三相同步发电机的运行特性实验报告

合集下载

同步发电机基本工作原理及运行特性

同步发电机基本工作原理及运行特性

同步发电机基本工作原理及运行特性一、基本工作原理及结构同步发电机是利用电磁感应原理,将机械能转变为电能的装置。

所谓电磁感应就是导体切割磁力线的能产生感应电势,将导体连接成闭合回路,就有电流通过的现象。

导体镶嵌在铁芯的槽里,铁芯是固定不动的称为定于(静子)。

磁极是转动的,称为转子。

它是由励磁绕组和铁芯组成的。

励磁绕组通过滑环与外部励磁回路相连,定子和转子是发电机的基本组成部分。

那么,三相交流电是如何产生的呢?直流电通入转子绕组后,就产生了稳恒的磁场,沿定于铁芯内圆,每相隔120度,分别安放三相绕组A-X、B-Y、C-Z。

当转子被汽轮机拖动以3000r/min旋转时,定子绕组便切割磁力线,产生感应电势,感应电势的方向可由右手定则来确定。

由于转子产生的磁场是旋转磁场,所以定子绕组切割磁力线的方向不断变化,在其中感应的电势方向就不断变化,因而形成交变电势即交流电势。

交流电势的额定频率为f,它决定于发电机的极对数P和转速n,其计算公式为:f=np/60HZ,我国规定交流电的频率为50HZ。

即:p=1,n=3000r/min交流电势的相位关系:转子以3000r/min的转速不停地旋转A、B、C三相绕组先后切割转子磁场的磁力线,所以三相绕组中电势的相位是不同的,因为定子绕组在安放时,空间角度相差120°相序为A-B-C。

何为同步呢?当发电机并列带负荷后,三相绕组中的定子电流(电枢电流)将合成一个旋转磁场,交流磁场与转子同速度,同方向旋转,这就是同步。

二、同步发电机的运行特性同步发电机的运行特性,一般是指发电机的空载特性、短路特性、负载特性、外特性和调整特性等五种。

其中,外特性和调整特性是主要的运行特性,根据这些特性,运行人员可以判断发电机的运行状态是否正常,以便及时调整,保证高质量安全发电。

而空载特性、短路特性、负载特性则是检验发电机基本性能的特性,用于测量,计算发电机的各项基本参数。

1、外特性所谓外特性,就是励磁电流、转速、功率因数为常数的条件下,负荷变化时发电机端电压U的变化曲线。

同步发电机的运行原理及运行特性

同步发电机的运行原理及运行特性

11
A
点 到 点通 信 B
B
A
C
D 点 到 多点 通 信
A
D
B
E
C
F
多 点 到多 点 通 信
(a)
甲方发 甲方发 甲方收 甲方发 甲方收
第8章 同步发电机的运行原理及运行特性
1.3通信的基本方式
14
1.3.3 按通信终端之间的连接方式
通信方式可划分为两点间直通方式和交换方式。直通方式是通信双方直接用专线连接;而交换 式的通信双方必须经过一个称为交换机的设备才能连接起来,如电话系统。
用原动机拖动同步发电机到同步转速,励磁绕组通入直流励
磁电流,电枢绕组开路(或电枢电流为零)的运行状态,称为同步
发电机的空载运行。
空载运行时,同步发电机内仅有由励磁电流所建立的主极磁
场。图8-1表示一台四极发电机空载时的磁通示意图。从图可见,
0
fs
隙并与定子绕组相交链, 后者不通过气隙,仅与励磁绕组相交链。
第1章 通信的基础知识
第8章 同步发电机的运行原理及运行特性
目录
02

ONTENT S

第8章 同步发电机的运行原理及运行特性
1.1 通信的基本概念
04
通信:指的是信息的传输与交换。
通信系统:用于进行通信的设备硬件、软件和传输介质的集合。
第8章 同步发电机的运行原理及运行特性
1.1 通信的基本概念
主磁通所经过的主磁路包括空气隙、电枢齿、电枢轭、磁极极身
和转子轭等五部分。
第8章 同步发电机的运行原理及运行特性
图8-1 发电机空载时的磁通示意图
第8章 同步发电机的运行原理及运行特性
定子三相绕组切割主磁通而感应出频率为f的一组对称三相 交流电动势,其基波分量的有效值为

