凸轮机构的设计
凸轮机构设计知识点

凸轮机构设计知识点凸轮机构是一种应用广泛的机械传动装置,它利用凸轮的凸起部分与随动件的运动接触,以实现特定的运动规律和功能。
在工程设计中,合理地设计凸轮机构能够优化运动性能、提高效率和可靠性。
本文将针对凸轮机构的设计知识点进行详细介绍。
一、凸轮曲线的设计凸轮机构的性能主要取决于凸轮曲线的设计,凸轮曲线的形状和参数会直接影响机构的运动规律和输出功率。
在凸轮曲线的设计中,需要考虑以下几个关键因素:1. 运动规律:根据机构的要求,确定凸轮曲线的运动规律,如简谐运动、匀加速运动等。
运动规律的选择应该符合机构的实际需求。
2. 接触应力:凸轮曲线的设计应尽量避免产生过大的接触应力,以确保传动的平稳和可靠。
需要注意的是,在高速运动和重载工况下,接触应力可能会变得更为重要。
3. 凸轮曲线的曲率半径:凸轮曲线的曲率半径对机构的运动特性有重要影响。
通常情况下,较小的曲率半径会导致更大的凸轮尺寸和更小的接触应力,但也会增加摩擦和磨损。
4. 凸轮曲线的周期:凸轮曲线的周期直接影响机构的输出频率和运动频率。
在设计中需要确定凸轮曲线的周期和相位,以满足机构工作的要求。
二、凸轮机构的配合设计凸轮机构的配合设计是指凸轮和随动件之间的配合关系,凸轮的凸起部分通常与随动件的凹槽或滚道进行配合。
在凸轮机构的配合设计中,需要考虑以下几个关键因素:1. 清凸:清凸是指在凸轮的凸起部分与随动件的配合过程中,凸轮顶部和凹槽底部的间隙。
合理的清凸设计可以保证运动的平滑和噪音的降低。
2. 凸轮与随动件的配合形式:凸轮机构的配合形式主要有滚动配合和滑动配合两种形式。
滚动配合适用于高速和高精度要求的机构,而滑动配合适用于低速和较宽容差的机构。
3. 润滑和磨损:凸轮机构在运动中会产生摩擦和磨损,因此需要进行良好的润滑设计,以减少摩擦和延长机构的使用寿命。
三、凸轮机构的动力分析凸轮机构的动力分析是指对凸轮机构进行力学和动力学的数学建模与分析,以预测和评估机构在不同工况下的运动性能和受力情况。
机械原理大作业凸轮机构设计

机械原理大作业凸轮机构设计一、凸轮机构概述凸轮机构是一种常见的传动机构,它通过凸轮的旋转运动,带动相应零件做直线或曲线运动。
凸轮机构具有结构简单、运动平稳、传递力矩大等优点,在各种机械设备中得到广泛应用。
二、凸轮基本结构1. 凸轮凸轮是凸起的圆柱体,通常安装在主轴上。
其表面通常为圆弧形或其他曲线形状,以便实现所需的运动规律。
2. 跟随件跟随件是与凸轮配合的零件,它们通过接触面与凸轮相互作用,并沿着规定的路径做直线或曲线运动。
跟随件可以是滑块、滚子、摇臂等。
3. 连杆连杆连接跟随件和被驱动部件,将跟随件的运动转化为被驱动部件所需的运动。
连杆可以是直杆、摇杆等。
三、凸轮机构设计要点1. 几何参数设计设计时需要确定凸轮半径、角度和曲率半径等参数,这些参数的选择将直接影响凸轮机构的运动规律和性能。
2. 运动规律设计根据被驱动部件的运动要求,选择合适的凸轮曲线形状,以实现所需的运动规律。
3. 稳定性设计在设计凸轮机构时,需要考虑其稳定性。
例如,在高速旋转时,可能会发生跟随件脱离凸轮或者产生振动等问题,因此需要采取相应措施提高稳定性。
4. 材料和制造工艺设计在材料和制造工艺方面,需要考虑凸轮机构所承受的载荷和工作环境等因素,选择合适的材料和制造工艺。
四、几种常见凸轮机构及其应用1. 摇臂式凸轮机构摇臂式凸轮机构由摇臂、连杆和被驱动部件组成。
它通常用于实现直线运动或旋转运动,并且具有结构简单、运动平稳等优点。
摇臂式凸轮机构广泛应用于各种机械设备中,如发动机气门控制系统、纺织设备等。
2. 滑块式凸轮机构滑块式凸轮机构由凸轮、滑块、连杆和被驱动部件组成。
它通常用于实现直线运动,并且具有结构简单、运动平稳等优点。
滑块式凸轮机构广泛应用于各种机械设备中,如冲压设备、印刷设备等。
3. 滚子式凸轮机构滚子式凸轮机构由凸轮、滚子、连杆和被驱动部件组成。
它通常用于实现圆弧形运动,并且具有运动平稳、传递力矩大等优点。
滚子式凸轮机构广泛应用于各种机械设备中,如汽车发动机气门控制系统等。
凸轮机构的设计方法知识点

