离子交换膜燃料电池技术进展.

合集下载

燃料电池用阴离子交换膜的研究进展

燃料电池用阴离子交换膜的研究进展

燃料电池用阴离子交换膜的研究进展邵思远;张建钊【摘要】碱性阴离子交换膜燃料电池(AEMFC)是一种以碱性阴离子交换膜为电解质的新型燃料电池.结合了质子交换膜燃料电池(PEMFC)和传统碱性燃料电池(AFC)的优点,从根本上摆脱了对贵金属催化剂的依赖,具有广阔的应用前景.阴离子交换膜是阴离子交换膜燃料电池的核心材料之一,其电导率及稳定性制约了碱性阴离子交换膜(AEM)的发展.从提高AEM的电导率及耐碱稳定性两个方面,对近期报道的研究工作进行梳理总结.%Alkaline anion exchange membrane fuel cell (AEMFC) is a new kind of fuel cell with alkaline anion exchange membrane as electrolyte.It combines the advantages of the proton exchange membrane fuel cell (PEMFC) and the traditional alkaline fuel cell (AFC).Fundamentally free from dependence on noble metal catalysts.AEMFC has broad application prospects in fuel cells.The anion exchange membrane (AEM) is one of the key materials in AEMFC,the development of the AEMFC is restricted by its low conductivity and stability.The development of improving of the conductivity and alkaline stability of AEM is summarized.【期刊名称】《河南化工》【年(卷),期】2017(034)005【总页数】4页(P11-14)【关键词】阴离子交换膜燃料电池;阴离子交换膜;耐碱稳定性;电导率【作者】邵思远;张建钊【作者单位】大连市第八中学,辽宁大连 116021;大连市第八中学,辽宁大连116021【正文语种】中文【中图分类】TQ425.236阴离子交换膜燃料电池(AEMFC)作为新兴的燃料电池技术,结合了传统质子交换膜燃料电池(PEMFC)全固态电池结构和碱性燃料电池(AFC)氧化还原反应速率较快的优点,有希望摆脱PEMFC对贵金属的依赖,实现燃料电池成本的大幅度下降[1-2]。