同步发电机的运行原理及运行特性

同步发电机的运行原理及运行特性

性E质0 主与要I取决间于的相E0位与差I
( 称为内功率因数角)。电枢反应的 之间的相位差 ,亦即主要取决于负载
的性质。下面就 角的几种情况,分别讨论电枢反应的性质。
第8章 同步发电机的运行原理及运行特性
1. I E0
(ψ=0°)时的电枢反应
当ψ=0°时,见图8-3,其中图(a)是一台同步发电机原理图。
状态,此时铁芯部分所消耗的磁压降与气隙所需磁压降相比较,
可略去不计,因此可认为绝大部分磁动势消耗于气隙中,由于
Φ∝Ff,因此空载曲线(磁化曲线)下部是一条直线。把它延长后所 得直线 OG(图8-2曲线2)称为气隙线。随着Φ0的增大,铁芯逐 渐饱和,它所消耗的磁压降不可忽略,此时空载曲线就逐渐变弯
曲。
起增磁作用。对于气隙磁场交轴电枢反应将使合成磁场的轴线位
置从空载时的直轴处逆转向后移了一个锐角δ,且幅值也有所增加,
但因磁路的饱和现象,交轴电枢反应有去磁作用。
第8章 同步发电机的运行原理及运行特性
图8-3 ψ=0°时的电枢反应
第8章 同步发电机的运行原理及运行特性
2. I
E0 90°(ψ=90°)时的电枢反应
的体温调节中枢调节神经和体液的作用,使产热和 散热保持动态平衡。
第8章 同步发电机的运行原理及运行特性
一、体表温度与深部温度
1.深部温度
2.体表温度
第8二章、同测步温发方电机法的运行原理及运行特性
1、玻璃体温计:最常见的体温计 2、电子体温计 3、耳温体温计 4、多功能红外体温计
第8三章、同测步温发部电机位的运行原理及运行特性
物理降温作为治疗措施
第8章 同步发电机的运行原理及运行特性
作业 1、发热的类型有哪几种 ? 2、发热常用的处置方法有哪些 ?

同步电机的运行特性

同步电机的运行特性

同步发电机的运行特性同步发电机对称稳态运行时,保持转速为额定转速,端电压、电枢电流和励磁电流的变化关系。

一、空载特性1. 定义电枢绕组开路(空载),保持转子转速为额定转速,电枢端电压U0(空载时即激磁电动势E0)随励磁电流If的变化曲线。

.2. 空载特性曲线见图6-113. 原因:交流绕组电动势公式。

4. 作用:判断同步发电机定子铁心的性能与故障。

二、短路特性1.定义:电枢绕组三相短接(短路,端电压U=0),保持转子转速为额定转速,电枢电流I随励磁电流If的变化曲线。

2.短路特性曲线:见图6-243.原因:忽略电枢绕组的电阻Ra ,可认为短路电流为纯感性,即,则即此时,电枢反应的性质为直轴去磁的电枢反应,使气隙磁场不饱和,即。

所以,。

4.作用:配合空载特性求xd见图6-25,求xd 不饱和值,见图6-26,求xd 的饱和值,三、外特性及电压变化率1.定义保持转子转速为额定转速,且励磁电流 If 和负载功率因数cosφ不变,发电机端电压U随负载电流I的变化曲线,即U=f (I ) 。

2.外特性曲线见图6-30,负载功率因数不同,外特性曲线不同3.原因感性负载(cosφ =0.8滞后)和纯电阻负载时,外特性曲线是下降的。

这是由于电枢反应去磁作用和漏阻抗压降所引起的。

容性负载(cosφ=0.8超前)时,外特性曲线可能上升。

这是由于电枢反应助磁作用抵消漏阻抗压降使端电压下降的影响使端电压上升。

4.电压调整率调节发电机的励磁电流,使电枢电流为额定电流、功率因数为额定功率因数,端电压为额定电压,此时的励磁电流为额定励磁电流IfN。

保持励磁电流为IfN,转子转速为额定转速,卸去负载(即I=0),此时端电压的升高的百分值即为电压调整率,用Δu表示,即Δu= 100%同步电机的电压调整率较大,汽轮发电机通常在(30~48)%,水轮发电机通常在(18~30)%;而变压器的仅有(5~8)%。