凸轮机构的设计方法知识点凸轮机构是一种常用于传动和控制机械运动的装置。
它通过凸轮的几何形状和运动特点来驱动其他零件的相对运动,实现特定的功能。
下面将介绍凸轮机构设计的一些重要知识点。
一、凸轮的基本构成凸轮由凸轮轴和凸轮轮廓组成。
凸轮轴一般是圆柱形的,并且要求与传动装置的轴线相交或平行。
凸轮轮廓则根据具体的应用要求进行设计,常见的有红圆弧、矩形和椭圆等形状。
凸轮的轮廓和几何参数对机构运动特性具有重要影响。
二、凸轮的运动特性凸轮的运动特性包括凸轮轮廓的曲线形状、凸轮轴的转动方式以及凸轮与其他零件之间的相对运动关系。
常见的凸轮运动方式有简谐运动和非简谐运动两种。
简谐运动是指凸轮的转动角度与时间之间存在确定关系,例如等速转动和正弦转动。
而非简谐运动则是指凸轮的转动角度与时间之间不满足确定关系,其运动规律更为复杂。
三、凸轮机构的设计方法1. 确定凸轮的运动要求:根据机械系统的功能要求,确定凸轮需要实现的运动特性,如线性运动、往复运动或任意轨迹运动等。
2. 选择凸轮的轮廓形状:根据运动要求,选择适合的轮廓形状。
例如,需要实现往复直线运动时可以选择矩形轮廓;需要实现往复曲线运动时可以选择红圆弧轮廓。
3. 计算凸轮的几何参数:确定凸轮的几何参数,如凸轮半径、凸轮轴偏心距、凸轮轴转动角度等。
这些参数会直接影响到凸轮的运动特性和机构的工作效果。
4. 验证凸轮机构的性能:利用计算机辅助设计软件或绘图工具,绘制凸轮机构的示意图,并进行运动仿真分析。
通过仿真分析,可以评估凸轮机构的工作性能,发现潜在问题并进行改进优化。
5. 制作凸轮并组装机构:根据设计结果,制作凸轮和其他相关零件,并按照装配顺序进行组装。
在组装过程中,要注意零件之间的配合精度和润滑要求,确保机构的正常运转。
四、凸轮机构的应用领域凸轮机构广泛应用于各个领域,例如机床、汽车、航空航天、纺织机械等。
在机床领域,凸轮机构常用于驱动切削工具进行加工作业;在汽车领域,凸轮机构用于控制气门的开启和闭合;在航空航天领域,凸轮机构常用于驱动复杂的舵面运动等。
凸轮机构的设计

