透明导电薄膜

合集下载

透明导电薄膜

透明导电薄膜

透明导电薄膜介绍透明导电薄膜是一种具有透明性和导电性的薄膜材料。

它在透明电子器件、光电器件以及柔性电子器件等领域具有广泛的应用。

透明导电薄膜可以使光线透过并具有电导性能,可以用来制造触摸屏、太阳能电池、有机发光二极管(OLED)等先进电子产品。

制备技术透明导电薄膜的制备主要有以下几种技术:1.溅射法:这种方法是通过高能离子轰击基底材料,使目标材料从靶上脱落,并最终沉积在基底上形成薄膜。

这种方法制备的透明导电薄膜具有良好的电导性能和透明性,但成本较高。

2.化学气相沉积法(CVD):这是一种将气体物质沉积在基底上形成薄膜的方法。

通过控制反应气体的流量和温度,可以获得具有高透明性和高导电性的薄膜。

3.溶液法:这种方法是将透明导电材料溶解在溶液中,然后通过浸涂、印刷或喷涂等方式将溶液涂覆在基底上,形成薄膜。

这种方法成本低、工艺简单,适用于大面积薄膜的制备。

透明导电材料常见的透明导电材料有以下几种:1.氧化锌薄膜:这种薄膜具有优良的透明性和导电性能,是一种非常重要的透明导电薄膜材料。

氧化锌薄膜可以通过溅射法、CVD法等多种方法制备。

2.氧化铟锡薄膜(ITO):这是目前应用最广泛的透明导电薄膜材料之一。

它具有优良的透明性和导电性能,适用于各种光电器件的制备。

3.氧化铟锌薄膜(IZO):这种薄膜是氧化铟锡薄膜和氧化锌薄膜的复合材料,具有较高的透明性和良好的导电性能。

IZO薄膜在柔性电子器件领域有广泛的应用。

应用领域透明导电薄膜在多个领域具有广泛的应用:1.触摸屏:透明导电薄膜广泛应用于触摸屏技术中。

透明导电薄膜作为触摸屏的导电电极,可以实现通过触摸屏操作电子设备的功能。

2.太阳能电池:透明导电薄膜用作太阳能电池中的透明导电电极,可以实现光的透过和电的导通,提高太阳能电池的转换效率。

3.有机光电子器件:透明导电薄膜可以用作有机发光二极管(OLED)的导电电极,实现有机光电子器件的制备。

4.柔性电子器件:透明导电薄膜具有柔性特性,可以应用于柔性电子器件的制备,如柔性电子显示器、柔性电池等。

ITO薄膜简介与产品介绍

ITO薄膜简介与产品介绍

ITO薄膜简介与产品介绍1. ITO薄膜简介1.1 什么是ITO薄膜?ITO薄膜是一种具有透明导电性能的材料,其中ITO指的是氧化铟锡〔Indium Tin Oxide〕的缩写。

