ZnO纳米粉体制备与表征
纳米ZnO/SnO2粉体的制备及其光催化性能的研究

用 , 定一 定的基 础 。 奠
2 实 验
2 1 复合 光催化 剂粉体 的制 备 . 利 用 S C l5 2 Z NO ・H2 H IN O ( n I・H O、 n 36 O、 C 、 a H 均
术序幕以来 , 纳米半导体光催化技术在多领域的应用
得到迅 速发展 。其 中纳米光 催化 剂在 降解有 机物 , 治 理环境 污染 方 面 , 到研 究 者 的广 泛关 注 目前研 得 。 究 比较多 的 半导 体光 催 化 剂 大 多 数都 属 于 宽禁 带 n 型半导体 化合物 , 中以 TO 、d 其 i C S和 Z O的催 化 活 n 性最高 。但 是 由于 单一 半导 体材 料光 催 化 剂 , 隙 】 带 能 较大 , 穴易 与 电子复 合 , 以光 催 化效 率 并不 太 空 所 高, 需要 对催 化 剂进 行改 性 , 以提 高其 光催 化 活性 及 可应 用性[ 目前 , 于 TO 体 系的改性 已有较 系统 4 1 。 对 i 全面 的研究 ,而 Z O在紫 外和 可见 光 区域 都有一 定 n 的吸 收 其 禁带 宽度 与 TO 相 近 , Z O制 备操 作 , i 且 n 简单 ,因此近 年来 对 Z O的光 催化性 能 的研 究也 越 n
化 , 日本 理学 D ma2 0 P 用 / x 5 0 C全 自动 粉末 x射 线衍
光 照 2 5 n后 复 合光 催 化 剂粉 体 对 甲基 橙 的 降解 2mi 能 力达 到 4 . %,而 后复 合光催化 剂粉体对 甲基橙 26 9 的降解能 力 逐渐 降低 。这 是 因为在 实验 用灯光 照射
提高 , 中以 Z OS O 在 Z O : n 。 其 n /n n S O =4: 1的情 况下复合催化 剂光催化 性能最优 ; 热处理温 度在 6 0 5 ℃保温时间 2 h所得到的 复合催化剂催化性能最好。
Zn(ZnO)NiZn(NiZnO)纳米管的制备与表征的开题报告

Zn(ZnO)NiZn(NiZnO)纳米管的制备与表征的开题报
告
Zn(ZnO)NiZn(NiZnO)纳米管是一种具有潜在应用价值的新型纳米材料,在光催化、生物医学和传感器等领域有着广泛的应用前景。
然而,其制备与表征仍存在一定挑战,需要进一步深入研究。
本文旨在探究Zn(ZnO)NiZn(NiZnO)纳米管的制备与表征方法,具体包括以下几个方面:
1. 制备方法:本文将采用水热法和电沉积法相结合的方法来制备Zn(ZnO)NiZn(NiZnO)纳米管。
其中,水热法将用于合成ZnO和NiO纳米线,电沉积法将用于在纳米线表面沉积Zn、Ni、ZnO和NiZnO薄层,最终形成Zn(ZnO)NiZn(NiZnO)纳米管。
2. 表征方法:本文将采用多种表征手段来表征Zn(ZnO)NiZn(NiZnO)纳米管的结构和性质,包括场发射扫描电子显微镜(FESEM)、高分辨透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)和拉曼光谱等。
FESEM和HRTEM将用于观察和确定纳米管的形貌、尺寸和组成,XPS将用于分析表面元素的化学状态和氧化还原性,拉曼光谱将用于研究纳米管的结晶性和晶格动力学。
3. 结果与讨论:本文将通过对Zn(ZnO)NiZn(NiZnO)纳米管的制备和表征结果进行分析,并结合实验数据和文献资料对其结构和性质进行深入探讨和解释,包括其形貌、尺寸、晶体结构、光学和电学性质等。
4. 研究意义与展望:本文的研究对于深入理解Zn(ZnO)NiZn(NiZnO)纳米管的结构和性质具有重要的意义,并为其在光催化、生物医学和传感器等领域的应用提供了理论和实验基础。
