(完整)高一数学基本初等函数教案
基本初等函数 教案

基本初等函数教案教案标题:基本初等函数教案目标:1. 理解基本初等函数的概念和特征;2. 掌握基本初等函数的图像、定义域、值域和性质;3. 能够应用基本初等函数解决实际问题。
教学内容:1. 基本初等函数的定义和分类;2. 基本初等函数的图像和性质;3. 基本初等函数的定义域和值域;4. 基本初等函数的应用。
教学步骤:一、导入(5分钟)1. 引入基本初等函数的概念,让学生了解初等函数与常数函数、线性函数的区别;2. 通过举例,引导学生思考基本初等函数在生活中的应用。
二、概念讲解与示例分析(15分钟)1. 介绍基本初等函数的定义和分类,如常数函数、幂函数、指数函数、对数函数、三角函数等;2. 分别讲解每种基本初等函数的图像和性质,并通过图像展示和实例分析来加深学生的理解。
三、定义域和值域的讨论(15分钟)1. 解释基本初等函数的定义域和值域的概念;2. 以各种基本初等函数为例,引导学生求解其定义域和值域,并进行讨论和总结。
四、应用实例分析(15分钟)1. 提供一些实际问题,让学生应用基本初等函数解决;2. 引导学生分析问题,选择合适的基本初等函数进行建模,并求解问题。
五、练习与拓展(15分钟)1. 给学生一些练习题,巩固基本初等函数的概念和运用能力;2. 鼓励学生拓展思维,尝试解决更复杂的问题。
六、总结与反思(5分钟)1. 对本节课学习的内容进行总结;2. 鼓励学生提出问题或反思,以便进一步完善教学。
教学资源:1. 教材:包含基本初等函数的相关知识点和例题;2. 幻灯片:用于呈现基本初等函数的图像和性质;3. 实例题库:包含基本初等函数的应用实例。
教学评估:1. 课堂练习:通过练习题,检查学生对基本初等函数的理解和应用能力;2. 问题解答:通过学生的提问和回答,评估学生对基本初等函数的掌握程度;3. 实际问题解决:观察学生在应用实例中的解决能力,评估其综合运用能力。
教学延伸:1. 探索更多基本初等函数的性质和应用;2. 引导学生进行实际调研,了解基本初等函数在不同领域的应用案例;3. 鼓励学生自主学习和探索,拓展基本初等函数的应用范围。
基本初等函数优秀教案

基本初等函数优秀教案介绍:本教案旨在帮助学生理解和掌握基本初等函数的性质、图像和变化规律。
通过多种活动和案例分析,学生将能够深入了解函数的定义、性质和应用。
教学目标:1. 理解基本初等函数的定义和性质;2. 掌握函数图像的绘制方法;3. 分析函数的变化规律和应用实例。
教学重点:1. 函数的定义和性质;2. 函数图像的绘制方法。
教学难点:1. 函数性质的理解和应用;2. 函数图像的多样性和变化规律。
教学准备:1. 教师备课资料:基本初等函数的性质、定义和应用实例;2. 学生学习资料:教材教辅及图表练习册。
教学过程:Step 1:引入(10分钟)教师通过简单的问题引起学生对函数的认知,例如:“什么是函数?”“你能举出几个函数的例子?”然后教师可介绍函数的定义和概念。
Step 2:认识基本初等函数(20分钟)教师将基本初等函数的种类和性质呈现给学生,如常数函数、线性函数、二次函数、指数函数、对数函数等。
学生可以观察并分析这些函数的特点和图像。
Step 3:讨论函数性质(30分钟)学生分小组进行讨论,探究基本初等函数的性质。
教师可提供一些引导性问题,如“常数函数的图像是什么样的?”、“线性函数和二次函数的图像有什么区别?”等。
学生通过分析和讨论,总结出函数的性质。
Step 4:绘制函数图像(30分钟)学生根据教师提供的函数表达式,利用图表练习册上的坐标纸和绘图工具,绘制基本初等函数的图像。
教师可以带领学生一起绘制,同时解答学生在绘图过程中的问题。
Step 5:探索函数变化规律(30分钟)学生通过观察和分析绘制的函数图像,总结出函数的变化规律和特点。
教师可以给学生提供一些实际问题,引导学生应用函数进行解决。
Step 6:应用实例分析(20分钟)教师给学生提供一些实际生活中的问题,要求学生分析并应用基本初等函数进行解决。
学生可以通过函数的图像和变化规律,找到问题的合理解决方法。
Step 7:总结与延伸(10分钟)教师对本节课的重点内容进行总结,并对学生的学习情况进行评价。
基本初等函数

武汉龙文教育学科辅导教案学生教师谭灏文学科高中数学时间星期时间段教学目标:1.理解函数单调性的定义,明确增函数、减函数的图象特征;2.理解函数最大、最小值的概念与图象意义;教学重难点:重点:应用函数单调性求函数最大或最小值;难点:单调性概念的形成,理解函数最值可取性的意义。
教学流程及授课提纲一.指数函数指数函数是数学中重要的函数。
应用到值x 上的这个函数写为exp(x)。
还可以等价的写为e x,这里的 e 是数学常数,就是自然对数的底数,近似等于2.718281828,还叫做欧拉数。
作为实数变量x 的函数,y=ex 的图像总是正的(在x 轴之上)并递增(从左向右看)。
它永不触及x 轴,尽管它可以任意程度的靠近它(所以,x 轴是这个图像的水平渐近线。
它的反函数是自然对数ln(x),它定义在所有正数x 上。
有时,特别是在科学中,术语指数函数更一般性的用于形如ka x的函数,这里的 a 叫做“底数”,是不等于 1 的任何正实数。
本文最初集中于带有底数为欧拉数e 的指数函数。
