概率论与数理统计及其应用课后答案(浙江大学_盛骤版)
概率论与数理统计(浙大) 习题答案 第3章

第三章 多维随机变量及其分布1. 在一箱子中装有12只开关, 其中2只是次品, 在其中取两次, 每次任取一只, 考虑两种试验: (1)放回抽样, (2)不放回抽样. 我们定义随机变量X , Y 如下:⎩⎨⎧=若第一次取出的是次品若第一次取出的是正品10X ,⎩⎨⎧=若第二次取出的是次品若第二次取出的是正品10Y .试分别就(1), (2)两种情况, 写出X 和Y 的联合分布律.解: (1)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有362512101210)0 ,0(=⋅===Y X P ,3651221210)1 ,0(=⋅===Y X P ,3651210122)0 ,1(=⋅===Y X P ,361122122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律(2)(X , Y )所有可能取的值为(0, 0), (0, 1), (1, 0), (1, 1), 按古典概型, 显然有66451191210)0 ,0(=⋅===Y X P ,66101121210)1 ,0(=⋅===Y X P ,66101110122)0 ,1(=⋅===Y X P ,661111122)1 ,1(=⋅===Y X P ,列成表格便得X 和Y 的联合分布律2. 盒子里装有3只黑球, 2只红球, 2只白球, 在其中任取4只球, 以X 表示取到黑球的只数, 以Y 表示取到白球的只数, 求X , Y 的联合分布律.解: (X , Y )的可能取值为(i , j ), i =0, 1, 2, 3, j =0, 1, 2, i +j ≥2, 联合分布律为P (X =0, Y =2)=351472222=C C C ,P (X =1, Y =1)=35647221213=C C C C , P (X =1, Y =2)=35647122213=C C C C , P (X =2, Y =0)=351472222=C C C ,P (X =2, Y =1)=351247121223=C C C C ,P (X =2, Y =2)=353472223=C C C ,P (X =3, Y =0)=352471233=C CC ,P (X =3, Y =1)=352471233=C CC ,列成表格便得X 和Y 的联合分布律3. 设随机变量(X , Y )概率密度为⎩⎨⎧<<<<--=其它042 ,20)6(),(y x y x k y x f . (1)确定常数k ; (2)求P (X <1, Y <3); (3)求P (X <1.5); (4)求P (X +Y ≤4). 解: (1)因为 k dydx y x k dy dx y x f 8)6(),(1242=--==⎰⎰⎰⎰+∞∞-+∞∞-,所以81=k .(2)83)6(81)3 ,1(3210⎰⎰=--=<<dy y x dx Y X P .(3)3227)6(81) ,5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P .(4)32)6(81}4{4020=--=≤+⎰⎰-dy y x dx Y X P x .4. 将一枚硬币掷3次, 以X 表示前2次中出现H 的次数, 以Y 表示3次中出现H 的次数, 求(X , Y )的联合分布律及边缘分布律.故(X , Y )的联合分布律为(X , Y )关于X 的边缘分布律为即)21 ,2(~b X .(X , Y )关于Y 的边缘分布律为即)21 ,3(~b Y .5. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤≤≤-=其它00,10)2(8.4),(xy x x y y x f , 求边缘概率密度. 解: ⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.40x dy x y x⎩⎨⎧≤≤-=其它010)2(4.22x x x ,⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤≤-=⎰其它010)2(8.41y dx x y y⎩⎨⎧≤≤+-=其它010)43(4.22y y y y . 6. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧<<=-其它00),(y x e y x f y , 求边缘概率密度.解:⎰+∞∞-=dy y x f x f X ),()(⎪⎩⎪⎨⎧≤>=⎰+∞-000x x dy e x y⎩⎨⎧≤>=-000x x e x . ⎰+∞∞-=dx y x f y f Y ),()(⎪⎩⎪⎨⎧≤>=⎰-000y y dx e y y⎩⎨⎧≤>=-000y y ye y . 7. 设二维随机变量(X , Y )的概率密度为⎩⎨⎧≤≤=其它01),(22y x y cx y x f . (1)试确定常数c ; (2)求边缘概率密度. 解: (1)因为l =⎰⎰⎰⎰⎰∞+∞-+-∞+∞-===c dy y c ydx cx dy dxdy y x f yy 21432),(1025210,所以421=c .(2)X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤-=⎰其它011421)(~122x ydy x x f X x X⎪⎩⎪⎨⎧≤≤--=其它011)1(82142x x x .X 的边缘概率密度为⎪⎩⎪⎨⎧≤≤=⎰+-其它010421)(~2y ydx d y f Y y y Y⎪⎩⎪⎨⎧≤≤=其它0102725y y .8. 将某一医公司9月份和8月份收到的青霉素针剂的订货单数分别记为X 和Y , 据以往积累的资料知X 和Y 联合分布律为:(1)求边缘分布律;(2)求8月份的订单数为51时, 9月份订单数的条件人布律.解: 在表中运算得(2)因为j ijj j i i i p p y Y P y Y x X P y Y x X P ⋅=======)() ,()|(, 并且P (Y =51)=0.28=p ⋅j , 所以28628.006.0)51|51(====Y X P ,28728.007.0)51|52(====Y X P ,28528.005.0)51|53(====Y X P ,28528.005.0)51|54(====Y X P ,28528.005.0)51|55(====Y X P ,故当8月份的订单数为51时, 9月份订单数的条件分布律为9. 以X 记某一医院一天出生的婴儿的个数, Y 记男婴的个数, 记X 和Y 的联合分布律为)!(!)86.6()14.7() ,(14m n m e m Y n X P mn m -===--(m =0, 1, 2, ⋅⋅⋅, n ;n =0, 1, 2, ⋅⋅⋅ ).(1)求边缘分布律; (2)求条件分布律;(3)特别写出当X =20时, Y 的条件分布律. 解: (1)边缘分布律:∑∑=--=-=====nm mn m n m m n m e m Y n X P n X P 0140)!