1,当x∈(-错误!未找到引用源。,+∞)时满足要求; ②当a≠0时,应有错误!未找到引用源。 0<a≤1.当x∈(-∞,x1)∪(x2,+∞)时满足要求(其中x1,x2是方程ax 2+2x+1=0的二根). 综上,a的取值范围是[0,1]. 19.参考答案:(1)定义域为R.令t=2x(t>0),y=t2+2t+1=(t+1)2>1, ∴ 值域为{y | y>1}. t=2x的底数2>1,故t=2x在x∈R上单调递增;而 y=t2+2t+1在t∈(0,+∞)上单调递增,故函数y=4x+2x+1+1在(-∞,+∞)上单调递增. (2)定义域为R.令t=x2-3x+2=错误!未找到引用源。-错误!未找到引用源。错误!
未找到引用源。. ∴ 值域为(0,错误!未找到引用源。]. ∵ y=错误!未找到引用源。在t∈R时为减函数, ∴ y=错误!未找到引用源。在错误!未找到引用源。-∞,错误!未找到引用源。上单调增函数,在错误!未找到引用源。,+∞错误!未找到引用源。为单调减函数. 20.参考答案:(1){x |-1<x<1}; (2)奇函数; (3)当0<a<1时,-1<x<0;当a>1时,0<x<1. 解析:(1)f(x)-g(x)=loga(x+1)-loga(1-x),若要式子有意义,则 即-1<x<1,所以定义域为{x |-1<x<1}. (2)设F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x)=loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所以f(x)-g(x)是奇函数. (3)f(x)-g(x)>0即loga(x+1)-loga(1-x)>0有loga(x+1)>loga(1-x).
当0<a<1时,上述不等式 解得-1<x<0;
当a>1时,上述不等式 解得0<x<1.
x+1>0 1-x>0
x+1>0 1-x>0 x+1<1-x
x+1>0 1-x>0 x+1>1-x