最简单的,指数函数按恒定速率翻倍。
例如细菌培养时细菌总数(近似的)每三个小时翻倍,和汽车的价值每年减少10% 都可以被表示为一个指数。
使用自然对数,你可以定义更一般的指数函数。
函数定义于所有的a > 0,和所有的实数x。
它叫做底数为a 的指数函数。
注意这个的定义依赖于先前确立的定义于所有实数上的函数的存在。
(这里我们先既不在形式上的也不概念上明确这样一个函数是否存在,或非自然指数意味着什么。
)注意上述等式对于a = e 成立,因为指数函数可“在加法和乘法之间转换”,在下列“指数定律”的前三个和第五个中表述:它们对所有正实数a 与b 和所有实数x 与y 都是有效的。
涉及分数和方根的表达式经常可以使用指数符号简化:对于任何a > 0,实数b,和整数n > 1:二.对数函数函数依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如的函数,在其中底数α是固定的而只有一个参数x。
河北省高一数学上册 第二单元《基本初等函数(I)》全套教案

河北省高一数学上册第二单元《基本初等函数(I)》全套教案本单元以元素与集合为主题,分为三篇课文,通过本单元学习,引导学生明白理解基本初等函数的定义,掌握指数函数的图象、性质及其简单应用。
2.1 指数函数教学目标:知识目标:理解指数函数的定义,掌握指数函数的图象、性质及其简单应用.能力目标:1.通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类2.讨论的思想以及从特殊到一般的数学讨论的方法,增强识图用图的能力.情感目标:通过学习,使学生学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质.教学重点:指数函数的图象、性质及其简单运用.教学难点:指数函数图象和性质的发现过程,及指数函数图象与底的关系.学前准备:多媒体辅助教学.教学过程:2.2. 对数函数教学目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.会运用对数的运算性质解决有关问题.教学重点:对数函数的图象、性质及其简单运用.教学难点:对数函数图象和性质的发现过程,及指数函数图象与底的关系.教学过程:教学后记2.3 幂函数教学目的:(1.知识与技能目标了解幂函数的概念, 会画五个简单的幂函数12132,,,,-=====xyxyxyxy xy的图象,能根据图象概括出幂函数的一般性质,同时能应用幂函数的图象和性质解决相关的简单问题;2.过程与方法目标引导学生从具体幂函数的图象与性质中归纳出共性,培养学生的识图能力和抽象概括能力,培养学生数形结合的意识;通过对幂函数的学习,了解类比法在研究问题中的作用,使学生进一步熟练掌握研究一般函数的思想方法;3.情感、态度与价值观目标通过师生、生生彼此之间的讨论、互动,引导学生主动参与作图、分析图象的特征,培养学生合作、交流、探究的意志品质,并在研究函数变化的过程中体会事物的量变、质变规律,感受数学的对称美、和谐美,同时信息技术的应用也会激发学生的求知欲望.四、教学重难点:重点:通过具体实例认识幂函数的概念,研究其性质,体会图象的变化规律.难点:幂函数的图象与性质的简单应用重、难点突破措施:1.以情感人,以理醒人创设情境中:问题开题,扣人心弦;层层探究中:分类探究,步步为营,丝丝入扣.2.数形结合现代的多媒体技术直观、形象展示幂函数的指数与图象之间的关联,突破重难点.教具:利用ppt、几何画板、DrawTools等多媒体手段辅助教学.:一般研究函数从哪些方面着手?类比之前研对数函数的方法一般研究函数从其定义奇偶性与单调性等一般借助函数的图:幂函数图像:幂函数在区:增函数在上的图象特征与指数:减函数在何动手操作:根据上述图象的特征,填写表格可以看出,幂函数随着幂指数的取值不同,它们的图象和性质也存在着很大的差异,下面就请同学们通过观察图象来探寻幂函数的一些共性.从图象中可以看出,<α时,幂函数αxy=在第一象限的图象向上与y轴无限接近,向右与x轴函数请画出该函数的草图的定义可知,m数的草图,究函数的性质。
人教版高中数学必修一《基本初等函数》全章教学设计

第二章 基本初等函数 §2.1指数函数2.1.1 指数与指数幂的运算(三课时)第一课时:教学目标:1.理解n 次方根、根式的概念;2.正确运用根式运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
教学重点:根式的概念、运算性质 教学难点:根式概念的理解 教学方法:学导式 教学过程:(Ⅰ)创设情景;阅读问题1、问题2,认识将指数的取值范围进行推广的重要性和必要性。
(Ⅱ)复习回顾 ___; -9)0a _____(2≥=;(Ⅲ)讲授新课 22=4 ,(-2)2=4 ⇒ 2,-2叫4的平方根 23=8 ⇒ 2叫8的立方根; (-2)3=-8⇒-2叫-8的立方根 25=32 ⇒ 2叫32的5次方根 … 2n =a ⇒2叫a 的n 次方根 1.n 次方根的定义:(板书)问题1:n 次方根的定义给出了,x 如何用a 表示呢?na x =是否正确?次方根是负数,任何一个数的方根都是唯一的。
此时,a 的n 次方根可表示为na x =。