(!)86.6()14.7() ,()(∑=--⋅⋅⋅⋅=nm m n m m ne n C 014)86.6()14.7(!1 ∑=--⋅⋅=n m m n m mn C n e 014)86.6()14.7(! !14)86.614.7(!1414n e n e n n --⋅=+=(n =0, 1, 2, ⋅⋅⋅ ). ∑∑∞=--∞=-=====0140)!(!)86.6()14.7() ,()(n mn m n m n m e m Y n X P m Y P∑∞=---=014)!()86.6(!)14.7(n mn m m n m e m m m e e m e )14.7(!!)14.7(14.786.614--==(m =0, 1, 2, ⋅⋅⋅ ).(2)条件分布律:m mn m m e m n m e m Y P m Y n X P m Y n X P )14.7(!)!(!)86.6()14.7()() ,()|(14.714----======= )!()86.6(86.6m n e mn -⋅=--(n =m , m +1, ⋅⋅⋅ ).当m =0, 1, 2, ⋅⋅⋅ 时1414!14)!(!)86.6()14.7()() ,()|(----=======e n m n m e n X P m Y n X P n X m Y P nmn m m n m m n m n -⋅⋅-=)1486.6()1414.7()!(!! m m mn C -⋅⋅=20)49.0()51.0((m =0, 1, ⋅⋅⋅ , n ). (3)当X =20时, Y 的条件分布为m m mC X m Y P -⋅===2020)49.0()51.0()20|((m =0, 1, ⋅⋅⋅ , 20).10. 求§1例1中的条件分布律: P (Y =k |X =i )=?解: 由于)(),()|(i X P i X k Y P i X k Y P ======, 而411) ,(⋅===i i X k Y P (i =1, 2, 3, 4, k ≤i ),41)(==i X P ,所以ii X k Y P 1)|(===(i =1, 2, 3, 4, k ≤i ),即11. 在第7题中(1)求条件概率f X |Y (x |y ), 特别, 写出当21=Y 时X 的条件概率密度; (2)求条件概率密度f Y |X (y |x ), 特别, 分别写出当31=X , 21=X 时Y 的条件概率密度; (3)求条件概率P (Y ≥1/4|X =1/2), P (Y ≥3|X =1/2). 解: (1)当0<y ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他027421)(),()|(252|y x y y yx y f y x f y x f Y Y X ⎪⎩⎪⎨⎧<<-=-其他023232y x y y x ,特别, ⎪⎩⎪⎨⎧<<-==-其他02121)21(23)21|(232|x x y x f Y X ⎪⎩⎪⎨⎧<<-=其他02121232x x .(2)当-1<x ≤1时,⎪⎪⎩⎪⎪⎨⎧<<-==其他01)1(821421)(),()|(2422|y x x x y x x f y x f x y f X X Y ⎪⎩⎪⎨⎧<<-=其他01)1(222y x x y ,特别, ⎪⎩⎪⎨⎧<<-==其他0191))3/1(1(2)31|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01914081y y ,⎪⎩⎪⎨⎧<<-==其他0141))2/1(1(2)21|(4|y y x y f X Y⎪⎩⎪⎨⎧<<=其他01411532y y .(3))21|41()21|1()21|41(=<-=<==≥X Y P X Y P X Y P1153215324141141=-=⎰⎰ydy ydy ,)21|43()21|1()21|43(=<-=<==≥X Y P X Y P X Y P157153214341=-=⎰ydy .12. 设随机变量(X , Y )的概率密度为⎩⎨⎧<<<=其他010 ,||1),(x x y y x f , 求条件概率密度f Y |X (y |x ),f X |Y (x |y ). 解: f (x ,y )的边缘密度为⎪⎩⎪⎨⎧<<=⎰-其他0101)(x dy x f x x X ⎩⎨⎧<<=其他0102y x ,⎪⎩⎪⎨⎧<<-=⎰其他0111)(1||y dx x f y Y ⎩⎨⎧<<--=其他011||1y y ,所以当0<x <1时,⎪⎩⎪⎨⎧<==其他0||21)(),()|(|x y xx f y x f x y f X X Y , 当|y |<1时,⎪⎩⎪⎨⎧<-==其他0||||11)(),()|(|x y y x f y x f x y f Y Y X , 13. (1)问第1题中的随机变量X 和Y 是否相互独立?(2)问第12题中的随机变量X 和Y 是否相互独立?(需说明理由) 解: (1)有放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 独立. 不放回抽样时, 由于ij =p i ⋅⋅p ⋅j , 所以X 和Y 不独立.(2)由于当|y |<x , 0<x <1时, f X (x )⋅f Y (y )=2x (1-|y |)≠f (x , y )=1, 故X 和Y 不独立.14. 设X 和Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布, Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y .(1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0, 试求a 有实根的概率.解: (1)按已知X 的概率密度为⎩⎨⎧<<=其他0101)(x x f X .由于X 和Y 相互独立, 故(X , Y )的概率密度为⎪⎩⎪⎨⎧><<=⋅=-其他0,1021)()(),(2y x e y f x f y x f y Y X .(2)要使a 有实根, 必须方程a 2+2Xa +Y =0的判别式∆=X 2-Y ≥0,⎰⎰⎰---==≥-10202102)1(21)0(22dx e dy e dx Y X P x x y⎰⎰⎰∞--∞-----=-=02121022222121[211dx e dx e dx e x x x πππ 1445.0)]0()1([21=Φ-Φ-=π.15. 第1题中的随机变量X 和Y 是否相互独立. 解: 放回抽样的情况P (X =0, Y =0)=P (X =0)⋅P (Y =0)3625=P (X =0, Y =1)=P (X =0)⋅P (Y =1)365=P (X =1, Y =0)=P (X =1)⋅P (Y =0)3651210122=⋅=P (X =1, Y =1)=P (X =1)⋅P (Y =1)361122122=⋅=.在放回抽样的情况下, X 和Y 是独立的. 不放回抽样的情况:P (X =0, Y =0)66451191210=⋅=,P (X =0)651210==,P (X =0)=P (X =0, Y =0)+P (Y =0, X =1) 6511101121191210=⋅+⋅=,P (X =0)⋅P (Y =0)36256565=⨯=,P (X =0, Y =0)≠P (X =0)P (Y =0), 所以X 和Y 不独立.14. 