该薄膜具有高透过率和低电阻率的特性,被广泛应用在电子显示器、太阳能电池、触摸屏等领域。

1.2 ITO薄膜的制备方法常见的ITO薄膜制备方法包括物理蒸镀法和化学溶胶-凝胶法。

物理蒸镀法利用高纯度的ITO靶材,通过真空蒸发沉积在基底上形成薄膜;而化学溶胶-凝胶法那么是通过溶液中的化学反响生成ITO凝胶,再通过烧结得到薄膜。

2. ITO薄膜的特性2.1 高透过率ITO薄膜具有高透过率的特性,可在可见光频段保持较高的透过率。

这使得ITO薄膜在显示器等光学设备中可以提供清晰的图像和文字显示。

2.2 低电阻率ITO薄膜具有较低的电阻率,可以实现电流的良好导电性能。

这使得ITO薄膜在触摸屏、太阳能电池等应用中可以提供可靠的电流传输。

2.3 控制面阻抗通过调整ITO薄膜的厚度和微观结构,可以控制其面阻抗。

这对于触摸屏等电容式传感器应用非常重要,可以实现高灵敏度和快速响应的触摸体验。

2.4 抗氧化性能ITO薄膜具有良好的抗氧化性能,可以在高温环境下长时间稳定运行。

这使得ITO薄膜在高温工艺和特殊环境下的应用具有优势。

3. ITO薄膜产品介绍3.1 ITO玻璃ITO玻璃是将ITO薄膜沉积在玻璃基底上形成的产品。

它具有高透过率、低电阻率和良好的平整度,被广泛应用在液晶显示器、有机发光二极管〔OLED〕等光学设备中。

3.2 ITO膜ITO膜是将ITO薄膜沉积在柔性基底上形成的产品。

由于其柔性特性,ITO膜在可弯曲显示器、柔性电子产品等领域有着广阔的应用前景。

3.3 ITO导电布ITO导电布是利用ITO薄膜材料覆盖在纤维布上形成的产品。

它可以在触摸屏、抗静电材料、导电纤维等领域发挥导电和抗静电的功能,具有良好的耐久性和导电性能。

4. 结论ITO薄膜作为一种具有透明导电性能的材料,具有高透过率、低电阻率和良好的控制面阻抗等特性。

玻璃制造中的透明导电薄膜技术

玻璃制造中的透明导电薄膜技术

19世纪末,科学家发现某些金属氧化物具有导电性
20世纪初,科学家开始研究透明导电薄膜材料
1950年代,美国科学家首次制备出透明导电氧化物薄膜
技术发展阶段
商业化阶段:20世纪90年代,ITO透明导电薄膜开始广泛应用于液晶显示器、太阳能电池等领域
早期研究:20世纪50年代,美国贝尔实验室首次发现透明导电薄膜
透明导电薄膜的应用:如触摸屏、太阳能电池、LED等
透明导电薄膜的性能改进:如提高导电性、透光率、稳定性等
玻璃制造中的透明导电薄膜技术应用案例
显示屏幕制造中的应用
透明导电薄膜技术在显示屏幕制造中的应用
透明导电薄膜技术可以提高显示屏幕的透光率和导电性
透明导电薄膜技术可以降低显示屏幕的功耗和发热量
透明导电薄膜技术可以增强显示屏幕的显示效果和稳定性
技术创新:开发新型材料、改进制备工艺、优化结构设计等
感谢您的观看
汇报人:
解决方案:改进制备工艺,提高薄膜的均匀性和稳定性
解决方案:采用新型材料和工艺,如氧化铟锡(ITO)、石墨烯等
技术瓶颈:透明导电薄膜的成本问题
技术瓶颈:透明导电薄膜的稳定性和可靠性问题
解决方案:开发低成本、高效率的制备技术,降低生产成本
市场发展前景
透明导电薄膜技术在太阳能电池、触摸屏等领域具有巨大的市场潜力
掺杂技术:通过掺杂技术,改变薄膜的导电类型和电导率,满足不同应用需求
玻璃制造中的Hale Waihona Puke 明导电薄膜技术发展历程技术起源
1970年代,日本科学家研制出第一代透明导电薄膜材料ITO(氧化铟锡)
1990年代,第二代透明导电薄膜材料AZO(氧化铝锌)和GZO(氧化镓锌)相继问世
2000年代,第三代透明导电薄膜材料如石墨烯、碳纳米管等开始受到关注

透明导电薄膜

透明导电薄膜

透明导电薄膜引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。

被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。

目前广泛研究和应用的透明导电薄膜主要为In203 : Sn(ITO)、Sb : SnO2(AT0)和ZnO : A1(ZA0) 等无机氧化物透明导电薄膜。

氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。

这些缺点限制了它们的进一步应用。

例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。

薄膜的组成,设备和制作工艺首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合•并搅拌5h后得到无机前驱体溶液。

然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。

将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h ;然后混合聚苯胺溶液和无机前驱体溶液。

搅拌并陈化 6 h 后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS 的物质的量比为0.1〜1.0,定义为H1〜H10:间甲酚与MPTMS的物质的量比为3〜7,定义为M3〜M7:聚苯胺和二氧化硅的质量比为15/85〜50/50,定义为P15〜P50。

其中,溶胶溶液的浓度为0.5mol.L-1。

实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉•控制提拉速度为1mm.s-1。

然后将沉积有薄膜的载玻片在80E烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80E烘箱中干燥。

薄膜分析方法、结果及性能图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA —PANI)和H4M5P30干凝胶样品的红外光谱图。