从而有:3273=,2325-=-,236a a =数,负数没有n 次方根。
此时正数a 的n 次方根可表示为:)0a (a n >± 其中n a 表示a 的正的n 次方根,n a -表示a 的负的n 次方根。
结论3:0的n 次方根是0,记作n n a ,00即=当a=0时也有意义。
这样,可在实数范围内,得到n 次方根的性质: 3.n 次方根的性质:(板书)*)(2,12,N k kn a k n a x n n ∈⎪⎩⎪⎨⎧=±+== 其中叫根式,n 叫根指数,a 叫被开方数。
注意:根式是n 次方根的一种表示形式,并且,由n 次方根的定义,可得到根式的运算性质。
4.根式运算性质:(板书)①a a nn =)(,即一个数先开方,再乘方(同次),结果仍为被开方数。
问题2:若对一个数先乘方,再开方(同次),结果又是什么? ②⎩⎨⎧=为偶数为奇数;n a n a a nn|,|,性质的推导(略): (III )课堂练习:求下列各式的值通过本节学习,大家要能在理解根式概念的基础上,正确运用根式的运算性质解题。
高一数学基本初等函数教案

第二章基本初等函数(Ⅰ)一、课标要求:教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.1.了解指数函数模型的实际背景.2.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.3.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点).4.通过应用实例的教学,体会指数函数是一种重要的函数模型.5.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.6.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).7.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1),初步了解反函数的概念和f--1(x)的意义.8.通过实例,了解幂函数的概念,结合五种具体函数1312,,,y x y x y x y x-====的图象,了解它们的变化情况.二、编写意图与教学建议:1.教材注重从现实生活的事例中引出指数函数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.2.在学习对数函数的图象和性质时,教材将它与指数函数的有关内容做了比较,让学生体会两种函数模型的增长区别与关联,渗透了类比思想. 建议教学中重视知识间的迁移与互逆作用.3、教材对反函数的学习要求仅限于初步知道概念,目的在于强化指数函数与对数函数这两种函数模型的学习,教学中不宜对其定义做更多的拓展.4.教材对幂函数的内容做了削减,仅限于学习五种学生易于掌握的幂函数,并且安排的顺序向后调整,教学中应防止增加这部分内容,以免增加学生学习的负担.5.通过运用计算机绘制指数函数的动态图象,使学生进一步体会到信息技术在数学学习中的作用,教师要尽量发挥电脑绘图的教学功能..6. 教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.三、教学内容与课时安排的建议本章教学时间约为14课时.2.1指数函数:6课时2.2对数函数:6课时2.3幂函数:1课时小结:1课时§2.1.1 指数(第1—2课时)一.教学目标:1.知识与技能:(1)理解分数指数幂和根式的概念;(2)掌握分数指数幂和根式之间的互化;(3)掌握分数指数幂的运算性质;(4)培养学生观察分析、抽象等的能力.2.过程与方法:通过与初中所学的知识进行类比,分数指数幂的概念,进而学习指数幂的性质.3.情态与价值(1)培养学生观察分析,抽象的能力,渗透“转化”的数学思想;(2)通过运算训练,养成学生严谨治学,一丝不苟的学习习惯;(3)让学生体验数学的简洁美和统一美.二.重点、难点1.教学重点:(1)分数指数幂和根式概念的理解; (2)掌握并运用分数指数幂的运算性质; 2.教学难点:分数指数幂及根式概念的理解 三.学法与教具1.学法:讲授法、讨论法、类比分析法及发现法2.教具:多媒体 四、教学设想:第一课时一、复习提问:什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若2x a =,则x 叫做a 的平方根.同理,若3x a =,则x 叫做a 的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为2±,负数没有平方根,一个数的立方根只有一个,如―8的立方根为―2;零的平方根、立方根均为零. 二、新课讲解类比平方根、立方根的概念,归纳出n 次方根的概念.n 次方根:一般地,若n x a =,则x 叫做a 的n 次方根(throot ),其中n >1,且n ∈N*,当n 为偶数时,a 的n表示,如果是负数,用叫做根式.n 为奇数时,a 的n 次方表示,其中n 称为根指数,a 为被开方数.类比平方根、立方根,猜想:当n 为偶数时,一个数的n 次方根有多少个?