设X , Y 是两个相互独立的随机变量, X 在(0, 1)上服从均匀分布. Y 的概率密度为⎪⎩⎪⎨⎧≤>=00021)(2y y e y f y Y .(1)求X 和Y 的联合密度;(2)设含有a 的二次方程为a 2+2Xa +Y =0,试求有实根的概率. 解: (1)X 的概率密度为⎩⎨⎧∈=其它0)1 ,0(1)(x x f X ,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-00021)(2y y e y f y Y ,可见且知X , Y 相互独立, 于是(X , Y )的联合密度为⎪⎩⎪⎨⎧><<==-其它0,1021)()(),(2y x e y f x f y x f y Y X .(2)由于a 有实根, 从而判别式∆=4X 2-4Y ≥0, 即Y ≤X 2. 记}0,10|),{(2x y x y x D <<<<=, ⎰⎰=≤Ddxdy y x f X Y P ),(}{2⎰⎰⎰⎰⎰----=-==10010102022222121x xx y y dx e de dx dy e dxdx e x ⎰-⋅-=00222121ππ)5.08413.0(21)]2()1([21--=Φ-Φ-=ππ 1445.08555.013413.05066312.21=-=⨯-=.15. 进行打靶, 设弹着眯A (X , Y )的坐标X 和Y 相互独立, 且都服从N (0, 1)分布, 规定点A 落在区域D 1={(x , y )|x 2+y 2≤1}得2分; 点A 落在D 2={(x , y )|1≤x 2+y 2≤4}得1分; 点A 落在D 3={(x , y )|x 2+y 2>4}得0分, 以Z 记打靶的得分, 写出X , Y 的联合概率密度, 并求Z 的分布律.解: (1)因为X ~N (0, 1), Y ~N (0, 1), X 与Y 独立, 故(X , Y )的联合概率密度为22221),(y x e y x f +-=π(-∞<x <+∞, -∞<y <+∞).(2)Z 的可能取值为0, 1, 2.⎰⎰>++-=∈==421222221)),(()0(x x y x dxdy e D Y X A P Z P π⎰⎰≤++--=422222211x x y x dxdy e π2202022211--=-=⎰⎰e rdr e d r ππθ,⎰⎰≤+≤+-=∈==4122222221)),(()1(x x y x dxdy e D Y X A P Z P π22120212221----==⎰⎰e e rdr e d r ππθ,⎰⎰≤++-=∈==121222221)),(()2(x x y x dxdy e D Y X A P Z P π21201021212---==⎰⎰e rdr e d r ππθ,故得Z 的分布律为16. 设X 和Y 是相互独立的随机变量, 其概率密度分别为⎩⎨⎧≤>=-000)(x x e x f x X λλ, ⎩⎨⎧≤>=-000)(y y e y f y Y μμ, 其中λ>0, μ>0是常数, 引入随机变量⎩⎨⎧>≤=Y X YX Z 当当01.(1)求条件概率密度f X |Y (x |y ); (2)求Z 的分布律和分布函数. 解: (1)由X 和Y 相互独立, 故⎩⎨⎧>>=⋅=+-其他00 ,0)()(),()(y x e y f x f y x f y x Y X μλλμ.当y >0时,⎩⎨⎧≤>===-000)()(),()|(|x x e y f y f y x f y x f x X Y Y X λλ. (2)由于⎩⎨⎧>≤=Y X YX Z 当当01,且 μλλλλμμλμλ+===≤⎰⎰⎰+∞+-+∞+∞+-0)(0)()(dx e dydx eY X P x xy x ,μλμμλλ+=+-=≤-=>1)(1)(Y X P Y X P ,故Z 的分布律为Z 的分布函数为⎪⎩⎪⎨⎧≥<≤+<=111000)(z z z z F Z μλμ. 17. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为⎩⎨⎧<≤=其他0101)(x x f X , ⎩⎨⎧>=-其他00)(y e y f y Y , 求随机变量Z =X +Y 的概率密度.解: 由于X 和Y 是相互独立的, 故⎩⎨⎧><≤=⋅=-其他00 ,10)()(),(y x e y f x f y x f y Y X , 于是Z =X +Y 的概率密度为⎰+∞∞--⋅=dx x z f x f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧>-≤≤-=⎰⎰其他01)()(10)()(100z dxx z f x f z dx x z f x f Y X x YX ⎪⎪⎩⎪⎪⎨⎧>≤≤=⎰⎰----其他011010)(0)(z dxe z dx e x z x x z ⎪⎩⎪⎨⎧>-≤≤-=--其他01)1(101z e e z e zz .18. 设某种商品一周的需要量是一个随机变量, 其概率密度为⎩⎨⎧≤>=-000)(t t te t f t , 设各周的需要量是相互独立的, 试求: (1)两周需要量的概率密度; (2)三周需要量的概率密度.解: (1)设第一周需要量为X , 它是随机变量; 设第二周需要量为Y , 它是随机变量且与X 同分布, 其分布密度为⎩⎨⎧≤>=-000)(t t te t f t . Z =X +Y 表示两周需要的商品量, 由X 和Y 的独立性可知:⎩⎨⎧>>=--其它00,0),(y x ye xe y x f y x .因为z ≥0, 所以当z <0时, f z (z )=0; 当z >0时, 由和的概率公式知 ⎰∞+∞--=dy y f y z f z f Y X Z )()()(z yzy z e z dy ye ey z ----=⋅-=⎰6)(30)(, 所以 ⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z .(2)设Z 表示前两周需要量, 其概率密度为⎪⎩⎪⎨⎧≤>=-0006)(3z z e z z f z Z ,设ξ表示第三周需要量, 其概率密度为:⎩⎨⎧≤>=-000)(x x xe x f x ξ,Z 与ξ相互独立, η=Z +ξ表示前三周需要量, 则因为η≥0, 所以u <0, f η(u )=0. 当u >0时 ⎰∞+∞--=dy y f y u f u f )()()(ξηdy ye e y u y uy u ---⋅-=⎰0)(3)(61u e u -=1205, 所以η的概率密度为⎪⎩⎪⎨⎧≤>=-00120)(5u u e u u f u η.19. 设随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-其他00,0)(21),()(y x e y x y x f y x .(1)问X 和Y 是否相互独立? (2)求Z =X +Y 的概率密度. 解: (1)X 的边缘密度为⎪⎩⎪⎨⎧<>+=⎰∞++-000)(21)(0)(x x dy e y x x f y x X⎪⎩⎪⎨⎧<>+=-000)1(21x x e x x ,同理Y 的边缘密度为⎪⎩⎪⎨⎧<>+=-000)1(21)(y y e y y f y Y .