此外,本研究还可以为其他相关纳米管材料的制备和表征提供参考和指导。
ZnO 纳米材料

氧化锌纳米材料的制备、性能、表征及应用综述杨波(专业:无机非金属材料工程班级:化材1101 学号201144049)摘要:纳米材料以其独特的结构与性能受到世人广泛的关注;本文简要介绍了纳米氧化锌材料的最新制备方法、分析表征方法、主要性质、应用、生物毒性、未来研究方向及展望。
关键词:纳米材料;氧化锌;制备;生物毒性;研究方向1、前言纳米Zn0 是一种新型高功能精细无机产品,与普通ZnO 相比,因其特有的表面效应、体积效应、量子效应和介电限域效应等,在催化、光学、磁性和力学等方面展现出许多特异功能,特别是它的防紫外辐射及其在紫外区对有机物的催化降解作用,使其在陶瓷、化工、电子、光学、生物、医药等很多领域具有重要的应用ZnO 有纳米管、纳米棒、纳米丝和纳米同轴电缆、纳米带、纳米环、纳米笼、纳米螺旋及其超晶格结构等多种纳米形态,是纳米材料家族中结构最多样的成员之一。
本文主要评述了近年来氧化锌纳米材料制备的一些新方法,比较了各种方法的优缺点;介绍了氧化锌纳米材料的性质及其可能的应用领域,并对氧化锌纳米材料的发展前景进行了展望。
2、氧化锌纳米材料制备的新方法对纳米材料的研究首先是侧重于制备方法的研究,随着研究的不断深入,近年来,人们已开发了一系列制备氧化锌纳米材料的新方法,如微波法、静电纺丝法、离子液体法、脉冲激光烧蚀沉积法、频磁控溅射法、等,下面将对其一一介绍。
2.1、静电纺丝法静电纺丝是一种制备纳米纤维的技术, 这种方法可以十分经济地制得直径为纳米级的连续不断的纤维。
近年来,由于对纳米科技研究的迅速升温,静电纺丝这种可大规模制备纳米尺寸纤维的纺丝技术激起了人们的广泛兴趣。
典型的静电纺丝装置见图1,装置一般由三个部分组成:高压直流或交流电源、电纺丝喷嘴、接收电极。
聚合物溶液或熔体与高压电源通过导线相连, 接收板接地,当高压电施加于聚合物溶液或熔体时,位于针头顶端的液滴表面强电场作用下,将带有大量的诱导电荷,液滴在其表面电荷的排斥力和外部电场的库仑作用力下,变形成泰勒锥状,当电场强度达到某一临界值时,静电力将克服溶液的表面张力,液体流将从泰勒锥顶端喷射而出,在射流运动一段距离后,裂分为许多小的聚合物流。
锆掺杂纳米ZnO粉体的制备及其光催化性能

a ut f08g m n o e i .% (oa t ) i o im mon . . Z O dp dwt 1 o d h 0 m lrai Zr nu . r o c
u e lr voe l nd r uta iltil umi ai n n to .Th fe t f c l i ng t mp r t r ,c cni i e e c s o acni e e a u e a i ng tme,a o t f d pig Zr a o t n f l m un o o n nd c n e to
( 山东师 范大学化 学化 工与材料 科 学学 院 , 山 东 济南
摘
201) 5 04
要 : N EO 、n O 和 ZO 1 8 2 以 a Z S C r C: H 0为原料 , ・ 采用直接 沉 淀法制备 了纯 Z O和掺 锆 Z O的纳 n n
米粉 体 , 用 X D、T I 、 V V sS M 和 T M 等表 征手段 进行 表征 , 并 R F — R u — i、E E 用紫外灯作 为光 源 , 甲基 亚
第 6卷第 6 期
20 09年 l 2月
纳 米材料 与应 用
Na mae i l& Ap i ai no tra plc t on
Vo . No6 16 .