当n 为奇数时呢?n a n a n a n ⎧⎪⎨±⎪⎩为奇数, 的次方根有一个,为正数:为偶数, 的次方根有两个,为n a n a n a n ⎧⎪⎨⎪⎩为奇数, 的次方根只有一个,为负数:为偶数, 的次方根不存在.零的n0=举例:16的次方根为2±,275-的27-的4次方根不存在.小结:一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数和偶数两种情况.根据n 次方根的意义,可得:n a =n a =a n 的n 次方根,a =一定成立吗?如果不一定成立,等于什么?让学生注意讨论,n 为奇偶数和a 的符号,充分让学生分组讨论.通过探究得到:n a =n 为偶数,,0||,0a a a a a ≥⎧==⎨-<⎩|8|8==-=-=小结:当n 再在绝对值算具体的值,这样就避免出现错误: 例题:求下列各式的值(1)(1)(2) (3)(4)分析:当n ||a =,然后再去绝对值.n =是否成立,举例说明. 课堂练习:1. 求出下列各式的值1)a ≤21,a a =-求的取值范围.3三.归纳小结:1.根式的概念:若n >1且*n N ∈,则n x a x 是的次方根,n 为奇数时,n 为偶数时,x =2.掌握两个公式:(0),||(0)n a a n n a a a ≥⎧==⎨-<⎩为奇数时为偶数时3.作业:P 69习题2.1 A 组 第1题第二课时提问:1.习初中时的整数指数幂,运算性质?00,1(0),0n a a a a a a a =⋅⋅⋅⋅⋅=≠无意义1(0)n na a a -=≠;()m n m n m n mn a a a a a +⋅== (),()n m mn n n n a a ab a b ==什么叫实数?有理数,无理数统称实数.2.观察以下式子,并总结出规律:a>0①1025a a===②842a a===③1234a a===1025a a===小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如:23(0)a a==>12(0)b b==>54(0)c c==>*(0,,1)mna a n N n=>∈>为此,我们规定正数的分数指数幂的意义为:*0,,)mna a m n N=>∈正数的定负分数指数幂的意义与负整数幂的意义相同.即:*1(0,,)mnmna a m n Na-=>∈规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是111(0)nm m m ma a a a a=⋅⋅⋅⋅>由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1)(0,,)r s r sa a a a r s Q+⋅=>∈(2)()(0,,)r S rsa a a r s Q=>∈(3)()(0,0,)r r ra b a b Q b r Q⋅=>>∈若a>0,P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本P62——P62..时,(如课本图所所以,.一般来说,无理数指数幂(0,)pa a p >是一个无理数是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考:由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即:(0,,)r s r s a a a a r R s R +⋅=>∈∈ ()(0,,)r s rs a a a r R s R =>∈∈ ()(0,)r r r a b a b a r R ⋅=>∈3.例题 (1).(P 60,例2)求值 解:① 2223323338(2)224⨯====② 1112()21222125(5)555--⨯--====③ 5151(5)1()(2)2322----⨯-===④334()344162227()()()81338-⨯--===(2).(P 60,例3)用分数指数幂的形式表或下列各式(a >0)解:117333222a a a aa +=⋅==228222333a a a a a +⋅==421332()a a ====分析:先把根式化为分数指数幂,再由运算性质来运算. 课堂练习:P 63练习 第 1,2,3,4题 补充练习:1. 计算:122121(2)()248n n n ++-⋅的结果 2. 若13107310333,384,[()]n a a a a a -==⋅求的值1.分数指数是根式的另一种写法.2.无理数指数幂表示一个确定的实数.3.掌握好分数指数幂的运算性质,其与整数指数幂的运算性质是一致的.作业:P69习题2.1 第2题第三课时一.教学目标1.知识与技能:(1)掌握根式与分数指数幂互化;(2)能熟练地运用有理指数幂运算性质进行化简,求值.2.过程与方法:通过训练点评,让学生更能熟练指数幂运算性质.3.情感、态度、价值观(1)培养学生观察、分析问题的能力;(2)培养学生严谨的思维和科学正确的计算能力.二.重点、难点:1.重点:运用有理指数幂性质进行化简,求值.2.难点:有理指数幂性质的灵活应用.三.学法与教具:1.学法:讲授法、讨论法.2.教具:投影仪四.教学设想:1.复习分数指数幂的概念与其性质2.