概率论与数理统计第二章
合集下载
第二章概率论与数理统计

例5.设电话总机在某段时间内接收到的呼唤次数服从 5.设电话总机在某段时间内接收到的呼唤次数服从 参数为3的泊松分布。 参数为3的泊松分布。求: 恰好接收到5次呼唤的概率; (1)恰好接收到5次呼唤的概率; 接收到不超过5次呼唤的概率。 (2)接收到不超过5次呼唤的概率。
表示电话总机接收到的呼唤次数, 解:设X表示电话总机接收到的呼唤次数,则 设 表示电话总机接收到的呼唤次数
P{ X
P{ X = 0} = P ( A1 A2 A3 A4 A5 ) = (1-p)5 = 5 p (1 − p ) 4 = 1} = P{ A1 A 2 A 3 A 4 A 5 ∪ A1 A2 A 3 A 4 A 5 ∪ ...
2 P{ X = 2} = P{ A1 A2 A 3 A 4 A 5 ∪ A1 A 2 A3 A 4 A 5 ∪ ... = C5 P 2 (1 − P ) 3
泊松定理设随机变量 泊松定理设随机变量 n~B(n, p), (n=0, 1, 2,…), 定理设随机变量X = 很大, 很小 很小, 且n很大,p很小,记λ=np,则 很大 ,
P{ X = k } ≈
λk
k!
e
−λ
,
k = 0,1,2,...
上题用泊松定理 取λ =np=(400)(0.02)=8, 故 近似地有 P{X≥2}=1- P{X=0}-P {X=1} =1-(1+8)e-8=0.996981. (3) 泊松(Poisson)分布 λ) ) 泊松 分布P(λ 分布
X
1
0
pk
p
1− p
(2)设将试验独立重复进行n次,且在每次试验 中,事件A发生的概率均为p。若用X表示n重贝努 里试验中事件A发生的次数,则称X服从参数为 n,p的二项分布。记作X~B(n,p),其概率分布律 为:
概率论与数理统计课件第2章

2
2.2.1 随机变量 • 注意: 注意:
(1)随机变量定义于抽象的样本空间上,不是普 )随机变量定义于抽象的样本空间上, 通的实函数。 通的实函数。 (2)随机事件可以通过随机变量的各种取值状态 )随机事件可以通过随机变量的各种取值状态 取值范围来表示 来表示。 和取值范围来表示。
3
2.1.2 随机变量的分布函数 • 既然随机事件可以通过随机变量的各种取值状态和取值 范围来表示, 范围来表示,研究随机现象的统计规律性就转化为研究 随机变量取值的规律性,即取值的概率。 随机变量取值的规律性,即取值的概率。但概率是集合 函数,随机变量定义于抽象空间上,都不便于处理。 函数,随机变量定义于抽象空间上,都不便于处理。 • 能不能找到一种方法,使得我们研究随机变量取值的规 能不能找到一种方法, 律性可以转化为研究普通的实函数? 律性可以转化为研究普通的实函数?
2.1 随机变量及其分布函数 在前面的讨论中,只是孤立地考虑一些事件的概率, 在前面的讨论中,只是孤立地考虑一些事件的概率, 这种研究方法缺乏一般性, 这种研究方法缺乏一般性,而且不便于分析数学工具的引 为了这一目的,随机变量的引入具有非常重要的意义。 入,为了这一目的,随机变量的引入具有非常重要的意义。 随机变量的引入是概率论发展史上的重大事件。 随机变量的引入是概率论发展史上的重大事件。它使得研 究概率论的数学工具更丰富有力,从此, 究概率论的数学工具更丰富有力,从此,概率论的研究进 入一个崭新的天地。 . 入一个崭新的天地。
P{ X ≥ 1} = 5 / 9 ,求p =
x≤0 , 0 < x ≤1 x >1
,概率 P{0 ≤ X ≤ 0.25} =
,
;
X |< 0.5} ;2)分布函数 分布函数F(x) 分布函数
概率论与数理统计--第二章PPT课件

由概率的可列可加性得X的分布函数为
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
F(x) pk xk x
分布函数F(x)在x xk , 其跳跃值为pk P{X
对k 所1,有2,满足处x有k 跳 x跃的,k求和。
xk }
第26页/共57页
第四节 连续型随机变量及其概率密度
定义 对于随机变量X的分布函数F(x),如果存在非 负函数f (x),使对于任意实数有
售量服从参数为 10的泊松分布.为了以95%以上的
概率保证该商品不脱销,问商店在月底至少应进该商 品多少件? 解 设商店每月销售该种商品X件,月底的进货量为n件,
按题意要求为 PX n 0.95
由X服附从录的泊1松0的分泊布松表分知布k,140 1则k0!k有e1k0n01k00!k.9e1160 6
可以用泊松分布作近似,即
n
k
pk
1
p
nk
np k
k!
enp , k
0,1, 2,
.