凸轮机构的设计摘要凸轮机构是一种被广泛应用于各种自动化机械、仪器和操纵控制装置中的机械零件。
凸轮机构之所以得到如此广泛的应用,主要是由于凸轮机构可以实现各种复杂的运动要求,而且结构简单、紧凑。
凸轮机构可以将凸轮的连续转动或移动转换为从动件连续或不连续的移动或摆动。
与连杆机构相比,凸轮机构便于实现给定的运动规律和轨迹;而且结构简单紧凑;但由于凸轮与从动件之间以高副接触,因此凸轮机构比较容易磨损。
关键词:凸轮机构;高副;自动化凸轮机构是应用较广泛的机构,只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便,因此在自动机床、轻工机械、纺织机械、印刷机械、食品机械、包装机械和机电一体化产品中得到广泛应用。
1. 从动件的常用运动规律1.1凸轮的几何锁合几何锁合: 依靠凸轮和从动件的特殊几何形状而始终维持接触。
1) 凹槽凸轮机构: 其凹槽两侧面间的距离等于滚子的直径,故能保证滚子与凸轮始终接触。
显然这种凸轮只能采用滚子从动件。
2) 共轭凸轮机构: 利用固定在同一轴上但不在同一平面内的主、回两个凸轮来控制一个从动件,主凸轮驱使从动件逆时针方向摆动;而回凸轮驱使从动件顺时针方向返回。
3) 等径凸轮机构和等宽凸轮机构: 其从动件上分别装有相对位置不变的两个滚子和两个平底,凸轮运动时,其轮廓能始终与两个滚子或平底同时保持接触。
显然,这两种凸轮只能在1800范围内自由设计其廓线,而另1800的凸轮廓线必须按照等径或等宽的条件来确定,因而其从动件运动规律的自由选择受到一定限制。
几何锁合的凸轮机构可以免除弹簧附加的阻力,从而减小驱动力和提高效率。
其缺点是机构外廓尺寸较大,设计也较复杂。
1.2位移线图从动件的运动过程,可以用位移线图表示。
位移线图以从动件位移S或角位移Ψ为纵坐标,凸轮转角δ为横坐标。
以四根不同的位移线分别表示凸轮机构的推程,远休止、回程、近休止四个运动规律。
2.3.1从动件常用运动规律从动件的运动规律指在推程和回程当中其位移S、速度V、加速度a、随凸轮转角变化的规律。
设计凸轮机构的步骤

设计凸轮机构的步骤1.引言1.1 概述概述部分的内容如下:引言部分是文章的开端,旨在向读者介绍关于设计凸轮机构步骤的基本概念和重要性。
设计凸轮机构是指在机械传动中用于转化运动的一种重要装置,广泛应用于各种机械设备中,如发动机、制造机械、自动化机械等。
凸轮机构的设计直接关系到机械传动的性能和效率,因此在机械设计中具有重要的地位。
本文将介绍设计凸轮机构的具体步骤,帮助读者了解如何更好地应用凸轮机构设计各类机械装置。
首先,我们将介绍凸轮机构的基本原理和功能,为后续内容的理解奠定基础。
然后,我们将详细讲解设计凸轮机构的步骤,包括凸轮曲线的选择、凸轮的参数计算、凸轮机构的布局设计等内容。
在每个步骤中,我们都将提供详细的方法和注意事项,帮助读者更好地理解和掌握凸轮机构的设计过程。
通过本文的学习,读者将能够系统地掌握设计凸轮机构的方法和技巧,提高机械设备的传动效率和性能。
同时,文章还将展望未来凸轮机构设计领域的发展趋势,激发读者的思考和创新意识。
在下文中,我们将详细介绍凸轮机构的设计步骤,希望读者能够通过本文的学习,对凸轮机构的设计有更深入和全面的了解。
1.2 文章结构文章结构部分的内容可以包括以下内容:在设计凸轮机构之前,了解凸轮机构的基本概念及其作用是非常重要的。
凸轮机构可以将圆周运动转化为直线或间歇运动,广泛应用于各个领域的机械设计中。
本文将介绍设计凸轮机构的步骤,以帮助读者了解如何有效地进行设计过程。
文章主要分为三个部分:引言、正文和结论。
引言部分将首先概述凸轮机构的作用和重要性。
凸轮机构作为一种重要的机械传动装置,在现代机械设计中起着不可替代的作用。
随后,将介绍本文的结构和内容安排,以帮助读者快速了解文章的组织结构和各个部分的内容。
正文部分将详细介绍设计凸轮机构的步骤。
首先,步骤一将介绍凸轮机构的设计前准备工作,包括确定凸轮的基本参数、选择凸轮的类型和形状等。
然后,步骤二将详细讲解凸轮机构的设计过程,包括凸轮的轮廓设计、凸轮与从动件的配合设计等。
机械原理课程设计凸轮机构设计说明书