电解用全氟离子交换膜-概述说明以及解释

电解用全氟离子交换膜-概述说明以及解释

电解用全氟离子交换膜-概述说明以及解释1.引言1.1 概述全氟离子交换膜是一种具有高度化学稳定性和热稳定性的薄膜材料,广泛应用于电解领域。

它由全氟化合物制成,具有优异的离子选择性和传质性能。

全氟离子交换膜的主要特点是具有较高的抗氧化性、耐腐蚀性和电导性能,能够在极端的环境条件下稳定运行。

电解是一种通过电解质的溶解来转化化学能为电能的过程。

在这个过程中,全氟离子交换膜发挥了重要作用。

它能够在不同的溶液之间起到隔离的作用,防止阳离子和阴离子的相互转移。

同时,全氟离子交换膜具有较高的离子传递效率和较低的内阻,使得电解过程更加高效和稳定。

全氟离子交换膜在电解领域有广泛的应用。

它被用于电解池中的阴极和阳极隔离,用于电解溶液的离子选择性传输,以及用于制备纯净的化学品等。

在电池和燃料电池领域,全氟离子交换膜可以作为离子传输介质,提高电池的性能和稳定性。

此外,在水处理、药物合成和化学工艺等领域,全氟离子交换膜也发挥着重要的作用。

电解技术在现代化工和能源领域有着重要的地位,而全氟离子交换膜则是电解技术的核心材料之一。

它的发展和应用推动了电解技术的提升和创新。

随着科学技术的不断进步,全氟离子交换膜在电解领域的应用前景将会更加广阔。

因此,深入研究全氟离子交换膜的性能和制备方法,对于推动电解技术的发展具有重要的意义。

综上所述,全氟离子交换膜作为电解领域的一种重要材料,具有独特的化学稳定性和离子传递性能。

它在电解领域的广泛应用和不断创新,为电解技术的发展带来了巨大的影响和意义。

随着科学技术的进步,全氟离子交换膜的前景将更加广阔,有望在能源、化工等领域发挥更重要的作用。

1.2文章结构文章结构部分:本文主要分为引言、正文和结论三个部分。

引言部分主要对本文要讨论的主题进行概述,介绍电解用全氟离子交换膜的基本情况,并阐明文章的研究目的。

正文部分主要包括两个方面的内容:全氟离子交换膜的定义和特点以及其在电解中的应用领域和优势。

在2.1节中,将详细介绍全氟离子交换膜的定义,包括其由全氟化合物制成、离子交换功能以及膜的结构和性能。

燃料电池用阴离子交换膜的研究进展

燃料电池用阴离子交换膜的研究进展

碱性条件下氧气和燃料的电极反应变快,从而使得 甚至丧失。脂肪族聚合物骨架中含有大量的 C- H
一些非铂催化剂可以应用在膜电极中,大幅度降低 键,如聚乙烯( PE) 、聚丙烯( PP) 类聚合物在电化学
燃料电池成本,另外能量转化过程中的水管理方式 环境中具 有 较 好 的 稳 定 性,近 年 来 也 被 用 于 制 备
子交换膜( AEMs) 作为 AEMFCs 的重要组成部分, 前,碳氢类阳离子聚合物主要有季铵化脂肪族和芳
一方面要阻隔离子膜两侧的燃料和氧化剂,另一方 面还要起到支撑催化剂的功能[1 - 3]。相比质子聚合
香族类聚合物。 对于 AEMFCs 来说,阳离子聚合物中的功能基
物膜燃料电池( PEMFCs) ,AEMFCs 最大的优势是在 团在碱性条件下会发生降解,导致其交换功能减弱
图 1 基于 PP 的 AEMs 的制备过程
以上基于脂肪族的 AEMs,虽然获得了较高的 离子电导率和碱稳定性能,但是其合成步骤都较为 复杂,反应程度较难控制、产率较低,并且常需使用 贵重催化剂,这些因素很大程度上限制了这类离子 膜的应用。相比于脂肪族的 AEMs,以芳香族类为 骨架的 AEMs 膜在燃料电池中应用的报道占重要部 分,是最为常用的碳氢类 AEMs 的结构,这一类聚合 物大多数具有力学性能好、热稳定性高、抗氧化能力 强 及 成 本 较 低 等 优 点,因 此,被 广 泛 用 于 制 备 AEMs。
2018 年第 2 期
有机氟工业 Organo - Fluorine Industry
·33·
燃料电池用阴离子交换膜的研究进展
刘训道1 王 丽2 李 虹1 张永明1
( 1. 上海交通大学 化学化工学院,上海 200240; 2. 山东东岳集团,山东 淄博 256401)

离子交换膜燃料电池技术进展

离子交换膜燃料电池技术进展

1.交联聚合物中引入质子交换基团
聚合物基质的改性 商用聚合物膜的改性
聚合物基质的改性
在聚合过程中加入多官能度单体合成交联 聚合物, 然后通过磺化或共混酸性化合物引 入质子交换基团, 最后用溶液浇铸法等常用 的制膜方法制备成膜。这种质子交换膜具 备水凝胶的强吸水性, 在干膜或较低的相对 湿度下仍能保持较高的电导率。交联起到 限制水凝胶过度溶胀的作用, 使其在70 ℃ 以下具有良好的力学强度。
电池方面
质子交换膜 膜电极 催化剂层
气体扩散电极
双极板
扩散层
扩散层一方面提供反应气体、电子流和 排出生成水的通道,另一方面支持催化剂 层网络。一般应用炭纸或炭布制造,厚度 为0.18mm~0.35mm。炭纸、炭布的主要 原料是炭纤维,可分为聚丙烯腈基、沥青 基及粘胶基炭纤维三类。根据制造工艺不 同有普通型、高模量型和高强度型等系列 产品。
质子交换膜
质子交换膜是PEMFC的核心,其性能将直 接影响PEMFC的电池性能,能量效率和使 用寿命。PEMFC中应用最为广泛的质子交 换膜为美国Du Pont公司生产的Nafion全氟 磺酸质子交换膜。
1. Nafion膜的基本骨架是聚 四氟乙烯,一定长度的 主干链上接枝氟化的醚 支链,支链的末端为磺 酸基团。
离子交换膜燃料电池技术 进展
0000
前言
众所周知,第一代动力系统蒸汽机和 第二代动力系统内燃机消耗了大量不可再 生的化石能源资源,且造成了严重的环境 污染。人类社会的可持续发展问题正面临 严峻挑战。根据国际能源机构预测,随着 经济的发展、社会的进步和人口的增长, 全世界的能源消耗在今后20年至少增加一 倍。如果没有新型的能源动力,世界将从 目前的能源短缺很快走向能源枯竭。为解 决经济发展与能源短缺及环境污染之间日 益加剧的矛盾,发展清洁、高效、可持续 发展的新能源动力技术已成了十分紧迫的 任务。