例 4 为保证设备正常工作,需要配备一些维修工.如果各台设备
发生故障是相互独立的,且每台设备发生故障的概率都是 0.01.
试求在以下情况下,求设备发生故障而不能及时修理的概率.
(1) 一名维修工负责 20 台设备.
于是PX I P(B) Pw X (w) I.
随机变量的取值随试验的结果而定,而试验的各个 结果出现有一定的概率,因而随机变量的取值有一 定的概率.
按照随机变量可能取值的情况,可以把它们分为两 类:离散型随机变量和非离散型随机变量,而非离 散型随机变量中最重要的是连续型随机变量.因此, 本章主要研究离散型及连续型随机变量.
x
x
4. F(x 0) F(x) 即F(x)是右连续的
第23页/共57页
概率论与数理统计第二章

26
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB) , P(B)
P(B)>0
2)从加入条件后改变了的情况去算
例:A={掷出2点},B={掷出偶数点}
掷骰子
P(A|B)= 1 3
B发生后的 缩减样本空间 所含样本点总数
在缩减样本空间 中A所含样本点
个数
27
例8 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
实际上,这个假定并不完 全成立,有关问题的实际概 率比表中给出的还要大 .
当人数超过23时,打赌 说至少有两人同生日是有利 的.
18
例3 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求 电话号码由五个不同数字组成的概率.
解:
a
A150 105
=0.3024
问:
b
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率为0.476.
这个概率随着球迷人数的增加而迅速增加.
17
人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
所有这些概率都是在假 定一个人的生日在 365天的 任何一天是等可能的前提下 计算出来的.
25
3. 条件概率的性质 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
4. 条件概率的计算
1) 用定义计算:
P( A | B) P( AB) , P(B)
P(B)>0
2)从加入条件后改变了的情况去算
例:A={掷出2点},B={掷出偶数点}
掷骰子
P(A|B)= 1 3
B发生后的 缩减样本空间 所含样本点总数
在缩减样本空间 中A所含样本点
个数
27
例8 掷两颗均匀骰子,已知第一颗掷出6点,问 “掷出点数之和不小于10”的概率是多少?
实际上,这个假定并不完 全成立,有关问题的实际概 率比表中给出的还要大 .
当人数超过23时,打赌 说至少有两人同生日是有利 的.
18
例3 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求 电话号码由五个不同数字组成的概率.
解:
a
A150 105
=0.3024
问:
b
P( A) =1-0.524=0.476
即22个球迷中至少有两人同生日的概率为0.476.
这个概率随着球迷人数的增加而迅速增加.
17
人数 至少有两人同
生日的概率
20
0.411
21
0.444
22
0.476
23
0.507
24
0.538
30
0.706
40
0.891
50
0.970
60
0.994
所有这些概率都是在假 定一个人的生日在 365天的 任何一天是等可能的前提下 计算出来的.
25
3. 条件概率的性质 设B是一事件,且P(B)>0,则 1. 对任一事件A,0≤P(A|B)≤1;
概率论与数理统计第二章

k =0
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
k 1− k
n
服从参数为n和 的二项分布 的二项分布, 称 r.v X 服从参数为 和p的二项分布,记作 X~b(n,p) 显然,当 n=1 时 X ~ B(1, p) 此时有 P {X = k } = p (1 − p )
, k = 0,1
(0 <
p < 1)
即(0-1)分布是二项分布的一个特例. )
第二章 随机变量及其分布
Random Variable and Distribution 在前面的学习中,我们用字母A 在前面的学习中,我们用字母A、B、 C...表示事件 并视之为样本空间S 表示事件, C...表示事件,并视之为样本空间S的子 针对等可能概型 主要研究了用排 可能概型, 集;针对等可能概型,主要研究了用排 列组合手段计算事件的概率 手段计算事件的概率。 列组合手段计算事件的概率。 本章,将引入随机变量表示随机事件, 本章,将引入随机变量表示随机事件, 随机变量表示随机事件 以便采用高等数学的方法描述、 高等数学的方法描述 以便采用高等数学的方法描述、研究随 机现象。 机现象。
设 P { A} = p , 则 P { A} = 1 − p
抛硬币: 出现正面” 抛硬币:“出现正面”,“出现反面” 出现反面”
例如: 例如
抽验产品: 是正品” 抽验产品:“是正品”,“是次品” 是次品”
将伯努利试验E独立地重复地进行 次 将伯努利试验E独立地重复地进行n次 ,则称这 一串重复的独立试验为n重伯努利试验 重复的独立试验为 一串重复的独立试验为 重伯努利试验 . 次试验中P(A)= p 保持不变 保持不变. “重复”是指这 n 次试验中 重复” 独立” “独立”是指各 次试验的结果互不影响 .