在MPTMS的红外图谱中,2850和810 cm 一分别为硅氧烷的C,H和SiO,C振动吸收峰1 084 cm一为Si,O基团的吸收峰。

透明导电薄膜应用案例设计

透明导电薄膜应用案例设计

透明导电薄膜应用案例设计朋友们!今天咱们来聊聊这个神奇的透明导电薄膜,它就像是科技界的一个小精灵,有着各种各样奇妙的应用呢!下面我就给大家设计几个有趣的应用案例,一起来瞧瞧吧!一、智能车窗。

想象一下,你坐在汽车里,阳光太刺眼的时候,不用再去手动拉遮阳板或者调车窗的遮阳膜啦!这个时候,透明导电薄膜就闪亮登场了。

我们可以把它集成到汽车的车窗玻璃上,当你觉得阳光太强烈时,只需轻轻按一下按钮,车窗玻璃上的透明导电薄膜就会自动调节透明度,瞬间变成一个遮光板,让你免受阳光的困扰。

而且啊,这薄膜还能导电呢,它可以和汽车的其他电子系统连接起来,比如当车内温度过高时,它能自动调节透明度,让更多的热量散发出去,就像给车窗装了一个智能的“空调助手”一样,是不是超酷的?二、透明电子显示屏。

大家都见过那些普通的显示屏吧,黑乎乎的边框,感觉有点影响美观。

但是如果用上了透明导电薄膜,那就大不一样啦!我们可以制作出透明的电子显示屏,比如在商场的橱窗里,平时它就是一块透明的玻璃,展示着里面的商品。

但是当商家想要播放广告或者展示新品信息的时候,这块玻璃就会瞬间变成一个高清的显示屏,播放各种精彩的内容。

而且因为它是透明的,即使在播放的时候,你也能清楚地看到橱窗里面的商品,这就像是给商品穿上了一件会说话的“透明衣服”,吸引顾客的眼球那是杠杠的!三、可穿戴设备。

现在的可穿戴设备越来越流行啦,像智能手表、智能手环什么的。

但是如果我们把透明导电薄膜应用到可穿戴设备上,那又会有什么样的惊喜呢?比如说,我们可以制作出一种透明的智能手表表带,它不仅看起来更加时尚、轻便,而且因为薄膜的导电特性,它可以和手表的各种传感器、芯片等部件完美配合,实现更多的功能。

比如当你运动的时候,它能实时监测你的心率、血压等健康数据,还能根据你的运动状态给你提供一些贴心的建议,就像你身边有一个私人健身教练一样。

而且这种透明的表带戴在手上,几乎感觉不到它的存在,就像你和科技融为了一体,是不是很神奇呢?四、太阳能电池。

透明导电薄膜最新进展

透明导电薄膜最新进展

透明导电薄膜最新进展透明导电薄膜最新进展透明导电薄膜是一种具有广泛应用前景的材料,它可以在保持透明度的同时,具备良好的导电性能。

近年来,透明导电薄膜领域取得了一系列令人瞩目的进展,为其在电子设备、光电器件、触摸屏、太阳能电池等领域的应用打开了新的可能性。

首先,新型透明导电薄膜材料的研究取得了重要突破。

过去常用的透明导电薄膜材料如氧化锡、氧化铟锡等具有一定的导电性能,但其透明度较低,限制了它们在高端领域的应用。

近年来,研究人员开发出了许多新型材料,如氧化铟锌、氧化铟锌锡等,这些材料在保持较高透明度的同时,具备优异的导电性能,为透明导电薄膜的应用提供了更多选择。

其次,透明导电薄膜的制备技术也得到了显著改进。

传统的制备方法如物理气相沉积、溅射法等存在成本高、生产效率低的问题,限制了透明导电薄膜的大规模应用。

近年来,研究人员开发出了一系列新的制备技术,如溶液法、喷雾法、激光印刷等,这些技术具有低成本、高效率的特点,能够大规模制备高质量的透明导电薄膜,进一步推动了其应用的发展。