四、整特性1.定义保持转子转速为额定转速,发电机端电压为额定电压和负载功率因数cosφ不变,励磁电流If随负载电流I的变化曲线,即If = f(I)。

第 章同步发电机的运行特性

第 章同步发电机的运行特性

第17章同步发电机的运行特性17-1 同步发电机的空载和短路特性17-2 零功率因数负载特性17-3 同步发电机的外特性和调节特性17-4 滑差法和抽转子法测定同步电机参数17-1 同步发电机的空载和短路特性一、用空载特性和短路特性确定X d1. 空载试验试验条件电枢开路(空载)用原动机把被试同步电机拖动到同步转速改变励磁电流I f ,并记取相应的电枢端电压U 0(空载时U 0=E 0),直到U 0=1.25U N 左右,就可以得到空载特性曲线E 0= f (I f )。

试验目的测得空载特性E 0=f (I f )•空载特性可以通过计算或试验得到。

调节励磁回路可变电阻,使激磁电流逐步上升,每次记下If 和E的读数。

作同步电机的空载特性E=f(I f),由于存在剩磁,规定用下降曲线来表示空载特性,从1.25UN对应的激磁逐步减小。

•同步电机的空载特性也常用标么值表示,空载电势以额定电压为基值,取U=UN时的励磁电流 (称为额定励磁电流)为励磁电流的基值。

用标么值表示的空载特性具有典型性,不论电机容量的大小、电压的高低,其空载特性彼此非常接近。

空载特性实验求取图17-1 空载实验电路和空载特性曲线注意:在绘制空载特性曲线时,应注意把E0换算成相值。

2. 短路试验试验条件电枢绕组短路用原动机把被试同步电机拖动到同步转速试验目的测得短路特性:I=f(If)调节励磁电流使电枢电流I 从零一直增加到1.2I N左右,便可以得到短路特性曲线。

(一)实验步骤:1.电枢端三相短路,短路实验接线图如图17-2;2.原动机拖动转子至同步速度,n = n1;3.调I f,使I由零升至1.2I N左右,逐点记录电枢电流和励磁电流;4.画出U=0,Ik =f(If)图17-2 短路实验电路短路的等效电路图17-3短路特性和短路时的相矢图(a) 短路时的相矢图 ( b)短路特性•(二)短路特性短路时,限制短路电流的只有发电机的同步阻抗,忽略电枢电阻只考虑同步电抗,短路电流可认为纯感性。

同步发电机励磁控制实验报告

同步发电机励磁控制实验报告

竭诚为您提供优质文档/双击可除同步发电机励磁控制实验报告篇一:同步发电机励磁控制实验同步发电机励磁控制实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;5.了解电力系统稳定器的作用;观察强励现象及其对稳定的影响;6.了解几种常用励磁限制器的作用;7.掌握励磁调节器的基本使用方法。

二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。

励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。

图1励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。

可供选择的励磁方式有两种:自并励和它励。

当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。

而当交流励磁电源取自380V市电时,构成它励励磁系统。

两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。

微机励磁调节器的控制方式有四种:恒uF(保持机端电压稳定)、恒IL(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。

其中,恒α方式是一种开环控制方式,只限于它励方式下使用。

同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。

当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。

发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。

电力系统稳定器――pss是提高电力系统动态稳定性能的经济有效方法之一,已成为励磁调节器的基本配置;励磁系统的强励,有助于提高电力系统暂态稳定性;励磁限制器是保障励磁系统安全可靠运行的重要环节,常见的励磁限制器有过励限制器、欠励限制器等。