依题意, 可取值 可取值0, 解: 依题意 X可取值 1, 2, 3,4.以p表示每组信号 以 表示每组信号 灯禁止汽车通过的概率 设 Ai={第i个信号灯禁止汽车通过 i=1,2,3,4 个信号灯禁止汽车通过}, 第 个信号灯禁止汽车通过
《概率论与数理统计》第二章 随机变量及其分布

两点分布或(0-1)分布
对于一个随机试验,如果它的样本空间只包含两个
元素,即Ω={ω1,ω2},我们总能在Ω上定义一个服从 (0-1)分布的随机变量
来描述这个随机X试验X的(结)果 。10,,当当
1, 2.
例如,对新生婴儿的性别进行登记,检查产品的质量 是否合格,某车间的电力消耗是否超过负荷以及前面多 次讨论过的“抛硬币”试验等都可以用(0-1)分布的随 机变量来描述。(0-1)分布是经常遇到的一种分布。
设随机变量X只可能取0与1两个值,它的分布律是 P{X=k}=pk(1-p)1-k,k=0,1 (0<p<1), 则称X服从(0-1)分布或两点分布。
(0-1)分布的分布律也可写成
X
0
1
pk
1-p
p
二项分布与伯努利试验
考虑n重伯努里试验中,事件A恰出现k次的概率。 以X表示n重伯努利试验中事件A发生的次数,X是一个 随机变量,我们来求它的分布律。X所有可能取的值为o, 1,2,…,n.由于各次试验是相互独立的,故在n次试 验中,事件A发生k次的概率为
X
x1
x2
…
xn
…
pk
p1
p2
…
pn
…
在离散型随机变量的概率分布中,事件 “X=x1”, “X=x2”....“X=xk”,...构成一个完备事件 组。因此,上述概率分布具有以下两个性质:
(1) pk 0, k 1, 2,L
(2) pk 1
k
满足上两式的任意一组数 pk , k 1, 2,L 都可以成为 离散型随机变量的概率分布。对于集合xk , k 1, 2,L
P{ X
k}
20 k
(0.2)k
概率论与数理统计第二章

的球若干, 例2:设袋中有编号为 ,2,3,4的球若干,从中任意取出 :设袋中有编号为1, , , 的球若干 一个,假设取到球的概率与球上的号码成反比,求取到球 一个,假设取到球的概率与球上的号码成反比,求取到球 的号码X的分布 的分布。 的号码 的分布。 解:X可以取值为 ,2,3,4。 可以取值为1, , , 。 可以取值为
P { X = 1} = 5 %
X P
0 95%
1 5%
两点分布:只有两个可能取值的随机变量所服从的分布。 两点分布:只有两个可能取值的随机变量所服从的分布。 随机变量所服从的分布 概率函数: 概率函数:P{X=xk}=pk k=1,2 0-1分布:只有 和1两个值的随机变量所服从的分布。 - 分布 只有0和 两个值的随机变量所服从的分布 分布: 两个值的随机变量所服从的分布。 概率函数: 概率函数:P{X=k}=pk(1-p) 1-k k=0,1
用随机变量表示事件 例1:某时间段内寻呼台收到的寻呼次数记作 。“收到 次 :某时间段内寻呼台收到的寻呼次数记作X。 收到20次 寻呼” 寻呼” 可写成 {X=20}。 。 “收到的寻呼次数介于30到100之间”可写作{30<X<100}。 收到的寻呼次数介于 到 之间”可写作 } 之间 例2:从一大批产品中随机抽取一件,记该产品的寿命为 :从一大批产品中随机抽取一件, Y(小时 则{Y>1500}表示“产品的寿命大于 小时),则 表示“ 小时” 小时 表示 产品的寿命大于1500小时”。 小时
−∞
−∞
0
2
∴ A= 3 . 8
(2)用概率密度函数定义求 用概率密度函数定义求
3 3 2 1 P(0≤ X<1) = ∫0 f ( x)dx = ∫0 ( 2 x− 4 x )dx = 2 ,
概率论与数理统计第二章随机变量及其分布

设随机变量X服从参数为 分布,即 例2.3.1.设随机变量 服从参数为 的0-1分布 即: 设随机变量 服从参数为0.3的 分布 X P 0 1 ,求X的分布函数 求 的分布函数 的分布函数.