例题讲解例1.(P60,例4)计算下列各式(式中字母都是正数)(1)211511336622(2)(6)(3)a b a b a b-÷-(2)31884 () m n-(先由学生观察以上两个式子的特征,然后分析、提问、解答)分析:四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号的.整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序.我们看到(1)小题是单项式的乘除运算;(2)小题是乘方形式的运算,它们应让如何计算呢?其实,第(1)小题是单项式的乘除法,可以用单项式的运算顺序进行.第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算.解:(1)原式=211115326236 [2(6)(3)]a b+-+-⨯-÷-=0 4ab =4a(2)原式=318884()() m n-=23m n - 例2.(P 61 例5)计算下列各式 (1)-(22(a >0)分析:在第(1)小题中,只含有根式,且不是同类根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,同样,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算.解:(1)原式= 111324(25125)25-÷ = 231322(55)5-÷ = 2131322255---= 1655-= 5(2)原式=125222362132a aa a a--===⋅小结:运算的结果不强求统一用哪一种形式表示,但不能同时含有根号和分数指数,也不能既有分母,又含有负指数. 课堂练习:化简:(1)2932)-(2(3)归纳小结:1. 熟练掌握有理指数幂的运算法则,化简的基础.2.含有根式的式子化简,一般要先把根式转化为分数指数幂后再计算. 作业:P 65 习题2.1A 组 第4题B 组 第2题2.1.2指数函数及其性质(2个课时)一. 教学目标:1.知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想; 2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力. 3.过程与方法展示函数图象,让学生通过观察,进而研究指数函数的性质. 二.重、难点重点:指数函数的概念和性质及其应用. 难点:指数函数性质的归纳,概括及其应用. 三、学法与教具:①学法:观察法、讲授法及讨论法. ②教具:多媒体.第一课时一.教学设想: 1. 情境设置①在本章的开头,问题(1)中时间x 与GDP 值中的 1.073(20)xy x x =∈≤与问题(2)t 1中时间t和C-14含量P的对应关系P=[(2,请问这两个函数有什么共同特征.②这两个函数有什么共同特征157301][()]2t P =t57301把P=[()变成2,从而得出这两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).二.讲授新课 指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R . 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2xy =-(4)x y π= (5)2y x = (6)24y x =(7)x y x = (8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,x a 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在. 若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足(0,1)xy a a a =>≠且的形式才能称为指数函数,5,,3,31x x x a y x y y +===+1xx为常数,象y=2-3,y=2等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数.我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图象x 3.00- 2.50- 2.00- 1.50- 1.00- 0.00 0.50 1.00 1.50 2.002x y =18-14121 2 4再研究,0<a <1的情况,用计算机完成以下表格并绘出函数()2x y =的图象.x2.50- 2.00-1.50- 1.00-0.00 1.00 1.50 2.00 2.501()2x y =14121 2 4- - ------ - -----xy0 y =2x从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2x x y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.问题:1:从画出的图象中,你能发现函数的图象与底数间有什么样的规律.