此外,透明导电薄膜在电子设备领域的应用也有了长足的进展。

触摸屏、柔性显示器、有机发光二极管等设备对高透明度和良好导电性能的要求很高,透明导电薄膜的出现满足了这些需求。

同时,透明导电薄膜还被应用于太阳能电池领域,用于提高电池的光吸收效率和电子传输能力,进一步提高太阳能电池的转换效率。

综上所述,透明导电薄膜的最新进展为其在电子设备、光电器件、太阳能电池等领域的应用提供了更多可能性。

随着材料研究、制备技术的不断发展,透明导电薄膜有望在更多领域展现出其巨大的潜力。

相信未来会有更多创新的突破,推动透明导电薄膜的应用进一步发展。

透明导电薄膜TCO之原理及其应用发展

透明导电薄膜TCO之原理及其应用发展

透明导电薄膜TCO之原理及其应用发展透明导电薄膜(Transparent Conductive Films,TCO)是一种在光学透明度和电导率之间取得平衡的薄膜材料。

原理上,TCO薄膜是通过掺杂导电材料到光学材料中,达到同时具有高透明度和高电导率的效果。

TCO薄膜的主要原理是靠材料的电子结构来实现。

通常,TCO薄膜由两个主要成分组成:导电材料和基底材料。

导电材料通常是金属氧化物,如氧化锌(ZnO)或氧化锡(SnO2),它们具有高电子迁移率和低电阻率的特点。

基底材料通常是通过掺杂或添加导电剂的透明绝缘体,如玻璃或塑料。

TCO薄膜的应用非常广泛。

其中最重要的应用是透明导电电极,用于太阳能电池、液晶显示器、有机光电器件等光电器件中。

由于TCO薄膜在可见光范围内具有高透明度和低电阻率,所以能够有效传输光线并提供高效的电导率,从而改善光电器件的工作效率。

除此之外,TCO薄膜还常用于光催化、触摸屏、热电器件、光电探测器等领域。

然而,目前TCO薄膜仍然面临一些挑战。

例如,TCO薄膜的电导率和光学透射率之间存在着折中关系,很难在两者之间取得完美的平衡。

此外,一些常用的导电材料,如氧化锌和氧化锡,在高温、高湿度或强光照射条件下容易退化,从而限制了TCO薄膜的长期稳定性。

为了解决这些问题,当前TCO薄膜研究重点在于开发新型材料和改进工艺技术。

例如,研究人员尝试使用新型的导电材料,如氧化铟锡(ITO)和氟化锡(FTO),以提高TCO薄膜的电导率和稳定性。

另外,一些研究还涉及到利用纳米技术和多层结构设计,以进一步改善TCO薄膜的性能。

在未来,随着光电器件和可穿戴设备等领域的不断发展,对性能更好、更稳定的TCO薄膜的需求将会进一步增加。

因此,TCO薄膜的研究和应用前景非常广阔,有望在多个行业中发挥重要作用。

《2024年ITO透明导电薄膜的湿法刻蚀及光电特性研究》范文

《2024年ITO透明导电薄膜的湿法刻蚀及光电特性研究》范文

《ITO透明导电薄膜的湿法刻蚀及光电特性研究》篇一摘要:本文着重探讨了ITO(氧化铟锡)透明导电薄膜的湿法刻蚀技术及其对光电特性的影响。

通过实验研究,分析了刻蚀液组成、刻蚀时间、刻蚀温度等参数对ITO薄膜刻蚀效果的影响,并进一步探讨了刻蚀后薄膜的光电性能变化。

一、引言ITO透明导电薄膜因其优异的导电性和可见光透过性,在触摸屏、液晶显示、光电器件等领域有着广泛的应用。

然而,为了满足不同器件的特定需求,常需要对ITO薄膜进行精确的图形化加工。

湿法刻蚀技术因其操作简便、成本低廉等特点,成为ITO 薄膜加工的一种重要方法。

本文将详细研究ITO透明导电薄膜的湿法刻蚀工艺及其对光电特性的影响。

二、ITO透明导电薄膜概述ITO薄膜是一种以氧化铟(In2O3)为主要成分,掺杂锡(Sn)的透明导电材料。

其具有高导电性、高可见光透过率及良好的加工性能等特点,广泛应用于光电器件的制造中。

三、湿法刻蚀工艺研究1. 刻蚀液的选择与配制:选择合适的刻蚀液是湿法刻蚀的关键。

常用的刻蚀液包括酸性和碱性溶液。

本文通过实验,探讨了不同浓度和组成的刻蚀液对ITO薄膜刻蚀效果的影响。