i
0.3 0.7
解:(1) 当x<0时,F(x)=P{X≤x}= 时
∑P{X = x }=0 (2)当0≤x<1时,F(x)=P{X≤x}= ∑P{X = x } =P{x=0}=0.3 当 时 (3)当1≤x时,F(x)=P{X≤x}= ∑P{X = x } 当 时
xi ≤x xi ≤x i xi ≤x i
=P{X=0}+P{X=1}=1 F(x) 分布函数图形如下 1 0.3 0 1 x
3.离散型随机变量 的分布函数的性质 离散型随机变量X的分布函数的性质 离散型随机变量 (1)分布函数是分段函数 分段区间是由 的取值点划分成的 分布函数是分段函数,分段区间是由 分布函数是分段函数 分段区间是由X的取值点划分成的 左闭右开区间; 左闭右开区间 (2)函数值从 到1逐段递增 图形上表现为阶梯形跳跃递增 函数值从0到 逐段递增 图形上表现为阶梯形跳跃递增; 逐段递增,图形上表现为阶梯形跳跃递增 函数值从 (3)函数值跳跃高度是 取值区间中新增加点的对应概率值 函数值跳跃高度是x取值区间中新增加点的对应概率值 函数值跳跃高度是 取值区间中新增加点的对应概率值; F(x) (4)分布函数是右连续的 分布函数是右连续的; 分布函数是右连续的 1 (5) P{X=xi}=F(xi)-F(xi-0) 0.3
记为 X~B(n,p)
m P X = m) = Cn pm(1− p)n−m (
m=0,1,2,...,n
随机变量X所服从的分布称为二项分布,n为实验次数 注:(1)随机变量 所服从的分布称为二项分布 为实验次数 随机变量 所服从的分布称为二项分布 为实验次数; (2)该实验模型称为 次独立重复实验模型或 重Bernoulli实验模型 该实验模型称为n次独立重复实验模型或 实验模型; 该实验模型称为 次独立重复实验模型或n重 实验模型 (3)若A和Ac是n重Bernoulli实验的两个对立结果 成功”可以指二 若 和 实验的两个对立结果,“成功 重 实验的两个对立结果 成功” 者中任意一个,p是 成功”的概率 者中任意一个 是“成功”的概率. 例如:一批产品的合格率为 有放回地抽取 有放回地抽取4次 每次一件 每次一件, 例如 一批产品的合格率为0.8,有放回地抽取 次,每次一件 取得合格 一批产品的合格率为 品件数X,以及取得不合格品件数 服从分布为二项分布 品件数 以及取得不合格品件数Y服从分布为二项分布 以及取得不合格品件数 服从分布为二项分布, X对应的实验次数为 对应的实验次数为n=4, “成功”即取得合格品的概率为 成功” 对应的实验次数为 成功 即取得合格品的概率为p=0.8,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P{ X k} C n p (1 p)
k
k
nk
, (k 0,1,..., n)
例 从某大学到火车站途中有6个交通岗,假设在各个 交通岗是否遇到红灯相互独立,并且遇到红灯的概率 都是1/3. (1)设X为汽车行驶途中遇到的红灯数,求X的分布律. (2)求汽车行驶途中至少遇到5次红灯的概率.