全钒液流电池用离子交换膜的研究进展

全钒液流电池用离子交换膜的研究进展

全钒液流电池用离子交换膜的研究进展李彦;徐铜文【摘要】The all-vanadium redox flow battery (VRB) has received wide attention due to its excellent features for large-scale energy storage and stable power generation. As a key component in VRB, the ion exchange membranes (IEMs) not only separate the electrolyte, but also conduct ions to form charge-discharge circuit. In this work, an overview is presented for the various IEMs research of the vanadium redox flow battery. Relevant published work is summarized and critically discussed. The limitations and technical challenges in the ion exchange membranes are also discussed and further research opportunities are prospected.%由于全钒氧化还原液流电池(VRB)具有大规模储能和稳定发电的特点,引起了国内外的广泛关注.离子交换膜(IEM)是 VRB 中的重要组件,它不仅要隔开阴阳极电解液,而且还要传输离子以构成闭合回路.对全钒液流电池用离子交换膜做了系统介绍.从离子交换膜的基本功能出发,详细阐述了近年来国内外全钒液流电池用离子交换膜的研究进展及目前面临的问题,并展望了全钒液流电池大规模商业化应用的前景.【期刊名称】《化工学报》【年(卷),期】2015(066)009【总页数】9页(P3296-3304)【关键词】全钒液流电池;离子交换膜;大规模储能【作者】李彦;徐铜文【作者单位】中国科学技术大学化学与材料科学学院,安徽合肥 230026;中国科学技术大学化学与材料科学学院,安徽合肥 230026【正文语种】中文【中图分类】TQ028.8随着国民经济的发展,社会对能量的需求也急剧增加。