2. 刻蚀参数的研究:实验研究了刻蚀时间、刻蚀温度等参数对ITO薄膜刻蚀效果的影响。

通过控制这些参数,可以实现对ITO薄膜的精确图形化加工。

3. 刻蚀工艺的优化:通过实验数据的分析,优化了刻蚀工艺流程,提高了刻蚀效率和刻蚀精度。

四、光电特性研究1. 光学特性:研究了湿法刻蚀后ITO薄膜的可见光透过率变化。

实验发现,合理的湿法刻蚀工艺能保持ITO薄膜的高可见光透过率。

2. 电学特性:通过测量薄膜的电阻率,研究了湿法刻蚀对ITO薄膜电导率的影响。

实验结果表明,适度的湿法刻蚀可以减小ITO薄膜的电阻,提高其导电性能。

3. 表面形貌分析:利用扫描电子显微镜(SEM)对湿法刻蚀后的ITO薄膜表面形貌进行了观察,分析了刻蚀过程中薄膜表面的变化。

五、结论本文通过实验研究,探讨了ITO透明导电薄膜的湿法刻蚀工艺及其对光电特性的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

透明导电薄膜
引言:透明导电薄膜作为一种具有低电阻和高透光率的薄膜材料。

被应用于显示器、太阳能电池、抗静电涂层、带电防护膜等各种光电材料中。

目前广泛研究和应用的透明导电薄膜主要为In2O3∶Sn(ITO)、Sb∶SnO2(ATO)和ZnO∶A1(ZAO)等无机氧化物透明导电薄膜。

氧化物薄膜具有透光性好、电阻率低和化学稳定性较好等优点但是作为无机材料,氧化物薄膜的脆性大、韧性差、合成温度高、且和柔性衬底的结合性较差。

这些缺点限制了它们的进一步应用。

例如.可折叠显示屏上要求透明导电薄膜具有可弯曲性.飞机有机玻璃窗户表面用于加热除霜的薄膜必须与有机基底结合牢固等。

薄膜的组成,设备和制作工艺
首先在室温下将3-巯丙基三甲氧基硅烷(MPTMS)和醋酸以一定物质的量比混合.并搅拌5 h后得到无机前驱体溶液。

然后,用传统乳液聚合法制备得到十二烷基苯磺酸(DBSA)掺杂的导电聚苯胺。

将一定量的导电聚苯胺溶于氯仿和间甲酚的混合溶剂中,并搅拌3 h;然后混合聚苯胺溶液和无机前驱体溶液。

搅拌并陈化6 h后得到有机一无机杂化溶胶溶液实验中醋酸和MPTMS的物质的量比为0.1~1.0,定义为H1~H10:间甲酚与MPTMS的物质的量比为3~7,定义为M3~M7:聚苯胺和二氧化硅的质量比为15/85~50/50,定义为P15~P50。

其中,溶胶溶液的浓度为0.5mol.L-1。

实验采用提拉法制备薄膜将用超声清洗并干燥的普通载玻片在杂化溶胶溶液中浸泡20 s后匀速提拉.控制提拉速度为1mm.s-1。

然后将沉积有薄膜的载玻片在80℃烘箱中干燥30 min,并在室温中冷却后,重复浸渍提拉干燥过程,制备5层厚度的导电薄膜,最后在80℃烘箱中干燥。

薄膜分析方法、结果及性能
图1为3-巯丙基三甲氧基硅烷(MPTMS)、十二烷基苯磺酸掺杂的聚苯胺(DBSA—PANI)和H4M5P30干凝胶样品的红外光谱图。

在MPTMS的红外图谱中,2850和810 cm一分别为硅氧烷的C,H和SiO,C振动吸收峰 1 084 cm一为Si,O基团的吸收峰。

在2566 cm处的一个小吸收峰为MPTMS有机链中SH 的吸收峰。

同时在DBSA.PANI的红外谱图中,1575和l471 cm一处的吸收峰分别对应聚苯胺中C=C吸收的醌式和苯式结构。

为导电聚苯胺的特征吸收峰。

此外l 122、l 327和l026 em一处的吸收峰分别为N-Q=N、C—N和S=O吸收峰。

当导电聚苯胺和无机前驱体反应杂化后.聚苯胺链中C=C吸收的醌式和苯式结构所对应的峰位移至1580和1454.1 327 cm一所对应的C.N双峰红移至1 249 Cm.同时MPTMS中2 566 cm 所对应的SH吸收峰消失.说明3一巯丙基三甲氧基硅烷中的SH基团已和聚苯胺中氨基基团形成键合.得到杂化结构。