De e e 2 0 c mb r 0 9
锆掺杂纳米 Z O粉体 的制备 n 及其光催化性能 米
陈姗姗 , 李怀祥 , 曲丕丞
蓝溶 液为光 催化反 应模 型降解 物 , 究 了 Z O和掺锆 Z O纳米粉 体 的光催 化性 能 , 研 n n 并考 察 了前驱 体煅 烧 温度与 时 间、掺锆 量 以及 催化 剂加 入 量等 因素对 降解 率 的影 响 ,结 果表 明 ,煅烧 温度 为
ZnO纳米粉体材料的制备

实 验 2 ZnO 纳米粉体材料的制备(一)实验类型:综合性(二)实验类别:设计性实验(三)实验学时数:16(四)实验目的(1)掌握沉淀法制备纳米粉体的工作原理。
(2)了解X-射线粉末衍射仪鉴定物相的原理。
(五)实验原理纳米ZnO 是一种新型高功能精细无机材料, 其粒径介于1~ 100 nm 之间,又称为超微细ZnO 。
由于颗粒尺寸的细微化,使得纳米ZnO 产生了其本体块状材料所不具备的表面效应、小尺寸效应、量子效应和宏观量子隧道效应等,因而使得纳米ZnO 在磁、光、电、敏感等方面具有一些特殊的性能, 主要用来制造气体传感器、荧光体、紫外线遮蔽材料、变阻器、图像记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。
合成纳米ZnO 的方法有多种,沉淀法工艺简单,成本低, 便于实现工业化生产。
合成纳米ZnO 的方法有多种,本实验采用化学沉淀法是在可溶性锌盐溶液中加入沉淀剂后,于一定条件下生成沉淀从溶液中析出,将阴离子洗去,经分离、干燥、热处理后,得到纳米氧化锌。
该方法操作简单,对设备和技术要求不太苛刻,产品纯度高,不易引入杂质,成本低。
X-射线粉末衍射仪是分析材料晶体结构的重要工具。
晶体的X射线衍射图象实质上是晶体微观结构形象的一种精细复杂的变换。
由于每一种结晶物质,都有其特定的结构参数,包括点阵类型、晶胞大小、单胞中原子(离子或分子)数目及位置等,而晶体物质的这些特定参数,反映在衍射图上机表现出衍射线条的数目、位置及相对强度各不相同。
因此,每种晶态物质与其X射线衍射图之间有着一一对应的关系。
任何一种晶态物质都有自己独立的X射线衍射图,不会因为他种物质混聚在一起而产生变化。
这就是X射线衍射物相定性分析的方法的依据。
根据粉体X-射线衍射图得到的相关数据,利用谢乐公式(如下),可以计算纳米粒子的晶粒尺寸。
0.89cos D λβθ=(λ为X 射线的波长,β为最强峰的半峰宽,θ 为衍射角)(六)实验内容1. 制备以Zn(NO 3)2·6H 2O 与NH 4HCO 3为原料,聚乙二醇(PEG 600)为模板剂,采用直接沉淀法将制得的沉淀,洗涤后经煅烧制备纳米ZnO 。
关于ZnO的论文

毕业论文 (设计)论文题目:Fe掺杂ZnO纳米粒子的制备及表征学院:药学院专业:化学教育班级:一班指导教师:杨立滨学生姓名:岳瑞轩学号:0711014102佳木斯大学教务处毕业论文(设计)用纸Fe掺杂ZnO纳米粒子的制备及表征摘要: 目的开展Fe掺杂ZnO纳米粒子的制备及表征的研究工作。
方法以硝酸锌、硝酸铁、氢氧化钠等为原料,采用沉淀法合成Fe掺杂ZnO纳米粒子,并对样品进行表征。
用WCT-2A 型热重分析仪对样品进行TG-DTA测试;用X-射线衍射仪测试样品的晶型结构;用UV-Vis 分光光度计记录样品DRS光谱。
结果通过沉淀法成功地合成了纯ZnO、及Fe含量为(0.5%、1%、3%、5%)的Fe-ZnO纳米粒子,并对样品进行表征。
结论掺杂的铁离子进入了ZnO的晶格取代了锌,拓展了样品的光学响应范围;并且,适量的Fe掺杂也丰富了ZnO纳米粒子的表面态(表面缺陷)并改善了与之相关的光生载流子的分离效率。