2024年离子交换膜市场前景分析

2024年离子交换膜市场前景分析

2024年离子交换膜市场前景分析引言离子交换膜是一种具有高选择性和高效率的分离材料,它在水处理、能源产业、生物医药等领域得到了广泛应用。

随着环境保护和资源利用的重要性日益增强,离子交换膜市场前景愈发广阔。

本文将对离子交换膜市场的前景进行分析。

市场概述离子交换膜是一种能够选择性传递离子的高分子材料,通常是以聚合物为基本材料,通过离子交换作用脱除水中的离子杂质。

离子交换膜市场的主要应用领域包括水处理、电力工业、化工和生物医药等。

随着环境监管的加强和水资源的短缺,离子交换膜市场迎来了发展的良机。

市场驱动因素环境保护需求随着全球环境问题的加剧,水资源管理的重要性日益凸显。

离子交换膜作为一种能够有效去除水中离子杂质的分离材料,能够帮助保护水资源,满足环境保护需求,因此在水处理领域有着广阔的市场前景。

能源产业发展离子交换膜在能源产业中的应用也日益增多。

例如,在电力工业中,离子交换膜可以用于制备纯净的水,从而提高发电效率。

此外,离子交换膜还可以用于能源储存领域,例如燃料电池和超级电容器等。

随着可再生能源的发展和能源存储需求的增加,离子交换膜市场有望进一步扩大。

生物医药领域需求离子交换膜在生物医药领域的应用也非常广泛。

它可以用于制备纯净水、纯化药物、去除废水中的重金属离子等。

随着人们对医疗卫生和生活质量要求的提高,离子交换膜在生物医药领域的市场需求将会持续增长。

市场挑战与对策虽然离子交换膜市场前景广阔,但仍面临一些挑战。

高成本离子交换膜制备过程中的材料和工艺成本较高,导致离子交换膜产品价格较高。

为了降低成本,可以在材料和工艺方面进行创新,寻求更加经济高效的制备方法。

技术创新离子交换膜市场的发展需要不断的技术创新。

目前,离子交换膜的选择性和传递效率仍有待提高,同时还需研发更加耐久和稳定的离子交换膜产品。

加大技术创新力度,推动离子交换膜市场的发展。

市场竞争离子交换膜市场竞争激烈,市场上存在着众多的离子交换膜供应商。

阴离子交换膜燃料电池 和阴离子交换膜水电解

阴离子交换膜燃料电池 和阴离子交换膜水电解

阴离子交换膜燃料电池和阴离子交换膜水电解全文共四篇示例,供读者参考第一篇示例:阴离子交换膜燃料电池(Anion Exchange Membrane Fuel Cell,简称AEMFC)和阴离子交换膜水电解(Anion Exchange Membrane Water Electrolysis,简称AEMWE)是两种基于阴离子交换膜技术的高效能源转化和储能技术。

随着人类对清洁能源的需求日益增加,AEMFC和AEMWE作为新型的能源技术,在能源转化和储能领域具有广阔的应用前景。

阴离子交换膜是一种特殊的离子交换膜,具有高阴离子传导性能,可以在电化学反应过程中实现阴、阳离子的传输,从而实现能源的转化。

AEMFC和AEMWE采用阴离子交换膜作为电解质,可以实现氢能的高效转化和储存,具有很高的能量转化效率和环境友好性。

我们来介绍阴离子交换膜燃料电池。

AEMFC是一种将氢气和氧气通过电化学反应产生电能的装置。

在AEMFC中,阴离子交换膜作为电解质,可以实现氢气的催化分解和氧气的还原反应,从而产生电能和水。

与传统的质子交换膜燃料电池相比,AEMFC具有更高的阻挡性,更低的电阻和更高的效率。

阴离子交换膜燃料电池具有以下优点:1. 高效能:AEMFC具有较高的电导率和较低的内部电阻,可以有效提高能量转化效率;2. 环保:AEMFC的电化学反应只产生水,不会产生有害气体,具有很好的环境友好性;3. 可再生能源:AEMFC可以利用氢气作为燃料,氢气是一种可再生能源,可以通过水电解或其他方式获得。

阴离子交换膜燃料电池和阴离子交换膜水电解是两种基于阴离子交换膜技术的高效能源转化和储能技术,具有广阔的应用前景。

随着清洁能源的推广和开发,AEMFC和AEMWE将在未来能源领域发挥重要作用,为人类社会的可持续发展做出贡献。

第二篇示例:阴离子交换膜是一种重要的功能材料,在能源领域有着广泛的应用。

阴离子交换膜燃料电池和阴离子交换膜水电解是两种利用阴离子交换膜技术的重要能源转换设备。

离子交换膜的发展态势与应用展望

离子交换膜的发展态势与应用展望

离子交换膜的发展态势与应用展望离子交换膜是一种重要的功能膜材料,通过其特殊的结构和性能,可以实现离子的选择性传输和分离,广泛应用于水处理、电力、化工、生物医药等领域。