因为当x >0, y >0时,)()()1)(1(41)(21),()()(y f x f e y x e y x y x f Y X y x y x =++≠+=+-+-,所以X 与Y 不独立. (2)Z 的概率密度为z z x Z e z dx e x z x dx x z x f z f --+∞∞-=-+=-=⎰⎰2021)(21),()((z >0).当z <0时, f Z (z )=0, 所以⎪⎩⎪⎨⎧<>=-0021)(2z z e z z f z Z .20. 设X , Y 是相互独立的随机变量, 它们都服从正态分布N (0, σ 2), 试验证随机变量22Y X z +=具有概率密度⎪⎩⎪⎨⎧>≥=-其他0,0)(2222σσσz e z z f z Z ,称Z 服从参数为σ(σ>0)的瑞利(Rayleigh 分布.解: 因为X , Y 相互独立且均服从正态分布N (0, σ 2), 它们的概率密度分别为22221)(σσπx e x f -=, 22221)(σσπy e y f -= , σ>0,故X 和Y 的联合密度为2222221)()(),(σπσy x e y f x f y x f +-=⋅=.22Y X z +=的分布函数为⎰⎰≤+=≤+=≤=222),()()((z)22z y x Z dxdy y x f z Y X P z Z P F⎰⎰-=zd e d 022202221ρρπσθσρπ2222202211σσρρρσz z ed e---==⎰(z >0),当z ≤0时, F Z (z )=0.于是随机变量22Y X z +=的概率密度为⎪⎩⎪⎨⎧>≥==-其他00 ,0)()(2222σσσz e z dz z dF z f z Z Z .21. 设随机变量(X , Y )的概率密度为⎩⎨⎧+∞<<<<=+-其他00 ,10),()(y x be y x f y x . (1)试确定义常数b ;(2)求边缘概率密度f X (x ), f Y (y );(3)求函数U =max(X , Y )的分布函数. 解: (1)由10)(1=⎰⎰+∞+-dy be dx y x , 即1)1(1010=-=⎰⎰+∞--e b dy e dx e b y x ,得1111-=-=-e e e b .(2)⎪⎩⎪⎨⎧<<-=⎰∞++-其他0101)(0)(x dy e e e x f y x X⎪⎩⎪⎨⎧<<-=-其他0101x e e e x ,⎩⎨⎧≤>==-∞+∞-⎰000),()(y y e dx y x f x f y X . 显然X 与Y 独立.(3)⎪⎩⎪⎨⎧≥<≤--<=-1110)1(100)(x x e e e x x F x X⎩⎨⎧≤>-=-0001)(y y e x F y Y , 故U =max(X , Y )的分布函数为F U (u )=P (U ≤u )=P (max(X , Y )≤u ) =P (X ≤u , Y ≤u )=P (X ≤u )P (Y ≤u )⎪⎩⎪⎨⎧≥-<≤--<==--1110)1(100)()(2u eu e e e u u F u F uu Y X .22. 设某种型号的电子管的寿命(以小时计)近似地服从N (160, 202)分布. 随机地选取4只求其中没有一只寿命小于180小时的概率.解: 设X 1, X 2, X 3, X 4为4只电子管的寿命, 它们相互独立, 同分布, 其概率密度为:22202)160(2021)(⨯--⋅=t T et f π,⎰∞-⨯-==<18022202)160(20121)180(}180{dt t F X f X π ⎰∞--=-======1220160221du e u ut π令 8413.0)2060180(=-Φ=.设N =min{X 1, X 2, X 3, X 4}, 则P {N >180}=P {X 1>180, X 2>180, X 3>180, X 4>180} =P {X >180}4={1-p [X <180]}4 =(0.1587)4=0.00063.23. 对某种电子装置的输出测量了5次, 得到观察值X 1,X 2, X 3, X 4, X 5, 设它们是相互独立的随机变量且都服从参数σ=2的瑞种分布.(1)求Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数; (2)求P (Z >4).解: 由20题知, X i (i =1, 2, ⋅⋅⋅ , 5)的概率密度均为⎪⎩⎪⎨⎧≥=-其他004)(82x e x x f x X ,分布函数为821)(x X e x F --=(x >0).(1) Z =max{X 1, X 2, X 3, X 4, X 5}的分布函数为 585m ax )1()]([)(2z e z F z F --== (z ≥0), 当z <0时, F max (z )=0.所以Z 的分布函数为⎩⎨⎧<≥-=-000)1()(58m ax 2z z e z F z .(2)P (Z >4)=1-P (Z ≤4)=1-F Z (4)5167.0)1(1)1(1525842=--=--=--e e .24. 设随机变量X , Y 相互独立, 且服从同一分布, 试证明 P (a <min{X , Y }≤b )=[P (X >a )]2-[P (X >b )]2 . 解: 因为X 与Y 相互独立且同分布, 故P (a <min{X , Y }≤b )=P (min{X , Y }≤b )-P (min{X , Y }≤a ) =1-P (min{X , Y }>b )-[1-P (min{X , Y }>a )] =P (min{X , Y }>a )-P (min{X , Y }>b ) =P (X >a , Y >a )-P (X >b , Y >b ) =P (X >a )P (Y >a )-P (X >b )P (Y >b ) =[P (X >a )]2-[P (Y >b )]2 .25. 设X , Y 是相互独立随机变量, 其分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ). 证明随机变量Z =X +Y 的分布律为∑=-==ik k i q k p i Z P 0)()()( (i =0, 1, 2, ⋅⋅⋅ ),证明: 因为X 与Y 独立, 且X 与Y 的分布律分别为 P (X =k )=p (k ) (k =0, 1, 2, ⋅⋅⋅ ), P (Y =r )=q (r ) (r =0, 1, 2, ⋅⋅⋅ ), 故Z =X +Y 的分布律为∑==+===ik i Y X k X P i Z P 0) ,()( ∑=-===i k k i Y k X P 0) ,( ∑=-===i k k i Y P k X P 0)()( ∑=-=i k k i q k p 0)()( (i =0, 1, 2, ⋅⋅⋅ ).26. 设X , Y 是相互独立的随机变量, X ~π(λ1), Y ~π(λ2), 证明Z =X +Y ~π(λ1+λ2).证明: 因为X , Y 分别服从参数为λ1, λ2的泊松分布, 故X , Y 的分布律分别为 1!)(1λλ-==e k k X P k (λ1>0),2!)(2λλ-==e r r Y P r (λ2>0),由25题结论知, Z =X +Y 的分布律为 ∑=-====ik k i Y P k X P i Z P 0)()()(∑=----⋅=ik ki k e k i e k 02121)!