另外在杂化干凝胶的红外谱图中,1 149和1 031 cm处出现了一个较大的双峰结构,主要为Si.0.Si结构的振动吸收峰此峰覆盖了聚苯胺的N=Q=N吸收峰原MPTMS 在810 cm 处的SiO—C吸收峰消失。

Si.0一si峰的出现和SiO.C峰的消失充分说明硅的网络结构的形成从红外谱图分析看出,用溶胶一凝胶法可以得到无机网络完整的PANI—SiO 杂化材料。

图2为不同醋酸含量对杂化薄膜导电性的影响溶胶溶液中间甲酚和MPTMS的物质的量比为5,聚苯胺和二氧化硅的质量比为3/7.引入不同的醋酸量随着醋酸引入量的增加.薄膜的方块电阻先降低后增大.当醋酸和MPTMS 的物质的量比为0.4时,方块电阻达到最低值,为3.26 kn/口。

在3.巯丙基三甲氧基硅烷的水解缩聚过程中.醋酸既是反应剂也是催化剂随着醋酸含量的增加.MPTMS的水解缩聚速率加快但同时DBSA.PANI是以一定速率掺杂人无机基体中的只有当3.巯丙基三甲氧基硅烷的水解缩聚速率和DBSA.PANI 的掺杂速率相匹配时.才能获得稳定的杂化溶液.以此得到性能优异的导电薄膜此外.过多的醋酸会引入较多的碳杂质碳杂质会阻碍DBSA.PANI导电链中电荷的传输.从而影响薄膜的导电性。

因此当醋酸和MVFMS的物质的量比为0.4时.薄膜的方块电阻最低。

图3为DBSA—PANI溶于氯仿、氯仿和间甲酚的混合溶剂以及H4M5P30杂化溶胶溶液的紫外可见吸收光谱图掺杂态聚苯胺的3个特征峰可以明显被观察到其中位于最大波长处的峰为一7r极化子跃迁峰[211 从图中可以看出.当只用氯仿溶解DBSA—PANI时.凡.7r吸收峰位于750 nm.但是当DBSA—PANI 溶于氯仿和间甲酚的混合溶剂中时,此峰位置红移至799 nm处间甲酚是一种极性溶剂,它可以对DBSA.PANI进行二次掺杂[22-23].促使聚苯胺链从卷曲状伸展成线状.从而减少了因苯环扭曲所造成的共轭缺陷.增长导电聚苯胺共轭链长度,提高聚苯胺导电性相对于用氯仿和间甲酚混合溶剂溶解的DBSA—PANI.当用间甲酚二次掺杂的聚苯胺和无机前驱体溶液反应后.紫外可见吸收光谱图没有发生较大的变化因此可以认为,杂化过程没有破化导电聚苯胺的链结构.从而确保了杂化薄膜的导电性。

图4当醋酸和M MS的物质的量比为0.4.聚苯胺和二氧化硅质量比为3/7.间甲酚和MPTMS的物质的量比小于5时.杂化薄膜的方块电阻随着间甲酚含量的增加呈线性下降:但当物质的量比大于5后,薄膜的方块电阻基本保持
恒定。

图5间甲酚也是一种酸性溶剂随着溶胶溶液中间甲酚含量的提高.溶液的酸性增强,加速了3-巯丙基三甲氧基硅烷的水解缩聚速率,破化了杂化结构的稳定性.因而影响了透明导电薄膜的可见光透过率。