随着科技的不断发展和需求的变化,离子交换膜的发展态势和应用展望也在不断演进和扩展。

离子交换膜最早出现在20世纪50年代,当时主要用于电解池和电解脱盐。

随着离子交换膜技术的不断研究和发展,其材料和性能得到了很大的改进。

目前,离子交换膜已广泛应用于电力行业,主要用于燃料电池、电解水制氢和锂离子电池等场合。

此外,离子交换膜在水处理、化工、生物医药等领域也有着广泛的应用。

在水处理领域,离子交换膜被广泛应用于纯水制备、废水处理和海水淡化等过程中。

通过离子交换膜的特殊结构和性能,可以有效去除水中的离子和杂质,提高水质的纯度。

特别是在海水淡化领域,离子交换膜可以实现高效的离子选择性过滤,降低了能耗和成本,为水资源的可持续利用提供了有力的支持。

在化工领域,离子交换膜广泛应用于离子交换、电渗析、浓缩与稀释等过程中。

通过离子交换膜的选择性吸附和传输作用,可以实现离子的分离和浓缩,提高化工产品的纯度和质量。

特别是在药物制备和生物制药过程中,离子交换膜有着广泛的应用。

离子交换膜可以将药物中的离子分离出来,减少对环境的污染和对人体的毒害,提高药物的纯度和治疗效果。

随着科技和社会的进步,离子交换膜的发展态势和应用展望也在不断变化。

首先,离子交换膜的材料和制备工艺将不断改进和提高。

传统的离子交换膜主要采用有机合成材料,存在稳定性差、寿命短的问题。

未来的离子交换膜可能采用无机材料和纳米材料,具有更高的稳定性和寿命。

其次,离子交换膜的性能和功能将不断扩展和提升。

未来的离子交换膜可能具有更好的选择性、更高的通量和更低的能耗,满足不同领域和不同需求的应用。

再次,离子交换膜的应用领域将不断扩大和深化。

随着环境污染和能源短缺问题的日益严重,离子交换膜在水处理、能源利用和环境保护方面的应用将越来越重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

催化基层


铂含量的问题 对铂电极的改性 抗CO中毒能力 可替代品
铂含量
由于铂是贵金属,又是目前质子交换膜燃料电 池的最好的催化剂,所以在没有找到可替代的 催化剂之前,着重提高铂的利用效率,降低其 用量是应该考虑的。目前所使用的Pt/C催化 剂,Pt含量10%~40%, 0.05~0.2mg/cm2,即使 颗粒直径在20nm以下,Pt效率仅为10%左右。 使用Pt-Cr-Cu合金 (Cu:60%,Cr:14%,Pt:25.5%),可提高效率4~8 倍。
试验表明: 1. 在铂炭复合电极催化层内添加少量Nafion 乳液,可有效地增大金属铂催化剂的反应 界面,提高铂的催化利用率,从而明显的 改善燃料电池的放电性能。 2. 当电极板中Nafion乳液的含量为3%~5% 时,燃料电池的放电电压和电流密度都处 于高峰值状态。用不同方法配制的Nafion 乳液对燃料电池放电性能也有一定影响。

氢是世界上最多的元素,氢气来源极其广泛,是一种可再 生的能源资源,取之不尽,用之不绝。可通过石油、天然 气、甲醇、甲烷等进行重整制氢;也可通过电解水制氢、 光解水制氢、生物制氢等方法获取氢气。氢气的生产、储 存、运输和使用等技术目前均已非常成熟、安全、可靠。 在近年内,氢气的来源仍将以化石燃料重整制氢为主;但 从长远看,人们更倾向于将氢气视为储能载体,氢气来源 将主要依靠可再生的能源资源。在人类社会进入氢能经济 时代后,氢能将主要来自太阳能、风能、水能、地热能、 潮汐能以及生物能。太阳能、风能、水能、地热能、潮汐 能将大规模地用于发电并用于电解水,从而大量地将这些 不可直接存储的能量以氢能形式存储起来,供人们需要时 使用;此外,通过生物制氢的方法,城市和农村地区都可 以从有机垃圾和植物体中获取大量生物能(如甲烷)
抗CO中毒能力
低温工作下的 PEMFC的电催化剂易吸附co而中毒 (co的浓度<20×10ˉ6 ),Pt表面吸附了CO后,会 降低H在铂金上的吸附,进而影响H2的电化学反应. 只有当阳极电势升到~0.6V(相对于标准氢电极) 时,CO才会被氧化成CO2,这就造成电池电压损失, 电池效率大大降低,因此CO中毒问题一直是为了 PEMFC研究的重要课题。提高其抗CO中毒的能力, 多采用 Pt-Ru/c贵金属合金电催化剂。K.A.Starz等 用碳载铂铑双金属催化系统制成电极,可耐受 100×10ˉ6的CO。