从图上看xy a =(a >1)与xy a =(0<a <1)两函数图象的特征.- - -- ----------xy 0问题2:根据函数的图象研究函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 问题3:指数函数xy a =(a >0且a ≠1),当底数越大时,函数图象间有什么样的关系. 图象特征函数性质a >1 0<a <1 a >1 0<a <1向x 轴正负方向无限延伸 函数的定义域为R图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方函数的值域为R +函数图象都过定点(0,1) 0a =1自左向右, 图象逐渐上升 自左向右, 图象逐渐下降 增函数减函数在第一象限内的图 象纵坐标都大于1 在第一象限内的图 象纵坐标都小于1 x >0,x a >1 x >0,x a <1 在第二象限内的图 象纵坐标都小于1在第二象限内的图 象纵坐标都大于1x <0,x a <1x <0,x a >15.利用函数的单调性,结合图象还可以看出:(1)在[,]xa b f x a 上,()=(a >0且a ≠1)值域是[(),()][(),()];f a f b f b f a 或 (2)若0,x f x f x x ≠≠∈则()1;()取遍所有正数当且仅当R; (3)对于指数函数()x f x a =(a >0且a ≠1),总有(1);f a = (4)当a >1时,若1x <2x ,则1()f x <2()f x ; 例题:例1:(P 66 例6)已知指数函数()xf x a =(a >0且a ≠1)的图象过点(3,π),求(0),(1),(3)f f f -的值.分析:要求(0),(1),(3),,xf f f a x π-13的值,只需求出得出f()=()再把0,1,3分别代入x ,即可求得(0),(1),(3)f f f -.提问:要求出指数函数,需要几个条件? 课堂练习:P 68 练习:第1,2,3题补充练习:1、函数1()()2x f x =的定义域和值域分别是多少? 2、当[1,1],()32xx f x ∈-=-时函数的值域是多少?解(1),0x R y ∈> (2)(-53,1)例2:求下列函数的定义域: (1)442x y -= (2)||2()3x y =分析:类为(1,0)xy a a a =≠>的定义域是R ,所以,要使(1),(2)题的定义域,保要使其指数部分有意义就得 . 3.归纳小结作业:P 69 习题2.1 A 组第5、6题1、理解指数函数(0),101xy a a a a =>><<注意与两种情况。
初等函数教案模板高中

课时:2课时年级:高一年级教材:《高中数学》人教版教学目标:1. 理解初等函数的概念,掌握基本初等函数的种类及其性质。
2. 能够运用初等函数解决实际问题,提高学生的数学应用能力。
3. 培养学生的逻辑思维能力和数学素养。
教学重难点:1. 重点:掌握基本初等函数的概念和性质,能够区分不同类型的基本初等函数。
2. 难点:理解初等函数在解决实际问题中的应用,提高学生的数学应用能力。
教学过程:第一课时一、导入1. 复习初中阶段函数的概念,回顾函数的定义、定义域、值域等概念。
2. 通过生活中的实例,如温度与时间的关系、路程与时间的关系等,引导学生理解函数在生活中的应用。
二、新课讲解1. 介绍基本初等函数的概念,包括常数函数、幂函数、指数函数、对数函数和三角函数等。
2. 讲解每种基本初等函数的定义、性质和图像特点,引导学生通过观察图像来理解函数的性质。
三、课堂练习1. 学生独立完成教材中的例题,巩固对基本初等函数的理解。
2. 教师巡视指导,解答学生在练习过程中遇到的问题。
四、课堂小结1. 总结本节课所学内容,强调基本初等函数的概念和性质。
2. 强调函数在解决实际问题中的重要性。
第二课时一、复习导入1. 回顾上一节课所学的基本初等函数的概念和性质。
2. 通过提问的方式,检查学生对基本初等函数的理解程度。
二、新课讲解1. 介绍初等函数的运算,包括函数的加、减、乘、除和复合运算。
2. 讲解函数的图像变换,如平移、伸缩、对称等,引导学生通过变换图像来理解函数的性质。
三、课堂练习1. 学生独立完成教材中的例题,巩固对初等函数运算和图像变换的理解。
2. 教师巡视指导,解答学生在练习过程中遇到的问题。
四、实际问题应用1. 引导学生运用所学知识解决实际问题,如计算物体的运动速度、求解物体的高度等。
2. 学生分组讨论,共同解决问题,教师巡视指导。
五、课堂小结1. 总结本节课所学内容,强调初等函数的运算和图像变换。
2. 强调初等函数在解决实际问题中的重要性。
基本初等函数教案

基本初等函数教案章节一:函数概念与基本性质1. 教学目标(1)理解函数的定义及表示方法。
(2)掌握函数的基本性质,如单调性、奇偶性、周期性等。
(3)学会运用函数的基本性质解决实际问题。
2. 教学内容(1)函数的定义及表示方法。
(2)函数的单调性、奇偶性、周期性等基本性质。
(3)函数性质在实际问题中的应用。
3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。
4. 教学步骤(1)引入函数概念,讲解函数的定义及表示方法。