(!λλλλ∑=-+-⋅-=i k k i k k i k i i e 021)()!(!!!21λλλλ i i e )(!21)(21λλλλ+=+-(i =0, 1, 2, ⋅⋅⋅ ), 即Z =X +Y 服从参数为λ1+λ2的泊松分布.27. 设X , Y 是相互独立的随机变量, X ~b (n 1, p ), Y ~b (n 2, p ), 证明Z =X +Y ~b (n 1+n 2, p ).证明: Z 的可能取值为0, 1, 2, ⋅⋅⋅ , 2n , 因为 {Z =i }={X +Y =i }={X =0, Y =0}⋃{X =1, Y =i -1}⋃ ⋅⋅⋅ ⋃{X =i , Y =0}, 由于上述并中各事件互不相容, 且X , Y 独立, 则∑=-====ik k i Y k X P i Z P 0) ,()(∑=-===ik k i Y P k X P 0)()(∑=+-----⋅-=ik k i n ki k i n k n k k n p p C p p C 02211)1()1( ∑=--+⋅-=ik ki n k n k n n i C C p p 02121)1( in i i n n p p C -+-=2)1(21(i =0, 1, 2, ⋅⋅⋅ , n 1+n 2), 所以 Z =X +Y ~b (n 1+n 2, p ),即Z =X +Y 服从参数为2n , p 的二项分布.提示:上述计算过程中用到了公式i n n ik k i n k n C C C21210+=-=⋅∑,这可由比较恒等式2121)1()1()1(n n n n x x x ++=++两边x i 的系数得到.28. 设随机变量(X , Y )的分布律为(1)求P {X =2|Y =2), P (Y =3|X =0); (2)求V =max{X , Y }的分布律; (3)求U =min{X , Y }的分布律; (4)求W =V +U 的分布律. 解: (1)由条件概率公式)2()2,2()2|2(======Y P Y X P Y X P08.005.005.005.003.001.005.0+++++=2.025.005.0==.同理 31)0|3(===X Y P .(2)变量V =max{X , Y }.显然V 是一随机变量, 其取值为V : 0, 1, 2, 3, 4, 5. P (V =0)=P (X =0, Y =0)=0,P (V =1)=P (X =1, Y =0)+P (X =1, Y =1)+P (X =0, Y =1) =0.01+0.02+0.01=0.04,P (V =2)=P (X =2, Y =0)+P (X =2, Y =1)+P (X =2, Y =2) +P (Y =2, X =0)+P (Y =2, X =1)=0.03+0.04+0.05+0.01+0.03=0.16, P (V =3)=P (X =3, Y =0)+P (X =3, Y =1) +P (X =3, Y =2)+P (X =3, Y =3)+P (Y =3, X =0)+P (Y =3, X =1)+P (Y =3, X =2), =0.05+0.05+0.05+0.06+0.01+0.02+0.04=0.28 P (V =4)=P (X =4, Y =0)+P (X =4, Y =1) +P (X =4, Y =2)+P (X =4, Y =3) =0.07+0.06+0.05+0.06=0.24, P (V =5)=P (X =5, Y =0)+ ⋅⋅⋅ +P (X =5, Y =3) =0.09+0.08+0.06+0.05=0.28. (3)显然U 的取值为0, 1, 2, 3.P (U =0)=P (X =0, Y =0)+ ⋅⋅⋅ +P (X =0, Y =3)+P (Y =0, X =1)+ ⋅⋅⋅ +P (Y =0, X =5)=0.28. 同理 P (U =1)=0.30, P (U =2)=0.25, P (U =3)=0.17. (4)W =V +U 的取值为0, 1, ⋅⋅⋅ , 8. P (W =0)=P (V =0, U =0)=0,P (W =1)=P (V =0, U =1)+P (V =1, U =0). 因为V =max{X , Y }=0又U =min{X , Y }=1 不可能上式中的P (V =0, U =1)=0,又 P (V =1, U =0)=P (X =1, Y =0)+P (X =0, Y =1)=0.2, 故 P (W =1)=P (V =0, U =1)+P (V =1, U =0)=0.2,P(W=2)=P(V+U=2)=P(V=2, U=0)+P(V=1,U=1) =P(X=2 Y=0)+P(X=0,Y=2)+P(X=1,Y=1)=0.03+0.01+0.02=0.06,P(W=3)=P(V+U=3)=P(V=3, U=0)+P(V=2,U=1) = P(X=3,Y=0)+P(X=0,Y=3)+P(X=2,Y=1)+P(X=1,Y=2)=0.05+0.01+0.04+0.03=0.13, P(W=4)=P(V=4, U=0)+P(V=3,U=1)+P(V=2,U=2) =P(X=4,Y=0)+ P(X=3,Y=1)+P(X=1,Y=3)+P(X=2,Y=2 =0.19,P(W=5)=P(V+U=5)=P(V=5, U=0)+P(V=5,U=1)+P(V=3,U=2=P(X=5 Y=0)+P(X=5,Y=1)+P(X=3,Y=2)+P(X=2,Y=3) =0.24,P(W=6)=P(V+U=6)=P(V=5, U=1)+P(V=4,U=2) +P(V=3,U=3)=P(X=5,Y=1)+P(X=4,Y=2)+P(X=3,Y=3)=0.19,P(W=7)=P(V+U=7)=P(V=5, U=2)+P(V=4,U=3) =P(V=5,U=2)+P(X=4,Y=3)=0.6+0.6=0.12, P(W=8)=P(V+U=8)=P(V=5, U=3)+P(X=5,Y=3)=0.05.。
概率论与数理统计及其应用(课后习题答案)

概率论与数理统计及其应⽤(课后习题答案)第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果出现两次,记录投掷的次数。
(2)连续投掷⼀颗骰⼦直⾄6个结果中有⼀个结果接连出现两次,记录投掷的次数。
(3)连续投掷⼀枚硬币直⾄正⾯出现,观察正反⾯出现的情况。
(4)抛⼀枚硬币,若出现H 则再抛⼀次;若出现T ,则再抛⼀颗骰⼦,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ??。
解:625.0)()()()(=-+=?AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取⼀个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字⾄多出现⼀次的全体三位数中,任取⼀个三位数。
(1)求该数是奇数的概率;(2)求该数⼤于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现⼀次的全体三位数的个数有100455=??个。
浙江大学概率论与数理统计盛骤-第四版

检 验 统 计 量 为 X , 检 验 拒 绝 域 的 形 式 为 X 0 k .