第603_同步发电机的运行特性解读


6.3.1 同步发电机空载特性
当同步发电机运行于n=n1, If ≠ 0 为空载运行。 即 E0 f (i f ) ,称之空载特性。 Ia=0时,即称
在空载运行状态下,表征E0 与if间的关系曲线,
同步发电机空载特性曲线的测定
同步发电机达到同步转速后,加入励磁电流,改变励 磁电流,空载电势也随之改变。不同励磁电流和产生空载 电势之间的关系, E0 f (i f )
If If0
cos 0.8(滞后)
cos 1.0
在感性负载时,随负载增大, 需增加励磁以抵消电枢反应的 去磁作用
cos 0.8(超前)
在容性负载时,随负载增大,需 减小励磁以平衡电枢反应的助磁 影响
IN
I
6.3.6 同步发电机特性曲线的应用
(i f ) U=f(if ) (cosφ=0) 求取xσ和Fa 1.利用 E0 f 和
UN
2-零功率因 数负载特性
If
在上图中我们可以看出,当U=0时的情况。在空载 特性上, U=0 时,if =0;而在零功率因数曲线上,
U=0 时,if =OC 。为什么在零功率因数曲线上,电压
为零时,励磁电流不为零呢?
U
IK
UN
2-零功率因 数负载特性
0
C
If
(1)零功率因数特性是在 U=0 定值条件下得到的,
(2 ) cos 0.8(滞后)
(1)
0
IN
I
当是感性负载时:曲线(2) ,此时随着负载电流的增加, 端电压逐步下降。这是因为考 虑了电枢反应的去磁作用的影 响,随着电枢电流增加,电枢 反应的去磁作用加强,电机中 的合成磁通减弱,所以端电压 逐步下降。

电机第十四章同步发电机的运行特性


零功率因数负载特性的分析
什么是零功率数负载特性
零功率数负载特性是指转速为同步
速度,负载电流和功率因数为常数值时, 发电机的端电压与励磁电流之间的关系 曲线。
U f (I f )
注意:零功率数负载特性与 空载特性的区别 不同的负载电流和功率因 数有它对应的零功率数负载特 性。
U 0 E0
jI x E 0 c
E0 xc IK
U 0 E0
Ik
气隙线
E0
短路特性
Ik
0
If
( Ff ) I f
E0 xc IK
如果漏电抗 xS 已知:
E0 xc IK
xa xc xs
对于凸极发电机,短路时忽略电阻压降
I K 滞后 E0 900
I I d K
0 I q
空载特性
cos 1 cos 0.8 cos 0
0
If
不同功率因数时的负载特性
负载特性是恒电流特性,其中 最有意义的是 IN = 常数、 cos 0 的
零功率因数负载特性。
(二)零功率数负载特性的测试方式
1、试验时,把同步发电机拖动到同步转速。 2、电枢绕组接到可变的三相纯电感对称负
R
E a
E E

I
U
I R jI x 短路时: E K K S
忽略 R
jI x E K S
xa
E 0
xS
R
E a
E E

I K
E 0
xa
E 0
xS
E a
jI x E K S
E a

电机学—同步电机的基本运行特性


➢ 空载时,
负载 I 增加, Fa´增加, 要保持 U=U Nφ,必须增加 If
△AEF称为特性三角形,其中:
AE IX σ
AF If为等效励磁电流
➢ I 不变,
特性三角形不变
四、外特性及电压调整率
n=nN、If=常数、cos =常数时, U= f (I) 的关系曲线称为外特性。 电流 I 引起电压 U 变化的原因: 定子漏阻抗压降影响
六、 Xd、Xq 的低转差测试法
1)方法:将被测试同步发电机拖动到接近同步转速(转差率小于0.01
),将励磁绕组开路,在定子侧加额定频率的相序与转子转向一致的 三相对成低电压(0.02UN),测量定子电压、电流与励磁绕组电压。
2)原理:在If=0时,E0=0 Ra≈0
电枢磁场轴线与
转子直轴重合 Iq=0, Id= I
n≠n1
电枢磁场轴线与
转子交轴重合 Id=0, Iq= I
不同时刻,Xd > Xq,
Id < Iq
Hale Waihona Puke 因为此时外加电压U 很小,磁路不饱和, 此法测得的Xd、Xq为不饱和值。
(不饱和值)
在图中,由任意Ifk
3. 短路比
空载额定电压所对应的励磁电流If0励磁下三相 稳态短路时的短路电流Ik0与额定电流IN之比。
➢ Kc是同步发电机一个重要的性能、经济指标
△U大,稳定性差
当Kc小时,ku小,Xd大
气隙小,造价低,经济性好
当气隙增加,Xd减小,Kc增加,电机性能变好,造价增高
B
率因素曲线于A',取A'O'=AO
3)过O'作OB的平行线O'B',
三角形A' B' C'为所求的特性三角形。

