热工自动控制基础知识

合集下载

热工过程自动控制的基本概念

热工过程自动控制的基本概念
热工过程自动控制的基本 概念
• 热工过程自动控制概述 • 热工过程自动控制的基本原理 • 热工过程自动控制的应用 • 热工过程自动控制的未来发展
01
热工过程自动控制概述
定义与特点
定义
热工过程自动控制是指通过自动 化装置对热工过程中温度、压力 、流量等工艺参数进行自动调节 ,以达到预设目标的过程。
3
物联网技术还可以用于热工过程的能耗监测和管 理,提高能源利用效率和环保水平。
云计算与热工过程自动控制
01
云计算技术为热工过程自动控制提供了强大的计算和存储能力, 使得对热工过程的控制更加高效和灵活。
02
云计算技术可以实现热工数据的集中存储和处理,便于数据的
分析和挖掘。
通过云计算技术,可以实现热工过程的远程监控和管理,提高
快速性
系统对设定值变化的响应速度。
抗干扰性
系统对外部干扰的抵抗能力。
03
热工过程自动控制的应用
工业过程控制
总结词
工业过程控制是热工过程自动控制的重要应用领域,主要用 于提高生产效率和产品质量,降低能耗和减少环境污染。
详细描述
在工业生产过程中,许多物理量需要保持恒定或按照预定规 律变化,如温度、压力、流量、液位等。通过热工过程自动 控制,可以实现对这些参数的实时监测、控制和调节,确保 生产过程的稳定性和可靠性。
02
热工过程自动控制的基本原理
控制系统的基本组成
01
02
03
04
控制器
接收输入信号,根据设定的算 法计算输出信号,控制执行机
构。
执行机构
接收控制器输出的控制信号, 驱动被控对象进行动作。
测量元件
检测被控对象的实际状态,输 出测量信号。

热工测量和自动控制复习资料

热工测量和自动控制复习资料

热工测量和自动控制复习资料一、名词解释1.基本误差:仪表测量值中的最大示值绝对误差与仪表量程之比值。

2.超声波流量计:超声波流量计是通过检测流体流动对超声束(或超声脉冲)的作用以测量流量的仪表。

3. 辐射温度若物体在温度为T时的总辐射出射度与全辐射体在温度为T’时的总辐射出射度相等,则把T’称为实际物体的辐射温度。

4.补偿电桥法(冷端温度补偿器)是采用不平衡电桥产生的电势来补偿热电偶因冷端温度变化而引起的热电势的变化值,从而等效地使冷端温度恒定的一种自动补偿法。

5.测量方法:实现被测量与标准量比较的方法。

6.相对误差:相对误差指的是测量所造成的绝对误差与被测量(约定)真值之比乘以100%所得的数值,以百分数表示。

7.热电效应:将两种不同材料的导体组成一个闭合回路,如果两端接点的温度不同,回路中将产生电势,称为热电势。

这个物理现象称为热电效应或塞贝克效应.8.涡街流量计:涡街流量计是根据卡门(Karman)涡街原理研究生产的测量气体、蒸汽或液体的体积流量、标况的体积流量或质量流量的体积流量计。

9.电阻式温度计:利用物质在温度变化时其本身的电阻也随着变化的特性来测量温度的仪器。

10.绝对误差:测量值与真实值之差的绝对值二、问答题1. 写出热电偶的基本定律及其应用。

答:基本定律应用均质导体定律同名极法检定热电偶参考电极定律为制造和使用不同材料的热电偶奠定了理论基础中间导体定律为在热电偶闭合回路中接入各种仪表、连接导线等提供理论依据;可采用开路热电偶,对液态金属进行温度测量。