在 H 0为 真 时 , X n~N0,1,0 思考题 : 左边检验
P 当 H 0 为 真 拒 绝 H 0 P 0X 0 k
H0 : 0, H1 : 0
请给出检验的拒绝域.
P0
Xnk0
1(k
P0
X0
S n
k S
n
拒绝域为:
X S
0
n
t (n1)
因 此 , 即拒 S绝 k域 n为 : t(tn 1X S ) n0t(n1).
15
例2 某种元件的寿命X(以小时记)服从正态分布N (, 2 ),
, 2 均未知。现测得16只元件的寿命如下:
159 280 101 212 224 379 179 264
对 于 假 设 检 验 问 题 H 0 : 0 6 . 0 , H 1 : 6 . 0 ,
P 0 X 0 .2 0 z 2 1 , P 0 X 0 .2 0 z 2 ,
X 6 .0
显 著 性 水 平 X为 6.0 的 检 验 拒 绝 域 为 : 0 .2 z 2 ,
n
(0k), n
0
0 ) n
解答:
拒绝域形式为:
X
0
k,
(k
0)
由 于 (0k)是 的 增 函 数 , n
拒绝域为:
X
0
n
z
故 只 要 ( kn ) , 即 kn z便 可 ,
因 此 , 拒 绝 域 为 :ZX n0z.
13
H 0:0,H 1:0 2 2未知时
检 由 于 验 统 2 未 计 知 量 , 为 故 X 不 ,能 检 用 验 X 拒 绝 n 域 0来 的 确 形 定 式 拒 为 绝 域 X 了 。 0 k .
概率论与数理统计及其应用课后答案第二版浙大版4-7章

第4章 正态分布1,(1)设)1,0(~N Z ,求}24.1{≤Z P ,}37.224.1{≤<Z P ,}24.137.2{-≤<-Z P ; (2)设)1,0(~N Z ,且9147.0}{=≤a Z P ,0526.0}{=≥b Z P ,求b a ,。
解:(1)8925.0)24.1(}24.1{=Φ=≤Z P ,0986.08925.09911.0)24.1()37.2(}24.1{}37.2{}37.224.1{=-=Φ-Φ=≤-≤=≤<Z P Z P Z P 0986.0)]37.2(1[)]24.1(1[)37.2()24.1(}24.137.2{=Φ--Φ-=-Φ--Φ=-≤<-Z P(2))37.1(9147.0}{Φ==≤a Z P ,所以37.1=a ;}{10526.0}{b Z P b Z P <-==≥,所以)62.1(9474.0}{Φ==<b Z P ,即62.1=b 。
2,设)16,3(~N X ,求}84{≤<X P ,}50{≤≤X P 。
解:因为)16,3(~N X ,所以)1,0(~43N X -。
2957.05987.08944.0)25.0()25.1(}43843434{}84{=-=Φ-Φ=-≤-<-=≤<X P X P 4649.0)7734.01(6915.0)430()435(}50{=--=-Φ--Φ=≤≤X P 。
3,(1)设)36,25(~N X ,试确定C ,使得9544.0}25{=≤-C X P 。
(2)设)4,3(~N X ,试确定C ,使得95.0}{≥>C X P 。
解:(1)因为1)6(2)6()6(}25{}25{-Φ=-Φ-Φ=≤-≤-=≤-C C CC X C P C X P所以得到9772.0)6(=ΦC ,即0.26=C,0.12=C 。
浙江大学盛骤概率论第1-5章课后答案共31页

第二章 随机变量及其分布1.[一] 一袋中有5只乒乓球,编号为1、2、3、4、5,在其中同时取三只,以X 表示取出的三只球中的最大号码,写出随机变量X 的分布律解:X 可以取值3,4,5,分布律为 也可列为下表 X : 3, 4,5 P :106,103,101 3.[三] 设在15只同类型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽样,以X 表示取出次品的只数,(1)求X 的分布律,(2)画出分布律的图形。
解:任取三只,其中新含次品个数X 可能为0,1,2个。
3512)1(31521312=⨯==C C C X P 351)2(31511322=⨯==C C C X P 再列为下表X : 0, 1, 2 P :351,3512,3522 4.[四] 进行重复独立实验,设每次成功的概率为p ,失败的概率为q =1-p (0<p <1) (1)将实验进行到出现一次成功为止,以X 表示所需的试验次数,求X 的分布律。
(此时称X 服从以p 为参数的几何分布。
)(2)将实验进行到出现r 次成功为止,以Y 表示所需的试验次数,求Y 的分布律。
(此时称Y 服从以r, p 为参数的巴斯卡分布。
)(3)一篮球运动员的投篮命中率为45%,以X 表示他首次投中时累计已投篮的次数,写出X 的分布律,并计算X 取偶数的概率。
解:(1)P (X=k )=q k -1pk=1,2,……(2)Y=r+n={最后一次实验前r+n -1次有n 次失败,且最后一次成功},,2,1,0,)(111 ===+=-+--+n p q C p p q C n r Y P r n n n r r n n n r 其中 q=1-p , 或记r+n=k ,则 P {Y=k }= ,1,,)1(11+=----r r k p p C rk r r kx1 2O P(3)P (X=k ) = (0.55)k -10.45k=1,2…P (X 取偶数)=311145.0)55.0()2(1121===∑∑∞=-∞=k k k k X P 6.[六] 一大楼装有5个同类型的供水设备,调查表明在任一时刻t 每个设备使用的概率为0.1,问在同一时刻(1)恰有2个设备被使用的概率是多少? (2)至少有3个设备被使用的概率是多少? (3)至多有3个设备被使用的概率是多少? (4)至少有一个设备被使用的概率是多少?[五] 一房间有3扇同样大小的窗子,其中只有一扇是打开的。
概率论与数理统计(第4版)浙江大学 盛聚编

对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.