图6为不同DBSA—PANI含量对透明杂化导电薄膜方块电阻的影响。

DBSA.PANI是杂化薄膜中的主要导电成分当醋酸与MPTMS物质的量比0.4.间甲酚与MPTMS物质的量比为5时.随着DBSA.PANI含量的增加.方块电阻呈现明显的下降趋势但当DBSA.PANI/(SiO,+DBSA.PANI)的质量比高于30wt%后.薄膜方块电阻的下降趋势变得非常缓慢。

杂化薄膜方块电阻的变化趋势说明,随着聚苯胺含量的增加.无机网络结构中的聚苯胺导电链趋于完整当聚苯胺的掺杂量为30wt%时.无机网络结构中已基本形成完整的导电链结构。

因此,当聚苯胺的掺杂量继续上升时.杂化薄膜的方块电阻下降缓慢。

图7从聚苯胺含量与薄膜可见光透过率的关系可以看出,当DBSA.PANI 含量为30wt%时,杂化薄膜的可见光透过率最高。

可达80%:而聚苯胺含量为15wt%,薄膜的透光率却略低这主要是因为十二烷基苯磺酸掺杂的导电聚苯胺(DBSA—PANI1本身略带酸性。

在其他组成含量不变的情况下.DBSA.PANI 含量的增加不但提高了导电成份的掺杂量,同时也会稍稍增强溶胶溶液的酸度.加快MPTMS的水解缩聚速率。

根据先前的分析已知.只有当MVFMS水解缩聚速率和DBSA—PANI掺杂速率相匹配时,才能得到稳定的杂化材料因此可以认为,当聚苯胺掺杂量为30wt%,杂化薄膜的结构最均匀稳定,透光性也相对较好此外还值得指出的是,由于导电聚苯胺本身呈绿色.聚苯胺含量的进一步增大会明显加深薄膜的颜色.使杂化薄膜的可见光透过率明显降低。

当其质量含量为50wt%,薄膜的可见光透过率仅为65%综合考虑导电性和可见光透过率,DBSA..PAN含量为30wt%时.可得到导电性和透光性都较为优异的透明导电薄膜。

建议
用3-巯丙基三甲氧基硅烷(MPTMS)制备无机前驱体溶液.醋酸为水解缩聚反应的反应剂和催化剂,并将十二烷基苯磺酸掺杂的导电聚苯胺掺杂入无机前驱体溶胶溶液中。

可以制得具有一定导电性且透光性较高的有机.无机杂化导电薄膜。

当醋酸和间甲酚与3.巯丙基三甲氧基硅烷的物质的量比分别为0.4和5.导电聚苯胺与二氧化硅的质量比为3/7时.杂化薄膜的方块电阻可降低至3.23 k Ω/,可见光透过率为80%。

参考资料目录
1 林毅;陈奇;宋鹂;侯凤珍;陆剑英;;聚苯胺对新型杂化透明导电薄膜制备和性能的影响[J];化学学报;2006年19期
2 王建恩,王运涛,王军,张兵临,何金田,张艳兰;三氧化二铟基透明导电薄膜光、电特性的研究[J];功能材料;1995年02期
3刘书君;溶胶—凝胶法制备SnO_2光学薄膜[J];硅酸盐通报;1997年05期
4葛春桥;溶胶—凝胶法制备AZO透明导电薄膜的研究[D];武汉理工大学;2005年
5高善民;周升旺;张江;于忠玺;;ZnO∶Al透明导电薄膜的制备与性能研究[J];鲁东大学学报(自然科学版);2006年03期
6张兰;程金树;刘继翔;李宏;;热处理温度对溶胶-凝胶法CeO_2-TiO_2薄膜性能的影响[A];全国第六届浮法玻璃及深加工玻璃技术研讨会论文集[C];2006年7邓宏;陈艾;韩永权;;溶胶—凝胶ZrO_2涂层的制备[A];第二届中国功能材料及其应用学术会议论文集[C];1995年
8王建恩,王运涛,王军,张兵临,何金田,张艳兰;三氧化二铟基透明导电薄膜光、电特性的研究[J];功能材料;1995年02期
9 杨勇,朱子康,漆宗能;溶胶-凝胶法制备可溶性聚酰亚胺/二氧化硅纳米复合材料的研究──Ⅰ.溶胶一凝胶转变过程和反应机理的研究[J];功能材料;1999年01期。

相关文档
最新文档