关键词:ZnO;Fe掺杂;沉淀法;表征佳木斯大学教务处第I页毕业论文(设计)用纸Fe Doped ZnO Nanoparticles and Characterization Abstract: Object Fe doped ZnO nanoparticles to carry out the preparation and characterization of the study. Methods zinc nitrate, ferric nitrate, sodium hydroxide as raw materials, synthesis of Fe doped ZnO precipitation of nanoparticles, and the samples were characterized.With a WCT-2A type TGA TG-DTA samples were tested; By X-Ray diffraction crystal structure of the test sample; using UV-Vis DRS spectra recorded sample spectrophotometer. Results Successfully synthesized through the precipitation of pure ZnO, and Fe content (0.5%, 1%, 3%, 5%) of the Fe-ZnO nano-particles, and the samples were characterized. Conclusions Iron doped into the ZnO lattice replaced by zinc, corresponding to expand the scope of the optical sample; and the appropriate amount of Fe doped ZnO nanoparticles are also enriched in the surface states (surface defects) and the associated improved Photogenerated carrier separation efficiency.Keywords:ZnO; Fe doped; precipitation; Characterization佳木斯大学教务处第II页毕业论文(设计)用纸佳木斯大学教务处目录摘要 (Ⅰ)Abstract (Ⅱ)前言 (1)1 仪器试剂 (11)1.1 仪器 (11)1.2 试剂 (11)2 实验方法 (11)2.1 Fe-ZnO纳米粒子的制备 (11)2.1.1 纯ZnO前驱物的制备 (12)2.1.2 Fe-ZnO前驱物的制备 (13)2.1.3 目标产物Fe-ZnO纳米粒子的制备 (13)2.2 样品表征 (13)3 实验结果 (13)3.1 TG-DTA测试 (13)3.2 XRD测试 (14)3.3 UV-Vis DRS测试 (16)4 讨论 (17)结论 (18)致谢 (19)参考文献 (20)附录 (21)附录Ⅰ(英) (21)附录Ⅱ(中) (24)毕业论文(设计)用纸前言氧化锌(ZnO)是一种重要的直接宽带隙半导体材料,其室温禁带宽度为3.37 eV。
纳米zno的制备与应用

纳米zno的制备与应用
一、制备方法
1、水溶法:水溶法是制备纳米ZnO的简便方法,可采用连续(水-硝
酸甲酯)、隔离(亚硝酸乙酯或酒精-硝酸甲酯)分步法,在反应液中
向锌溶液添加过量浓硝酸,使溶液pH降低到≤2。
在搅拌条件下使锌溶
液和硝酸发生反应,形成纳米锌硝酸。
在增加浓乙醇或水的添加下硝
酸制备出不同的形貌的纳米ZnO粒子。
2、氧化还原反应:可以将氧化锌与还原剂进行氧化还原反应,从而在
一定pH范围内制备出纳米ZnO粒子,氧化还原反应过程可以由X射
线衍射、扫描电镜等表征分析仪表进行表征。
3、溶液浸渍法:它是把染料溶液,碱金属氢氧化物和无机酸比较平衡
地溶液等介质前加入Zn(II)离子,制备出具有不同形貌的纳米ZnO粒子,此法做法简便。
4、共沉淀法:将酸性和碱性的底物混合,随后向其中加入Zn(II)离子,在碱性底物的碳酸钙、硅酸钙的存在下,再缓缓加入氢氧化钾溶液,ZnO的纳米颗粒会在pH范围内沉淀到底物表面,即可得到纳米ZnO