概率论与数理统计及其应用第二版课后答案浙江大学2
第1章随机变量及其概率连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
连续投掷一枚币直至正而出现,观察正反面出现的情况。
抛一枚硬币,若出现H 则再抛一次:若出现T,则再抛一颗骰子,观察出现的^$种 结果。
解:(1) S = {2,34567}: (2) S = {234…}: (3) S = {H,TH.TTH.TTTH.- }x (4)S = {HH.H7\TXT2T3T4.T5T6}。
2 ,设 A.B 是两个 事件,已知 P(A) = 0.25,P(B) = 0・5,P(AB)= 0.125,,求解:P(A P B) = P(q)+ P ⑻-P(AB) = 0.625•P(AB) = P[(S 一 A)B] = P(B) - P(AB) = 0.375 ,P(AB) = 1-P(AB)-0.875 •P|(A U B)(A3)]=P[(A<J B)(S-AB)] = P(A U B)-P[(A U B)(AB)] = 0・625-P(AB) = 0・5 3,在100, 101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率q 解:在100. 101, ...,999这900个3位数中不包含数字1的3位数的个数为8x9x9 = 648. 所以所求得概率为 4,在仅由数? 0. 1. 2, 3. 4, 5组成且每个数字之多出现一次的全体三位数中,任取一 个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0, 1, 2, 3, 4. 5组成且每个数字之多岀现一次的全体三位数的个数有 5x5x4 = 100个。
(1)该数是奇数的可能个数为4x4x3 = 48个,所以出现奇数的概率为—=0.48100(2)该数大于330的可能个数为2x4 + 5x4 + 5x4 = 48,所以该数大于330的概率为 48——=0.481001,写出下列试验的样本空间:(1)(2)(3)(4)5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的槪率。
浙江大学概率论与数理统计盛骤-第四版
拒绝域为:
X S
0
n
t (n 1)
即 S k n t (n 1)
因此,拒绝域为:
t
X 0
Sn
t (n 1).
14
例2 某种元件的寿命X(以小时记)服从正态分布N (, 2 ),
, 2均未知。现测得16只元件的寿命如下:
159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于225(小时)?(取
原假设 H0 : 6.0,备择假设 H1 : 6.0
检验统计量为 X , 检验拒绝域的形式为 X 6.0 c.
由于作出决策的依据是一个样本,因此,可能出现“实 际上原假设成立,但根据样本作出拒绝原假设”的决策。 这种错误称为“第一类错误”,实际中常常将犯第一类错 误的概率控制在一定限度内,即事先给定较小的数α (0<α<1)(称为显著性水平),使得
X1, X2, , Xn来自N , 2 , X 和S 2分别为样本均值和方差,显著性水平为
H0 : 0 , H1 : 0
1 2已知时
检验拒绝域形式为:X 0 c n
在H0为真时,
X 0 n
~ N 0,1
根据犯第一类错误概率不大于 ,
正确决策
第二类错误
第一类错误
正确决策
第一类错误:原假设H0成立时,作出拒绝原假设的决策; 第二类错误:备择假设H1成立时,作出接受原假设的决策。
通常,犯第一类错误的概率、犯第二类错误的概率、样本容量可 以看作为“三方拔河”。
8
例如,设显著性水平为,计算上例中犯第一类错误的概率 和 5.4时犯第二类错误的概率:
8364编号概率论与数理统计及其应用第二版课后答案浙江大学
第1章 随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1);(2);(3)}7,6,5,4,3,2{=S },4,3,2{ =S ;(4)。
},,,,{ TTTH TTH TH H S =}6,5,4,3,2,1,,{T T T T T T HT HH S =2,设是两个事件,已知,求B A ,,125.0)(,5.0)(,25.0)(===AB P B P A P 。
)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃解:,625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P 5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为,所以所求得概率为648998=⨯⨯72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有个。
(1)该数是奇数的可能个数为100455=⨯⨯个,所以出现奇数的概率为48344=⨯⨯48.010048=(2)该数大于330的可能个数为,所以该数大于48454542=⨯+⨯+⨯330的概率为48.010048=5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
概率论与数理统计浙大第四版答案
概率论与数理统计浙大第四版答案【篇一:概率论与数理统计答案第四版第2章(浙大)】死亡,则公司赔付20万元,若投保人因其他原因死亡,则公司赔付5万元,若投保人在投保期末生存,则公司无需付给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其他愿意死亡的概率为0.0010,求公司赔付金额的分布律。
解:设x为公司的赔付金额,x=0,5,20p(x=0)=1-0.0002-0.0010=0.9988 p(x=5)=0.00102.(1) 一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只球,以x表示取出的三只中的最大号码,写出随机变量的分布律.3解:方法一: 考虑到5个球取3个一共有c5 =10种取法,数量不多可以枚举来解此题。
设样本空间为ss={123,124,125,134,135,145,234,235,245,345 }易得,p{x=3}=10p{x=4}=10p{x=5}=10;136方法二:x的取值为3,4,5当x=3时,1与2必然存在,p{x=3}=c22c5=;10c23c51当x=4时,1,2,3中必然存在2个, p{x=4}= =;103当x=5时,1,2,3,4中必然存在2个, p{x=5}=c24c5=;106(2)将一颗骰子抛掷两次,以x表示两次中得到的小的点数,试求x 的分布律. 解:p{x=1}= p (第一次为1点)+p(第二次为1点)- p (两次都为一点)= +?6611136=;361114141715151966661313136=36566661212136=3631111113.设在15只同类型的零件中有2只是次品,在其中取3次,每次任取1只,作不放回抽样.以x表示取出的次品的只数.(1)求x的分布律. 解:p{x=0}= c133515c322p{x=1}= p{x=2}=1c213 c212c1535;1352c113c2c15;(2)画出分布律的图形.4、进行独立重复试验,设每次试验的成功率为p,失败概率为q=1-p(0p1)(1)将试验进行到出现一次成功为止,以x表示所需的试验次数,求x的分布律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计及其应用习题解答 1 第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{S;(2)},4,3,2{S;(3)},,,,{TTTHTTHTHHS;(4)
}6,5,4,3,2,1,,{TTTTTTHTHHS。
2,设BA,是两个事件,已知,125.0)(,5.0)(,25.0)(ABPBPAP,求)])([(),(),(),(______ABBAPABPBAPBAP。
解:625.0)()()()(ABPBPAPBAP, 375.0)()(])[()(ABPBPBASPBAP,
875.0)(1)(___ABPABP,
5.0)(625.0)])([()()])([()])([(___ABPABBAPBAPABSBAPABBAP
3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。 解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998,所以所求得概率为
72.0900648
4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455个。(1)该数是奇数的可能个数为48344个,所以出现奇数的概率为
48.010048
(2)该数大于330的可能个数为48454542,所以该数大于330的概率为 48.010048
5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 概率论与数理统计及其应用习题解答 2 (3)4只中没有白球。 解: (1)所求概率为338412131425CCCC;
(2) 所求概率为165674952014124418342824CCCCCC; (3)所求概率为16574953541247CC。 6,一公司向M个销售点分发)(Mnn张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(nkk张提货单的概率。 解:根据题意,)(Mnn张提货单分发给M个销售点的总的可能分法有nM种,某一特定的销售点得到)(nkk张提货单的可能分法有knknMC)1(种,所以某一特定的销售点得到)(nkk张提货单
的概率为nknknMMC)1(。 7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。若一只球装入与球同号的盒子,称为一个配对。 (1)求3只球至少有1只配对的概率。 (2)求没有配对的概率。 解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。至少有1只配对的放法当然就有6-2=4种。所以
(2)没有配对的概率为3162;
(1)至少有1只配对的概率为32311。
8,(1)设,1.0)(,3.0)(,5.0)(ABPBPAP,求)|(),|(),|(BAAPABPBAP, )|(),|(ABAPBAABP.