次数,则称X服从(0-1)分布(两点分布) X~P{X=k}=pk(1-p)1-k, (0<p<1) k=0,1
或
2. 定义 设将试验独立重复进行n次,每次试验中 ,事件A发生的概率均为p,则称这n次试验为n重 贝努里试验. 若以X表示n重贝努里试验事件A发生的次数,则称
X服从参数为n,p的二项分布。记作X~B(n,p) 分布律为:
解:(1)由题意,X~B(6,1/3),于是,X的分布 律为:
例 2 某人射击的命中率为0.01,他独立射击500 次,试求其命中次数不少于2次的概率。 解 设X表示500次独立射击中命中的次数, 则X~B(500, 0.01),故 P{X2}=1- P{X=0}-P {X=1} =1-0.99500-(500)(0.01)(0.99499)=…
s 0, t 0, 有 P(X s t | X s) P(X t)
3. 正态分布
正态分布是实践中应用最为广泛,在理论上研究最 多的分布之一,故它在概率统计中占有特别重要的 地位。
B
A
A,B间真实距离为,测量值为X。X的概率密 度应该是什么形态?
若随机变量
其中 为实数, >0 ,则称X服从参数为 ,2的正
第二章 随机变量及其分布
离散型随机变量 随机变量的分布函数 连续型随机变量
随机变量函数的分布
关于随机变量(及向量)的研究,是概率论的 中心内容.这是因为,对于一个随机试验,我 们所关心的往往是与所研究的特定问题有关的 某个或某些量,而这些量就是随机变量.也可 以说:随机事件是从静态的观点来研究随机现 象,而随机变量则是一种动态的观点,如数学 分析中的常量与变量的区分那样.变量概念是 高等数学有别于初等数学的基础概念.同样, 概率论能从计算一些孤立事件的概念发展为一 个更高的理论体系,其基础概念是 随机变量.简写为r.v.
0
1
Y
Pk
1
0
一般地
X
Pk
Y=g(X) 或 … Y=g(X)~P{Y=g(xk)}=pk , k=1, 2,
(其中g(xk)有相同的,其对应概率合并。)
例12(p46)
二、连续型随机变量函数的密度函数
1、一般方法
若X~f(x), -< x< +, Y=g(X)为随机变量X 的函 数,则可先求Y的分布函数
例6 设随机变量X具分布律如右表 X 试求出X的分布函数。 P
解
0 0.1
1 0.6
2 0.3
例 向[0,1]区间随机抛一质点,以X表示质点坐 标.假定质点落在[0,1]区间内任一子区间内的概 率与区间长成正比,求X的分布函数 解: F(x)=P{X≤x} 当x<0时,F(x)=0;当x>1时,F(x)=1 当0≤x≤1时, 特别,F(1)=P{0≤x≤1}=k=1
1. 均匀分布
若X~f(x)= 则称X在(a, b)内服从均匀分布。记作 X~U(a, b)
对任意实数c, d (a<c<d<b),都有
例 长途汽车起点站于每时的10分、25分、55分发车 ,设乘客不知发车时间,于每小时的任意时刻随机地 到达车站,求乘客候车时间超过10分钟的概率 15 45
解:设A—乘客候车时间超过10分钟 X—乘客于某时X分钟到达,则XU(0,60)
(2) 若X~N(, 2),则
例 设随机变量X~N(-1,22),P{-2.45<X<2.45}=? 例 设 XN(,2),求 P{-3<X<+3}
本题结果称为3 原则.在工程应用中,通常认为 P{|X|≤3} ≈1,忽略{|X|>3}的值. 如在质量控制中,常用标准指标值±3作两条线,
答:
(3) 若x是f(x)的连续点,则
例 设随机变量X的分布函数为求f(x)
(4) 对任意实数b,若X~ f(x),(-<x<)
,则P{X=b}=0。
于是
例8
已知随机变量X的概率密度为
1)求常数A; 2)求X的分布函数F(x), 3)求P{X(0.5,1.5)}
二、几个常用的连续型分布
2.1 随机变量的概念
定义. 设Ω ={ω }是试验的样本空间, 如果量X是定义在Ω 上的一个单值实值 函数即对于每一个ω Ω ,有一实数 X=X(ω )与之对应,则称X(ω )为随机 变量。简记为X 随机变量常用X、Y、Z 或 、、等 表示。 随机变量的特点:
1、 X的全部可能取值是互斥且完备的 2 、X的部分可能取值描述随机事件
1. 定义
则称X为连续型随机变量, f(x)为X的概率密度 函数,简称概率密度或密度函数. 常记为
X~ f(x) , (-<x<+)
密度函数的几何意义为
2. 密度函数的性质 (1) 非负性 f(x)0,(-<x<);
(2)归一性 性质(1)、(2)是密度函数的充要性质;
例 设随机变量X的概率密度为 求常数a.