粒子。
二、应用:
1、电子器件:ZnO纳米粒子具有较高的非线性折射率,此特性使其成
为数码电子器件中的主要组件。
纳米ZnO多晶硅材料具有优异的机械
强度和电磁介质性,因此其在可靠性和耐热性方面特别有利。
2、光学元件:纳米ZnO具有上至真空处的高反射率和强的抗紫外线能
力,因此应用于需要高反射和抗UV的光学元件。
3、量子点:纳米ZnO也被用于制造量子点,量子点具有非常独特的物理特性和电子特性,使其成为生物技术与材料学研究中重要的技术工具。
均匀沉淀法制备 ZnO 纳米材料

实验3 均匀沉淀法制备ZnO 纳米材料ZnO 是一种重要的II-VI 族半导体氧化物,属于宽带隙直接带材料(E g ≥ 2.3 eV ),广泛地应用于日常用品、塑料橡胶、太阳能电池、陶瓷工业、探测材料、压电材料、光波导以及军事隐形等方面。
ZnO 的研究主要集中在光电性质、光催化性质、气体探测器以及应用陶瓷等方面。
纳米材料的兴起,使ZnO 纳米材料的制备与应用方面的研究受到了广泛地关注。
本实验以尿素为沉淀剂,利用均匀沉淀法来制备纳米ZnO 粉体材料。
一、实验目的(1)、了解均匀沉淀法的基本原理,利用均匀沉淀法制备ZnO 纳米材料;(2)、了解X 射线粉末衍射(XRD)仪的组成,熟悉测试的一般步骤;(3)、掌握利用Jade 软件进行物相检索的一般步骤。
二、实验原理均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。
所加入的沉淀剂不直接与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中均匀地、缓慢地析出。
均匀沉淀法制备得到的产物粒子粒径分布较窄,分散性好。
本实验以硝酸锌为原料,尿素为沉淀剂,制备ZnO 纳米粉体材料。
制备过程可分为如下三个方面:(1)、尿素分解反应:()223222ΔCO NH + 3H O 2NH H O + CO ⎯⎯→↑i ; (2)、沉淀反应:()2++3242Zn + 2NH H O Zn OH + 2NH ⎯⎯→↓i ;(3)、热分解反应:()22ΔZn OH ZnO + H O ⎯⎯→↑ 三、实验仪器与试剂(1)、仪器恒温磁力搅拌器,磁子,电子天平,电热鼓风干燥箱,马弗炉,电动离心机,烧杯,量筒(50 mL),坩埚,圆底烧瓶(150 mL),球形冷凝管,胶管;(2)、试剂硝酸锌,尿素,蒸馏水,乙醇。
四、实验步骤(1)、按硝酸锌浓度~0.1 mol/L 、尿素浓度~0.4 mol/L ,配置50 mL 混合溶液(其中硝酸锌称取4 g ,尿素2.4 g 溶于蒸馏水中,总体积调为~50 mL ),将混合液装入圆底烧瓶中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ZnO纳米粉体制备与表征 一 实验目的 1. 了解氧化锌的结构及应用 2. 掌握“共沉淀和成核/生长隔离、水热法和微波水热、溶胶-凝胶法、反相微乳液”技术制备纳米材料的的方法与原理。 3. 了解同步热分析仪、X-射线衍射仪、扫描电子显微镜(SEM)与比表面测定仪等表征手段和原理 二 基本原理 2.1 氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示:
图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图 2.2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 2.3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如:
2.3.1 共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其晶体的尺寸也很难达到纳米量级,极大限制了此类材料的应用;成核/生长隔离制备采用强制微观混合技术,将盐溶液与碱溶液在反应器转子与定子之间的缝隙处迅速充分混合接触,反应后物质迅速脱离反应器,实现粒子的同时成核、同步生长,从而使材料具有粒子尺寸小和分布均匀的特性,粒子的尺寸可以达到10-100nm。 2.3.2 水热法和微波水热法 常规水热法是利用高温高压的水溶液使那些在大气条件下不溶或难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使产生对流以形成过饱和状态而析出生长晶体的方法。水热法制备材料的特点是粒子纯度高、分散性好、晶形好且可控制,生产成本低。用水热法制备的粉体一般无需烧结和球磨,这就可以避免在烧结过程中晶粒会长大而且杂质容易混入等缺点;近年来, 水热法的一个创新是将微波引入反应体系中以更快地制备陶瓷材料。这提供了传统反应釜加热所不具有的优点,包括快速加热至晶化温度, 均匀成核以及通过氢氧化物沉淀的快速溶解达到快速过度饱和, 从而导致较低的晶化温度和较短的晶化时间。 2.3.3 溶胶-凝胶法 Sol-gel法的原理主要是原材料的水解、缩聚反应,常用的原料一般为金属醇盐和无机化合物。作为湿化学反应方法之一,不论所用的起始原料(称为前躯物)为无机盐或金属醇盐,其主要反应步骤是前驱物溶于溶剂(水或有机溶剂)中形成均匀的溶液,溶质与溶剂产生水解或醇解反应生成物聚集成1nm左右的粒子并组成溶胶,经蒸发干燥转变为凝胶,基本反应原理如下:
(1)溶剂化:能电力的前驱物-金属盐的金属阳离子ZM将吸收水分子形成溶剂单元Z
nOHM
2(Z为M离子的价数),为保持它的配位数而有强烈地释放H的趋势:
HOHOHMOHMZnZn1
122,这时如有其它离子进入就可能产生聚合反
应,但反应式极为复杂; (2)水解反应:非电离式分子前驱物,如金属醇盐nORM(n为金属M的原子价)与水反应:xROHOROHMOxHORMxnxn2; 反应可延续进行,直至生成nOHM (3) 缩聚反应:缩聚反应可分为失水缩聚: OHMOMMHOOHM2 和失醇缩聚: ROHMOMMHOORM 反应生成物是各种尺寸和结构的荣胶体粒子。 2.3.4 反相微乳液法 微乳体系中包含单分散的水或油的液滴,这些液滴在连续相中不断扩散并互相碰撞,微乳液的这种动力学结构使其成为良好的纳米反应器。因为这些小液滴的碰撞是非弹性碰撞或“粘性碰撞”,这有可能使得液滴间互相合并在一起形成一些较大液滴。但由于表面活性剂的存在,液滴间的这种结合是不稳定的,所形成的较大液滴又会相互分离,重新变成小的液滴。微乳液的这种性质致使体系中液滴的平均直径和数目不随时间的改变而改变,故而,微乳体系可用于纳米粒子的合成。如果以油包水型微乳体系作为纳米反应器,由于反应物被完全限定于水滴内部,因此要使反应物相互作用,其首要步骤是水滴的合并,实现液滴内反应物之间的物质交换。当混合水相中分别溶解有反应物A和B的两种相同的微乳体系时,由于水滴的相互碰撞、结合与物质交换,最后可形成AB的沉淀颗粒。在反应刚开始时,首先形成的是生成物的沉淀核,随后的沉淀便附着在这些核上,使沉淀不断长大。当粒子的大小接近水滴的大小时,表面活性剂分子所形成的膜附着于粒子的表面,作为“保护剂”限制了沉淀的进一步生长。这就是微乳体系作为纳米反应器的原理,由于所合成的粒子被限定于水滴的内部,所以,合成出来的粒子的大小和形状也反映了水滴的大小和内部形状。
2.4 纳米氧化锌的物理性能表征 表征通常是指确定物质的结构、颗粒尺寸、形状和形貌等。 2.4.1 热分析 热分析仪技术是在程序温度控制下测量物质的物理性质随温度的变化,用于研究物质在某一特定温度时所发生的热学物理参数的变化,由此进一步研究物质的结构和性能之间的关系;物质在加热过程中发生的晶型转变、熔化、升华、挥发、还原、分解、脱水或降解、化合等物理化学变化,常伴随着热量和质量的变化。在程序温度控制下通过测量物质的热量和质量随温度的变化,研究材料(金属、矿物质、陶瓷和玻璃)的玻璃转变温度,结晶时间与结晶温度,结晶度,融化热与反应热,材料的热稳定性,材料氧化稳定性、分解动力学、估算产品寿命等,揭示物质性质的内在变化的分析方法。