(2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。
解:(1)由题意可得7.0)()()()(ABPBPAPBAP,所以
313.01.0)()()|(BPABPBAP, 515.01.0)()()|(APABPABP, 概率论与数理统计及其应用习题解答 3 75)()()()]([)|(BAPAPBAPBAAPBAAP,
71)()()()]([)|(BAPABPBAPBAABPBAABP,
1)()()()]([)|(ABPABPABPABAPABAP。
(2)设)4,3,2,1(iAi表示“第i次取到白球”这一事件,而取到红球可以用它的补来表示。那么第一、二次取到白球且第三、四次取到红球可以表示为4321AAAA,它的概率为(根据乘法公式) )|()|()|()()(32142131214321AAAAPAAAPAAPAPAAAAP 0408.020592840124135127116。
9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只是红球,求另一只也是红球的概率。 解:设“得到的两只球中至少有一只是红球”记为事件A,“另一只也是红球”记为事件B。则事件A的概率为
65314232422)(AP(先红后白,先白后红,先红后红)
所求概率为
51653142)()()|(APABPABP
10,一医生根据以往的资料得到下面的讯息,他的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。以A表示事件“一病人以为自己患癌症”,以B表示事件“病人确实患了癌症”,求下列概率。
(1))(),(BPAP;(2))|(ABP;(3))|(ABP;(4))|(BAP;(5))|(BAP。 解:(1)根据题意可得 %50%45%5)()()(BAPABPAP;
%15%10%5)()()(ABPBAPBP;
(2)根据条件概率公式:1.0%50%5)()()|(APABPABP; 概率论与数理统计及其应用习题解答 4 (3)2.0%501%10)()()|(APABPABP; (4)179%151%45)()()|(BPBAPBAP; (5)31%15%5)()()|(BPABPBAP。 11,在11张卡片上分别写上engineering这11个字母,从中任意连抽6张,求依次排列结果为ginger的概率。 解:根据题意,这11个字母中共有2个g,2个i,3个n,3个e,1个r。从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。最后要求的概率为
924013326403661738193102112;或者92401611111311131212ACCCCCC。
12,据统计,对于某一种疾病的两种症状:症状A、症状B,有20%的人只有症状A,有30%的人只有症状B,有10%的人两种症状都有,其他的人两种症状都没有。在患这种病的人群中随机地选一人,求 (1)该人两种症状都没有的概率; (2)该人至少有一种症状的概率; (3)已知该人有症状B,求该人有两种症状的概率。 解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201;
(2)至少有一种症状的概率为%60%401; (3)已知该人有症状B,表明该人属于由只有症状B的30%人群或者两种症状都有的10%的人群,总的
概率为30%+10%=40%,所以在已知该人有症状B的条件下该人有两种症状的概率为41%10%30%10。
13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。 通讯线 通讯量的份额 无误差的讯息的份额 1 0.4 0.9998 2 0.3 0.9999 3 0.1 0.9997 4 0.2 0.9996
解:设“讯号通过通讯线i进入计算机系统”记为事件)4,3,2,1(iAi,“进入讯号被无误差地接受”记为事件B。则根据全概率公式有 9996.02.09997.01.09999.03.09998.04.0)|()()(41iiiABPAPBP
=0.99978 概率论与数理统计及其应用习题解答 5 14,一种用来检验50岁以上的人是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为他患关节炎。已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为他没有关节炎,而他却有关节炎的概率。 解:设“一名被检验者经检验认为患有关节炎”记为事件A,“一名被检验者确实患有关节炎”记为事件B。根据全概率公式有
%1.12%4%90%85%10)|()()|()()(BAPBPBAPBPAP,
所以,根据条件概率得到所要求的概率为
%06.17%1.121%)851%(10)(1)|()()()()|(APBAPBPAPABPABP 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17.06%. 15,计算机中心有三台打字机A,B,C,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C上打字的概率分别为多少? 解:设“程序因打字机发生故障而被破坏”记为事件M,“程序在A,B,C三台打字机上打字”分别记为事
件321,,NNN。则根据全概率公式有
025.004.01.005.03.001.06.0)|()()(31iiiNMPNPMP,
根据Bayes公式,该程序是在A,B,C上打字的概率分别为 24.0025.001.06.0)()|()()|(111MPNMPNPMNP,
60.0025.005.03.0)()|()()|(222MPNMPNPMNP,
16.0025.004.01.0)()|()()|(333MPNMPNPMNP。
16,在通讯网络中装有密码钥匙,设全部收到的讯息中有95%是可信的。又设全部不可信的讯息中只有0.1%是使用密码钥匙传送的,而全部可信讯息是使用密码钥匙传送的。求由密码钥匙传送的一讯息是可信讯息的概率。 解:设“一讯息是由密码钥匙传送的”记为事件A,“一讯息是可信的”记为事件B。根据Bayes公式,所要求的概率为