中间温度定律为在热电偶回路中应用补偿导线提供了理论依据;为制定和使用热电偶分度表奠定了基础。

2. 试述测量系统有哪4个基本环节,及其各自的作用。

组成测量系统的基本环节有:传感器、变换器、传输通道(或传送元件)和显示装置。

各自作用:传感器是感受指定被测参量的变化并按照一定规律将其转换成一个相应的便于传递的输出信号,以完成对被测对象的信息提取。

热控基础知识

热控基础知识

第一篇热控基础知识第一章热工自动化概述一、概述国民经济的不断增长,增加了对电力的需求量,电力工业向大电网、大机组、高参数、高度自动化的方向发展。

由于高参数、大容量机组发展迅速,因此对机组自动化的要求日益提高,以“4C”(计算机、控制、通信、CRT)技术为基础的现代火电机组热工自动化技术也相应得到了迅速的发展。

电力工业作为国民经济的基础性产业,有别于其它工业过程的主要特征是:电能的“发、输、供、用”必须同时进行,并保持瞬时的平衡。

与此同时,参与“发、输、供、用”的所有设备构成了部件众多、结构复杂、分布广阔的动态大系统。

在这个系统中发电机组处于系统的最底层。

改革开放以来,我国电力工业不断跨上新的台阶。

1987年全国发电装机容量突破1亿千瓦,1995年3月,装机容量突破2亿千瓦。

这期间中国发电装机容量和发电量先后跃过法国、英国、加拿大、德国、俄罗斯和日本,到1996年居世界第2位。

截至2004年5月底,我国发电装机容量突破4亿千瓦大关,达到40060万千瓦,年发电量超过1.9万亿千瓦时。

与此同时,提高发电机组的容量和参数也成为我国电力工业发展的重要方向:单机容量从建国初期的50MW,逐步发展到70、80年代的125~300MW,目前从300MW发展的600MW 已经成为主流,现在继续向更大型化900MW,甚至超过1000MW发展。

蒸汽参数也由8MPa/535℃提高到17MPa/540℃,并随着超临界和超超临界技术的推广应用,最终可达到28MPa/580℃以上。

机组的大容量和高参数带来的是过程参数测量点的大量增加,相应的控制回路数和控制的复杂程度都大为提高,生产过程对控制精度的要求更为严格。

以一台600MW机组为例,其运行过程的监控点多达6000~7000个,各种控制回路有500~600个,用于控制系统组态的各种图纸就有几千张,这些艰巨而繁重的控制任务必须要有现代化的电站自动化技术作为支撑。