(2)通过例题,引导学生掌握函数的基本性质。
(3)分析实际问题,展示函数性质在解决问题中的应用。
5. 课后作业(1)复习本节课的内容,整理笔记。
(2)完成课后练习题,巩固所学知识。
章节二:幂函数与指数函数1. 教学目标(1)了解幂函数、指数函数的定义及性质。
(2)掌握幂函数、指数函数在实际问题中的应用。
2. 教学内容(1)幂函数的定义及性质。
(2)指数函数的定义及性质。
(3)幂函数、指数函数在实际问题中的应用。
3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。
4. 教学步骤(1)讲解幂函数的定义及性质,举例说明幂函数在实际问题中的应用。
(2)介绍指数函数的定义及性质,分析指数函数在实际问题中的应用。
(3)通过练习题,巩固幂函数、指数函数的知识。
5. 课后作业(1)复习本节课的内容,整理笔记。
(2)完成课后练习题,巩固所学知识。
章节三:对数函数1. 教学目标(1)了解对数函数的定义及性质。
(2)掌握对数函数在实际问题中的应用。
2. 教学内容(1)对数函数的定义及性质。
(2)对数函数在实际问题中的应用。
3. 教学方法采用讲授法、案例分析法、讨论法相结合,引导学生主动探究、积极思考。
4. 教学步骤(1)讲解对数函数的定义及性质,举例说明对数函数在实际问题中的应用。
(2)通过练习题,巩固对数函数的知识。
5. 课后作业(1)复习本节课的内容,整理笔记。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核心内容:知识点一:指数与对数的运算1、n 次方根*∈>N n n ,1有如下恒等式:()a a n n=;⎩⎨⎧=为偶数为奇数n a n a a nn ,, 2、规定正数的分数指数幂:n mnm a a =;nmnmnm aaa11==-()1,,,0>∈>*n Nn m a 且例1、求下列各式的值: (1)()()*∈>-Nn n n n且,13π; (2)()2y x -例2、化简:(1))3()6)(2(656131212132b a b a b a -÷-; (2))0,0()(3421413223>>⋅b a abb a ab b a ;3、对数与指数间的互化关系:当10≠>a a ,且时,N a b N b b =⇔=log4、负数与零没有对数;1log ,01log ==a a a5、对数的运算法则:(1)()N M N M a a a log log log +=⋅, (2)N M NMa a alog log log -=, (3)M n M a n a log log =, (4)M mnM a n a m log log =(5)a N N b b a log log log =, (6)ab b a log 1log =其中1,0≠>a a 且,0>M ,0>N ,R n ∈.,例3、将下列指数式化为对数式,对数式化为指数式:(1)128127=-; (2)273=a ; (3)1.0101=-;(4)532log 21-=; (5)3001.0lg -=; (6)606.4100ln =.例4、计算下列各式的值:(1)001.0lg ; (2)8log 4 ; (3)e ln .例5、已知 ()[]0log log log 234=x ,那么21-x 等于例6、求下列各式的值:(1)8log 22; (2)3log 9.例7、求下列各式中x 的取值范围:(1)()3log 1+-x x ; (2)()23log 21+-x x .例8、若1052==b a ,则=+ba 11 ;方程()13lg lg =++x x 的解=x ________例9、(1)化简:7log 17log 17log 1235++;(2)设4log 2006log 5log 4log 3log 20062005432=••⋅⋅⋅•••m ,求实数m 的值.例10、(1)已知518,9log 18==b a ,试用b a ,表示45log 18的值;(2)已知b a ==5log ,7log 1414,用b a ,表示28log 35知识点二:指数函数、对数函数与幂函数的性质与图象1、指数性质:定义域为R ,值域为()+∞,0;当0=x 时,1=y ,即图象过定点(0,1);当 0<a <1时,在R 上是减函数,当1>a 时,在R 上是增函数. 例1、求下列函数的定义域: (1)xy -=312; (2) xy -=5)31(; (3)1001010010-+=x x y例2、求下列函数的值域:(1)132)31(-=x y ; (2)124++=x x y例3、函数()b x a x f -=的图象如图,其 中b a ,为常数,则下列结论正确的是( ). A .0,1<>b a B .0,1>>b a C .0,10><<b a D .0,10<<<b a例4、已知函数 ()()1,032≠>=-a a a x f x 且.(1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性变形:函数()1,01≠>+=a a a y x 且的图象必经过点例5、按从小到大的顺序排列下列各数:23 ,23.0 ,22,22.0 .