同步发电机的运行特性

同步发电机的运行特性1、同步发电机单机运行时,输入转矩和磁力电流保持不变,当有功负载(>)增加时,端电压U 下降,频率下降;当无功负载(>)增加时,端电压下降,频率f 不变。

2、同步发电机的短路比可借助于空载特性和短路特性两条特性曲线来求取。

3、同步发电机稳态短路时,空载电动势是用来平衡稳态短路电流在同步电抗上的压降而气隙电动来平衡稳态短路电流在漏抗上的压降。

4、影响同步电动机电压变化率的因素,有负载大小和性质和同步阻抗。

5、一台同步发电机带cos=0.8的阻感性负载运行,若定子电流减小,发电机端电压升高,为保持电压额定值不变,励磁电流要减小。

6、同步发电机带纯电阻负载时,从外特性曲线可知,若电枢电流增加,端电压会下降,其主要原因有内功率因数角>,仍有一部分直轴去磁电枢反应磁动势作用的结果。

7、测定同步发电机短路特性时,如果转速降低0.8nN时,测得的短路特性(A)。

(A)不变(B)提高0.8倍(C)降低0.8倍8、试比较同步发电机在空载(=)、短路实验(U=0, =)、满载(U=, =,cos=cos)三种情况下气隙磁通的大小。

(提示:用向量图分析)答:=短路实验时=满载时。

>>,所以9、简析同步发电机在短路特性曲线为什么是一条直线?、答:由=可知短路时气隙电动势直需用来平衡漏抗电压,因为很小,故很小,其所对应的漏磁通也很小,所以磁路不饱和。

故,又因为所以,两者为一直线关系。

10、为什么短路比是同步电抗的一个重要参数?、答:短路比直接影响惦记的制造成本和运行性能。

(1)大,成本高。

(2)大,小。

(3)大,小,大,稳定性高。

(4)大,短路电流大。

11、画出同步电动机各种性质负载时的外特性曲线。

12、写出同步发电机四条运行特性定义,并画出相应的曲线。

13、保持励磁电流不变,电枢电流,发电机转速恒定,试分析:①空载;②纯阻负载;③纯感负载;④纯容负载(设容抗大于发电机的同步电抗)时发电机端电压的大小?欲保持端电压为额定值,应如何调节?答:>>>以空载电压为基准(=),容性负载产生直轴助磁电枢反应,使端电压升高。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相同步发电机的运行特性实验报告
一、实验目的
1、掌握三相同步电动机的异步起动方法。

2、测取三相同步电动机的V形曲线。

3、测取三相同步电动机的工作特性。

二、预习要点
1、三相同步电动机异步起动的原理及操作步骤。

2、三相同步电动机的V形曲线是怎样的?怎样作为无功发电机(调相机)使用?
3、三相同步电动机的工作特性怎样?怎样测取?
三、实验项目
1、三相同步电动机的异步起动。

2、测取三相同步电动机输出功率P处0时的V形曲线。

4、测取三相同步电动机的工作特性。

3、测取三相同步电动机输出功率P=0∙5倍额定功率时的V形曲线。

四、实验方法
1、实验设备
2、屏上挂件排列顺序
D31、D42、D33、D32、D34-3、D41、D52、D51、D31 3、三相同步电动机的异步起动
图8-1三相同步电动机实验接线图
1)按图8T 接线。