是可用作自行车、助动车、摩托车、汽车、 火车、船舶等交通工具的动力,以满足环 保对车辆船舶排放的要求 工作温度低,启 动速度较快,功率密度较高(体积较小) 因此,很适于用作新一代交通工具动力。 这是一项潜力十分巨大的应用 。

是可用作分散型电站。PEMFC 电站可以与 电网供电系统共用,主要用于调峰;也可 作为分散型主供电源,独立供电,适于用 作海岛、山区、边远地区或新开发地区电 站。
离子交换膜燃料电池技术 进展
0000
前言
众所周知,第一代动力系统蒸汽机和 第二代动力系统内燃机消耗了大量不可再 生的化石能源资源,且造成了严重的环境 污染。人类社会的可持续发展问题正面临 严峻挑战。根据国际能源机构预测,随着 经济的发展、社会的进步和人口的增长, 全世界的能源消耗在今后20年至少增加一 倍。如果没有新型的能源动力,世界将从 目前的能源短缺很快走向能源枯竭。为解 决经济发展与能源短缺及环境污染之间日 益加剧的矛盾,发展清洁、高效、可持续 发展的新能源动力技术料电池(PEMFC)被认 为是继蒸汽机和内燃机之后的具有能源革 命意义的新一代能源动力系统。它是一种 绿色能源技术,它使用可再生能源资源氢 气,并可实现零排放。
质子交换膜燃料电池的优点
PEMFC的优点主要有以下5点: 能量转化效率高。通过氢氧化合作用,直接将化学能转化 为电能,不通过热机过程,不受卡诺循环的限制。实现零 排放。其唯一的排放物是纯净水(及水蒸气),没有污染 物排放,是环保型能源。 运行噪声低,可靠性高。PEMFC 电池组无机械运动部件, 工作时仅有气体和水的流动。 维护方便。PEMFC 内部构造简单,电池模块呈现自然的 “积木化”结构,使得电池组的组装和维护都非常方便; 也很容易实现“免维护”设计。 发电效率受负荷变化的影响很小,非常适合于用作分散型 发电装置(作为主机组),也适于用作电网的“调峰”发 电机组(作为辅机组)。
质子交换膜燃料电池的应用
PEMFC 的应用十分广泛,主要应用领域可 分为以下三大类: 用作便携电源、小型移动电源、车载电源、 备用电源、不间断电源等,适用于军事、 通讯、计算机、地质、微波站、气象观测 站、金融市场、医院及娱乐场所等领域, 以满足野外供电、应急供电以及高可靠性、 高稳定性供电的需要。
电池方面

质子交换膜 膜电极 催化剂层 气体扩散电极

双极板
扩散层
扩散层一方面提供反应气体、电子流和 排出生成水的通道,另一方面支持催化剂 层网络。一般应用炭纸或炭布制造,厚度 为0.18mm~0.35mm。炭纸、炭布的主要 原料是炭纤维,可分为聚丙烯腈基、沥青 基及粘胶基炭纤维三类。根据制造工艺不 同有普通型、高模量型和高强度型等系列 产品。
对铂电极的改性
Nafion乳液的主要成分是含有磺酸基团的聚全氟 乙烯衍生物,由于它既含有磺酸基团又具有全氟 乙烯结构,因此Nafion乳液既具有一定的离子导 电性又具有一定的疏水性。在离子交换膜燃料 电池铂炭复合电极催化层内添加一定量的Nafion 乳液,可以改善离子交换膜燃料电池的放电性能。 Z.Poitarzewski 认为, Nafion乳液可以在金属铂 催化剂表面形成一层亲水型的固体电解质微孔 薄膜,从而扩大了反应气体与金属铂的催化反应 界面,提高了铂催化剂的利用率。另一方面,由于 Nafion乳液导电性较弱,它的存在又增加了电极 的欧姆极化。因此,催化层内Nafion乳液 含量应有一个最佳范围,以平衡上述两个完全相 反的作用。
相关文档
最新文档