根据国际热分析协会(international confederation for thermal analysis, ICTA) 规定,DSC曲线放热峰向上,吸热峰向下。一个热效应对应的峰位置和方向反映了物质的变化本质,其宽度、高度、对称性和取决于升温速率、样品量、颗粒大小、测定条件、样品变化过程中的各种动力学因素。 2.4.2 X射线衍射(XRD)分析 每种晶体的结构与其X射线衍射图之间都有着一一对应的关系,其特征X射线衍射图谱不会因为它种物质混聚在一起而产生变化,这就是X射线衍射物相分析方法的依据。制备各种标准单相物质的衍射花样并使之规范化,将待分析物质的衍射花样与之对照,从而确定物质的组成相,就成为物相定性分析的基本方法。鉴定出各个相后,根据各相峰的强度正比于改组分存在的量,就可对各种组分进行定量分析。目前常用衍射仪法得到衍射图谱,用“粉末衍射标准联合会(JCPDS)”负责编辑出版的“粉末衍射卡片(PDF卡片)”进行物相分析。 2.4.3 扫描电子显微镜(SEM)分析 扫描电子显微镜是依据电子与物质的相互作用。当一束高能的人射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、 透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构等。 2.4.4 BET比表面及孔径分布测定 物质的比表面积(1g吸附剂所具有的内外面积之和)大小和孔径分布情况,是评选催化剂、气敏材料、了解固体表面性质的重要参数。其理论依据是1938年Brunauer、Emmett和Teller三人在1916年Langmuer吸附理论基础上,从经典统计理论推导出的多分子层吸附公式基础上,即著名的BET方程。
三、仪器与试剂 3.1 热分析仪(SDT Q600),X-射线衍射仪(BRUKER D8 ADVANCE),比表面测定仪(Gemini V 2380)、扫描电子显微镜JSM-6510LV,电子天平,烘箱。 3.2 共沉淀和成核/生长隔离法 250 mL容量瓶2只,250ml和500 mL烧杯各2只, 100mL量筒2只,玻璃搅棒,电磁搅拌器,磁子;研钵,药勺,样品袋,坩埚,计量泵、胶体磨,湘仪离心机,马弗炉;硝酸锌,(NH4)2CO3 。 3.3 水热法和微波水热法 100 mL烧杯2只,高压反应釜、微波消解仪,湘仪离心机研钵,药勺,样品袋; 硝酸锌,NaOH,去离子水,乙醇。 2.4 溶胶-凝胶法 研钵,药勺,样品袋,坩埚,马弗炉,磁力搅拌器、恒温水槽;醋酸锌、聚乙二醇-400、柠檬酸三铵、无水乙醇、草酸、甲醇、硬脂酸、柠檬酸、去离子水。 2.5 反相微乳液法 250 mL烧杯2只, 100mL量筒4只,玻璃搅棒,电磁搅拌器,磁子,烘箱;研钵,药勺,样品袋,坩埚,马弗炉;硝酸锌,曲拉通,正丁醇,环己烷,正己醇,去离子水,碳酸钠,碳酸铵,尿素,氨水。
四、实验步骤 4.1 共沉淀和成核/生长隔离法 1. 配制0.1 mol/L (NH4)2CO3溶液250mL,0.1 mol/L Zn2+溶250 mL. 2. 成核-晶化隔离法制备ZnO 前驱体
取0.1 mol/L(NH4)2CO3 溶液和0.1 mol/L Zn2+溶液各100 mL,通过计量泵以18 mL/min 的相同速率注入胶体磨中快速混合成核生成白色沉淀。室温下晶化2 h、离心洗涤后,于80℃干燥12h得到白色沉淀粉末。
3. 共沉淀法制备ZnO 前驱体 取0.1 mol/L (NH4)2CO3溶液和0.1 mol/L Zn2+溶液各100 mL,在磁力搅拌下加入500ml中混合生成白色沉淀。室温下晶化2 h、离心洗涤后,于80℃干燥12h得到白色沉淀粉末。
4. 制备的沉淀粉末取20mg左右做热分析实验,其余分别在 500℃ 热处理2h 得ZnO 纳米颗粒待做XRD、SEM和BET实验。
4.2 水热法和微波水热法 1. 配制4.0 mol/L NaOH溶液100mL,0.5 mol/L Zn2+溶100 mL. 2. 水热法法制备ZnO