例6、已知()1212+-=x x x f . (1)讨论()x f 的奇偶性;(2)讨论()x f 的单调性.例7、求下列函数的单调区间:(1)322-+=x x a y ; (2)12.01-=xy .注:复合函数()()x f y ϕ=的单调性研究,口诀是“同增异减”, 即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:i 、求定义域;ii 、拆分函数;iii 、分别求()()x u u f y ϕ==,的单调性;iv 、按“同增异减”得出复合函数的单调性.2. 对数函数的性质:定义域为(0,+∞),值域为R ;当x = 1时,y =0 ,即图象过定点(1,0);当0 <a < 1 时,在(0,+∞) 上递减,当 a > 1 时,在(0,+∞)上递增.例1、比较大小:(1)9.0log ,7.0log ,8.0log 8.09.09.0; (2)31log ,3log ,2log 423例2、求下列函数的定义域:(1))53(log 2-=x y ; (2)()34log 5.0-=x y例3、已知函数()()3log +=x x f a 的区间[-2,-1]上总有|)(x f |< 2,求实数a 的取值范围.例4、求不等式()()()1,014log 72log ≠>->+a a x x a a 且中x 的取值范围.例5、讨论函数()x y 23log 3.0-=的单调性.例6、图中的曲线是 x y a log =的图象,已知a 的值为2,34,103,51,则相应曲线4321,,,C C C C 的a 依次为( ).A.2,34,51,103 B.2,34,103,51B.C.51,103,34,2 D.34,2,103, 51例7、已知函数)1(log )(2-=x x f a )1(>a ,)1(求)(x f 的定义域; )2(判断函数的奇偶性和单调性。
3、(1)幂函数的基本形式是αx y =,其中x 是自变量,α是常数. 要求掌握12132,,,,-=====x y x y x y x y x y 这五个常用幂函数的图象.(2)观察出幂函数的共性,总结如下:I 、当α> 0 时,图象过定点(0,0),(1,1);在()+∞,0 上是增函数.II 、当α<0 时,图象过定点(1,1);在()+∞,0上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.(3)幂函数αx y =的图象,在第一象限内,直线1=x 的右侧,图象由下至上,指数a 由小到大.y 轴和直线1=x 之间,图象由上至下,指数α由小到大.例8、已知幂函数()xy=的图象过点(27,3),试讨论其单调性.f例9、已知幂函数()Zmxy m∈=-2的图象都与y=-6与()Zy m∈mxx,轴都没有公共点,且()Z=-2的图象关于y轴对称,求m的值.y m∈xx例10、幂函数mxy=与ny=在x第一象限内的图象如图所示,则().A.-1<n<0<m<1B.n<-1,0<m<1C.-1<n<0,m> 1 D.n< -1,m> 1例11、幂函数()()5237321t t x t t x f --+-=是偶函数,且在()+∞,0上为增函数,求函数解析式.知识点三:函数的应用考点1、函数的零点与方程根的联系例1、如果二次函数)3(2+++=m mx x y 有两个不同的零点,则m 的取值范围是( ) A .()6,2- B .[]6,2- C .{}6,2- D .()(),26,-∞-+∞U练习:1、求132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .42、函数()ln 2f x x x =-+的零点个数为 。
考点2 用二分法求方程的近似解( C 关注探究过程)例2、用“二分法”求方程0523=--x x 在区间[2,3]内的实根,取区间中点为5.20=x ,那么下一个有根的区间是 。
考点3 函数的模型及其应用( D 关注实践应用)7、某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表。
根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?课堂练习:练习:化简(1)46394369)()(a a (2)65612121213231)3()(b a b a b a -⋅练习:已知()()1,0,6log ≠>-=a a bx x f a,讨论()x f 的单调性.练习:如图的曲线是幂函数n x y =在第一象限内的图象. 已知n 分别取±2 ,21±四个值,与曲线4321,,,c c c c 相应的n 依次为( ).A .2,21,21,2-- B.21,2,21,2--C.21,2,21,2--,D.2,21,21,2--练习:设()833-+=x x f x ,用二分法求方程()2,10833∈=-+x x x 在内近似解的过程中得()()(),025.1,05.1,01<><f f f 则方程的根落在区间( )A .(1,1.25)B .(1.25,1.5)C .(1.5,2)D .不能确定。