全面探究凸轮机构设计原理及方法凸轮机构是一种常用的机械传动装置,通过凸轮和摆杆的配合组成,具有可逆性、可编程性和高精度的特点。
本文将从设计原理、设计方法和优化策略三个方面探究凸轮机构设计的要点。
一、设计原理
凸轮机构的设计原理是在摆杆与凸轮配合时,摆杆可以沿凸轮轮廓实现规定的运动规律,如直线运动、往返运动和旋转运动等。
凸轮可以根据运动轨迹、运动频率和运动速度等要求,通过凸轮轮廓的设计来完成。
凸轮轮廓的设计包括了初步设计、动力学分析、运动规划等步骤。
二、设计方法
凸轮机构的设计方法包括手工绘图及设计软件辅助。
手工绘图是传统的凸轮轮廓设计方法,适用于简单的凸轮机构,如往复式转动机构、转动转动机构等;而对于复杂的凸轮机构,可以利用计算机辅助设计软件,如ProEngineer、CATIA、AutoCAD等,进行三维建模、运动模拟和优化设计。
此外,对于凸轮机构的设计还需要考虑到强度计算、可靠性分析等相关问题。
三、优化策略
凸轮机构的设计优化策略主要包括凸轮轮廓的形状优化、摆杆的长度优化和机构传动效率的优化等。
凸轮轮廓的形状优化通常是通过
Cycloid、Involute、Bezier等曲线的拟合来实现;摆杆的长度优化可以通过数学模型来建立,利用遗传算法、粒子群算法等优化算法进行
求解;传动效率的优化可以通过轮廓优化、材料优化、润滑优化等途
径来进行。
凸轮机构的设计是机械工业中非常重要的一环,它涉及到运动学、动力学、力学等多个学科的知识,需要学习者在多方面进行深入研究
和实践。
通过对凸轮机构的深入探究,我们可以更好地理解机械原理
的精髓,提高机械设计的水平和能力。
机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
凸轮机构设计

第九章凸轮机构设计本章学习任务:凸轮机构的基本知识、其从动件的运动规律、凸轮曲线轮廓的设计、凸轮机构基本尺寸的设计。
驱动项目的任务安排:完成项目中的凸轮机构的具体设计。
9.1凸轮机构的基本知识(1)基圆以凸轮的回转中心为圆心,凸轮轮廓的最小向径为半径所作的圆,称为凸轮的基圆,基圆半径用r b表示,如图9-1 所示。
基圆是设计凸轮轮廓曲线的基准。
图9-1 凸轮机构的部分基本术语(2)推程从动件从距凸轮回转中心的最近点向最远点运动的过程。
(3)回程从动件从距凸轮回转中心的最远点向最近点运动的过程。
(4)行程从动件从距凸轮回转中心的最近点运动到最远点所通过的距离,或从最远点回到最近点所通过的距离。
行程是指从动件的最大运动距离,常用h 来表示。
(5)凸轮转角凸轮绕回转中心转过的角度,称为凸轮转角,用表示。
(6)推程运动角从动件从距凸轮回转中心的最近点运动到最远点时,对应凸轮所转过的角度称为推程运动角,用表示。
(7)回程运动角从动件从距凸轮回转中心的最远点运动到最近点时,对应凸轮所转过的角度称为回程运动角,用' 表示。
(8)远休止角从动件在距凸轮回转中心的最远点静止不动时,对应凸轮所转过的角表示。
度称为远休止角,用s(9)近休止角从动件在距凸轮回转中心的最近点静止不动时,对应凸轮所转过的角度称为近休止角,用'表示。
s(10)从动件的位移凸轮转过转角φ 时,从动件所运动的距离称为从动件的位移。
位移s 从距凸轮回转中心的最近点开始度量。
对于摆动从动件,其位移为角位移,只需把直动从动件的运动参数转化为相应的摆动运动参数即可。
图9-2 偏置直动尖底从动件凸轮机构的运动循环图9-2 所示为偏置直动尖底从动件盘形凸轮机构的运动循环图。
随着凸轮的转动,从动件逐渐升高,当升高到最高点时,推程运动角为=∠BOE 。
凸轮升高到最高后,凸轮远休止廓线EF 段为圆弧,其远休止角为s=∠EOF 。
从F 点开始,随着凸轮的继续转动,从动件开始下降,当下降到最低点时,回程运动角为' =∠FOD ,凸轮从D 点继续转到B 点时,从动件在最低位置静止不动,DB 段的凸轮转角为近休止角's=∠DOB 。