二、热工自动化的发展趋势热工自动化的硬件主要是由检测传感器及仪表(包括显示仪表)、调节控制装置或系统、执行器(包括执行机构和调节机构两部分)三大部分构成。

火电厂热工自动控制技术及应用知识点总结

火电厂热工自动控制技术及应用知识点总结

自动控制系统基础概论热工对象动态特性常规控制规律PID控制的特点比例控制(P控制)积分控制(I控制)微分控制(D控制)控制规律的选择:单回路控制概述被控对象特性对控制质量的影响:测量元件和变送器特性对控制质量的影响调节机构特性对控制质量的影响单回路系统参数整定串级控制串级控制系统的组成(要求会画控制结构图)串级控制系统的特点串级控制系统的应用范围串级控制系统的设计原则:前馈-反馈控制概述静态前馈,动态前馈前馈-反馈控制前馈-串级控制比值控制分程控制大迟延控制系统补偿纯迟延的常规控制预估补偿控制多变量控制系统耦合程度描述解耦控制系统设计火电厂热工控制系统汽包锅炉蒸汽温度控制系统过热蒸汽温度控制再热蒸汽温度一般控制方案汽包锅炉给水控制系统概述给水流量调节方式给水控制基本方案:给水全程控制:600MW机组给水全程控制实例锅炉燃烧过程控制系统概述被控对象动态特性燃烧过程控制基本方案燃烧控制中的几个问题单元机组协调控制系统概述负荷指令处理回路正常情况下负荷指令处理异常工况下的负荷指令处理负荷指令处理回路原则性方框图机炉主控制器机炉分别控制方式机炉协调控制方式直流锅炉控制系统直流锅炉特点直流锅炉动态特性直流锅炉基本控制方案直流锅炉给水控制系统直流锅炉过热汽温控制系统自动控制系统基础概论1. 控制系统的组成与分类1. 控制系统的组成及术语控制系统的四个组成部分: 被控对象,检测变送单元,控制单元,调节机构.2. 控制系统的分类:按结构分: 单变量控制系统, 多变量控制系统按工艺参数分: 过热汽温控制系统, 主蒸汽压力控制系统按任务分: 比值控制系统, 前馈控制系统按装置分: 常规过程控制系统, 计算机控制系统按闭环分: 开环控制系统, 闭环控制系统按定值的不同分: 定值控制系统, 随动控制系统, 程序控制系统3. 过渡过程: 从扰动发生,经过调节,直到系统重新建立平衡.即系统从一个平衡状态过渡到另一个平衡状态的过程,即为控制系统的过渡过程.2. 控制系统的性能指标1. 衰减比和衰减率: 衡量稳定性2. 最大偏差和超调量: 衡量准确性3. 调节时间: 衡量快速性4. 余差(静态偏差): 衡量静态特性热工对象动态特性1. 有自平衡能力对象1. 一阶惯性环节:2. 一阶惯性环节加纯迟延:3. 高阶惯性环节:4. 高阶惯性环节加纯迟延:2. 无自平衡能力对象1. 积分环节:2. 积分环节加纯迟延:3. 有积分的高阶惯性环节:4. 有纯迟延和积分的高阶惯性环节:常规控制规律PID控制的特点1. 原理简单,使用方便2. 适应性强3. 鲁棒性强比例控制(P控制)1. 控制规律: ; :比例增益:比例带,工程上用来描述控制作用的强弱.比例带越大,偏差越大.2. 控制特点:动作快有差控制积分控制(I控制)1. 控制规律:; :积分时间2. 控制特点:动作不及时无差控制3. PI控制: I控制响应慢,工程上很少有单独使用,一般都是PI控制控制规律:; P控制看作粗调,I控制看作细调.控制作用具有: 比例及时作用和积分作用消除偏差的优点.4. 积分饱和及其措施:积分饱和: 积分过量,在单方面偏差信号长时间作用下,其输出达到上下限时,其执行机构无法再增大.措施: 积分分离手段: 当偏差较大时,在控制过程的开始阶段,取消积分作用,控制器按比例动作,等到被调量快要接近给定值时,才能产生积分作用,依靠积分作用消除静态偏差.微分控制(D控制)1. 控制规律: ;2. 控制特点:超前控制3. 实际微分: 为什么采用实际微分控制:理想微分物理上不可能实现避免动作频繁,影响调节元件寿命4. PD控制: 控制规律: ;扰动进入系统的位置离输出(被调量)越远,对系统工作的影响就越小.控制通道的时间常数和迟延时间对控制质量的影响前馈-串级控制的应用场景:分程控制扩大调节阀的可调比大迟延控制系统补偿纯迟延的常规控制1. 微分先行控制方案2. 中间反馈控制方案前馈解耦导前温度: 刚通过减温器之后的蒸汽温度以导前蒸汽温度为副参数,过热蒸汽温度为主参数的串级控制系统3. 