其中R 的阻值为同步电动机MS 励磁绕组电阻的 10倍(约90Q ),选用D41上90。

固定电阻。

R 选用D41上90。


联90。

加上90 Q 并联90。

共225 Q 阻值。

R 选用D42上900。

串联 900。

共1800。

阻值并调至最小。

R 选用D42上900。

串联900。


同步电机
A 3~ Z∣z
D52∣∣ij 步电
力L 励磁电源 O 24V 0
彩⅛
奥畏出医箕111I0αα
上900 Q并联900。

共2250。

阻值并调至最大。

MS为DJ18(Y接法,额定电压U=220V)0
2)用导线把功率表电流线圈及交流电流表短接,开关S闭合于励磁电源一侧(图8-1中为上端)。

3)将控制屏左侧调压器旋钮向逆时针方向旋转至零位。

接通电源总开关,并按下“开”按钮。

调节D52同步电机励磁电源调压旋钮及R阻值,使同步电机励磁电流I约0.7A左右。

4)把开关S闭合于R电阻一侧(图8-1中为下端),向顺时针方向调节调压器旋钮,使升压至同步电动机额定电压220伏,观察电机旋转方向,若不符合则应调整相序使电机旋转方向符合要求。

5)当转速接近同步转速1500r∕min时,把开关S迅速从下端切换到上端让同步电动机励磁绕组加直流励磁而强制拉入同步运行,异步起动同步电动机的整个起动过程完毕。

6)把功率表、交流电流表短接线拆掉,使仪表正常工作。

4、测取三相同步电动机输出功率P仁0时的V形曲线
1)同步电动机空载(轴端不联接校正直流电机DJ23)按上述方法起
动同步电动机。

2)调节同步电动机的励磁电流I并使I增加,这时同步电动机的定子三相电流I亦随之增加直至达额定值,记录定子三相电流I和相应的励磁电流I、输入功率P。

3)调节I使I逐渐减小,这时I亦随之减小直至最小值,记录这时MS的定子三相电流I、励磁电流I及输入功率P。

4)继续减小同步电动机的磁励电流I,直到同步电动机的定子三相电流反而增大达额定值。

5)在这过励和欠励范围内读取数据9~11组,并记录于表8-1中。

表8-1 n=r/min; U=V;P≈0
表中:∕=(" + 7+∙c)∕3 P1 = P∣ + P∣∣
5、测取三相同步电动机输出功率P≈0. 5倍额定功率时的V形曲线。

1)同轴联接校正直流电机MG (按他励发电机接线)作MS的负载。

2)按1方法起动同步电动机,保持直流电机的励磁电流为规定值
(50mA或100mA),改变直流电机负载电阻R的大小,使同步电动机
输出功率P改变。

直至同步电动机输出功率接近于0・5倍额定功率且保持不变。

输出功率按下式计算:
式中P=0. 105nT
电机转速,r/min;
T——由直流电机负载电流I查对应转矩,N∙m
3)调节同步电动机的励磁电流I使I增加,这时同步电动机的定子三相电流I亦随之增加,直到同步电动机达额定电流,记录定子三相电流I和相应的励磁电流I、输入功率P。

4)调节I使I逐渐减小,这时I亦随之减小直至最小值,记录这时的定子三相电流I、励磁电流I、输入功率P。

5)继续调小I,这时同步电动机的定子电流I反而增大直到额定值。

6)在过励和欠励范围内读取数据9~∏组并记录于表8-2中。

表8-2 n=r∕min ;U=V ;
P≈0. 5P
表中:∕=W+Mc)∕3 P1=P∣+P∣∣
4、测取三相同步电动机的工作特性
1)按1方法起动同步电动机。

2)调节直流发电机的励磁电流为规定值并保持不变。

3)调节直流发电机的负载电流I,同时调节同步电动机的励磁电流I使同步电动机输出功率P达额定值及功率因数为lo
4)保持此时同步电动机的励磁电流I恒定不变,逐渐减小直流电机的负载电流,使同步电动机输出功率逐渐减小直至为零,读取定子
电流I、输入功率P、输出转矩T、转速n。

共取数据6~7组并记录于表8-3中。

表8-3 U=U=V ;1=A ;
n=r∕ min
/=(小,+/「)/3
/1 /> C
""+G
P2 = 0.105WΓ2
η = P2∕P l×∖00%
五、实验报告
1、作P-0时同步电动机v形曲线I二f(D,并说明定子电流的性质。

2、作P-0.5倍额定功率时同步电动机的V形曲线I=f(I),并说明
定子电流的性质。

3、作同步电动机的工作特性曲线:I、P、cosΦ, T、η=f(P)。

相关文档
最新文档