二、分布函数的性质 1、单调不减性:若x1<x2, 则F(x1)F(x2);
2、归一 性:对任意实数x,0F(x)1,且
3、右连续性:对任意实数x,
反之,具有上述三个性质的实函数,必是某个随 机变量的分布函数。故该三个性质是分布函数的
充分必要性质。
一般地,对离散型随机变量
X~P{X= xk}=pk, 其分布函数为 k=1, 2, „
例 引入适当的随机变量描述下列事件: ①将3个球随机地放入三个格子中, 事件A={有1个空格},B={有2个空格}, C={全有球}。 ②进行5次试验,事件D={试验成功一次}, F={试验至少成功一次},G={至多成功3次}
随机变量的分类:
随机变量
2.2 离散型随机变量 定义 若随机变量X取值x1, x2, „, xn, „ 且取 这些值的概率依次为p1, p2, „, pn, „, 则称X为 离散型随机变量,而称 P{X=xk}=pk, (k=1, 2, „ )
态分布,记为N(, 2),可表为X~N(, 2).
正态分布有两个特性:
(1) 单峰对称
密度曲线关于直线x=对称;
f()=maxf(x)= .
(2) 的大小直接影响概率的分布 越大,曲线越平坦, 越小,曲线越陡峻。 正态分布也称为高斯(Gauss)分布
4.标准正态分布 参数=0,2=1的正态分布称为标准正态分布 ,记作X~N(0, 1)。
FY (y) =P{Yy}=P {g(X) y}=
然后再求Y的密度函数
此法也叫“ 分布函数法”
例 设XU(-1,1),求Y=X2的分布函数与概率密度。
当y<0时 当0≤y<1时
当y≥1时
例
设X的概率密度为fX(x),y=g(x)关于x处处可导
且是x的严格单减函数,求Y=g(X)的概率密度。 解:Y的分布函数为 FY(y)=P{Yy}=P{g(X)y} =P{X≥g-1(y)}=1-FX(g-1(y))
当生产过程的指标观察值落在两线之外时发出警报.
表明生产出现异常.
例 一种电子元件的使用寿命X(小时)服从正态分 布N(100,152),某仪器上装有3个这种元件,三个元 件损坏与否是相互独立的.求:使用的最初90小时内 无一元件损坏的概率.
解:设Y为使用的最初90小时内损坏的元件数,
则 Y~B(3,p) 其中
其密度函数表示为
分布函数表示为
一般的概率统计教科书均附有标准正态分布表 供读者查阅(x)的值。(P190附表1)如,若 Z~N(0,1),(0.5)=0.6915, P{1.32<Z<2.43}=(2.43)-(1.32) =0.9925-0.9066 注:(1) (x)=1- (-x);
解 k可取值0,1,2
P{ X=k} =
C2 C3 C
3 5
k
3 k
.
例1(几何分布)从次品率为p的一大批产品中,随机 地一个个地抽取产品来检查,直到抽到次品为止.以 X表示抽取的产品件数,求X的分布律。 解:设Ai第i次抽到次品,i=1,2,3, … 则P(Ai)=p,i=1,2,…,
· 几个常用的离散型分布 (一)贝努里(Bernoulli)概型与二项分布 1. (0-1)分布 若以X表示进行一次试验事件A发生的
泊松定理表明,泊松分布是二项分布的极限分布, 当n很大,p很小时,二项分布就可近似地看成是参 数=np的泊松分布
例(负二项分布) 进行独立重复试验,每次成功的 概率为p,令X表示直到出现第m次成功为止所进行的 试验次数,求X的分布律。
解:m=1时, P{ X k} (1 p) k 1 p, k 1,2,... m>1时,X的全部取值为:m,m+1,m+2,…
定理2.1(Poisson定理) 设随机变量X n~B(n, pn), (n=0, 1, 2,…), 且n很大,pn很小,记 n=npn,若
lim n 0
n
则
上题用泊松定理
近似地有
取 =np=(500)(0.01)=5, 故
P{X2}=1- P{X=0}-P {X=1} =1-(1+5)e-5≈0.96. 3. 泊松(Poisson)分布P() X~P{X=k}= , k=0, 1, 2, … (0)
P{X=m+1}=P{第m+1次试验时成功并且 在前m次试验中成功了m-1次}