过热蒸汽温度分段控制系统:1. 过热蒸汽温度分段控制系统:缺点: 当机组负荷大范围变化时,由于过热器吸热方式不同.一级减温器出口蒸汽温度降低,为保持不变,必须减少一级减温器喷水量;二级减温器出口蒸汽温度升高,因此要增加二级减温器喷水量.造成负荷变化时两级减温器喷水量相差很大,使整个过热器喷水不均匀,恶化二级喷水减温调控能力,导致二级过热器出口温度超温.2. 按温差控制的分段控制系统:与第一种方案的差别在于: 这里以二级减温器前后的温差(-)作为第一段控制系统的被调量信号送入第一段串级的主调节器PI3.当负荷增大时,主调节器PI3的设定值随之减小,这样有(-)>T0,PI3入口偏差值增大,这意味着必须增大一级喷水量才能使下降,从而使温差(-)减小.这样平衡了负荷增加时一级喷水量和二级喷水量.该方案为串级+前馈控制策略. 后屏出口过热器出口蒸汽温度设定值由两部分组成,第一部分由蒸汽流量代表的锅炉负荷经函数发生器后给出基本设定值,第二部分是运行人员可根据机组的实际运行工况在上述基本设定值的基础上手动进行设置.虽然系统是控制后屏过热器出口温度蒸汽,用蒸汽温度信号经过比例器乘以常数K后代表后屏过热器出口蒸汽温度,其原因是蒸汽温度与蒸汽温度变化方向一致;且蒸汽温度信号比蒸汽温度信号动态响应快,能提前反映扰动对蒸汽温度的影响,有利于控制系统快速消除干扰.主调节器PID1的输出与总风量,燃烧器摆角前馈信号组合构成副调节器PID2的设定值,副调节器的测量值为一级减温器出口温度.PID2输出控制一级其控制原理如下:正常情况下即当再热蒸汽温度处于设定值附近变化时,由调节器PID1改变烟气挡板开度来消除再热蒸汽温度的偏差,蒸汽流量D作为负荷前馈信号通过函数模块去直接控制烟气挡板.当的参数整定合适时,能使负荷变化时的再热蒸汽温度保持基本不变或变化很小.反向器-K用以使过热挡板与再热挡板反向动作.喷水减温调节器PID2也是以再热蒸汽温度作为被调信号,但此信号通过比例偏置器±Δ被叠加了一个负偏置信号(它的大小相当于再热蒸汽温度允许的超温限值).这样,当再热蒸汽温度正常时,调节器PID2的入口端始终只有一个负偏差信号,它使喷水阀全关.只有当再热蒸汽温度超过规定的限值时,调节器的入口偏差才会变为正,从而发出喷水减温阀开的指令,这样可防止喷水门过分频繁的动作而降低机组热经济性.2. 采用烟气再循环调节手段的再热蒸汽温度控制系统其控制原理如下:再热蒸汽温度T 在比较器Δ内与设定值(由A 产生)比较,当蒸汽温度低时,偏差值为正信号,此信号进入调节器PID1,其输出经执行器去调节烟气挡板开度,增大烟气再循环量,以控制再热蒸汽温度.在加法器2中引入了送风量信号V 作为前馈控制信号和烟气热量(烟温×烟气流量)修正信号,送风量V 反映了锅炉负荷大小,同时能提前反映蒸汽温度的变化.当V 增加时,蒸汽温度升高,相应的烟气再循环量应减少,故V 按负向送入调节器.函数模块是用来修正风量和再循环烟气量的关系的.通过乘法器由烟温信号调整再循环烟气流量.当再热蒸汽超温时,比较器输出为负值,PID1输出负信号直至关闭烟气再循环挡板,烟气再循环失去调温作用.同时,比较器的输出通过反相器- K 1,比例偏置器±Δ去喷水调节器PID2,开动喷水调节阀去控制再热蒸汽温度,蒸汽温度负偏差信号经反相器-K2去偏差报警器,实现超温报警,同时继电器打开热风门,用热风将循环烟道堵住,防止因高温炉烟倒流入再循环烟道而烧坏设备.当再热蒸汽温度恢复到设定值时,比较器输出为零,PID2关闭喷水门,偏差报警信号通过继电器关闭热风门,烟气再循环系统重新投入工作.3. 采用摆动燃烧器调节手段的再热蒸汽温度控制系统燃烧器上倾可以提高炉膛出口烟气温度,燃烧器下倾可以降低炉膛出口烟气温度.燃烧器控制系统是一个加前馈的单回路控制系统,再热蒸汽温度设定值是主蒸汽流量经函数发生器,再加操作员可调整的偏置量A构成.PID1调节器根据再热器出口蒸汽温度T与再热蒸汽温度设定值偏差来调整燃烧器摆角.为了抑制负荷扰动引起的再热蒸汽温度变化,系统引入了送风量前馈信号,该信号能反映负荷和烟气侧的变化.送风量前馈信号和反馈控制信号经加法器4共同控制燃烧器摆角.A侧再热器出口蒸汽温度和B侧再热器出口蒸汽温度各有两个测量信号,正常情况下选择A,B两侧的平均值作为燃烧器摆角控制的被调量.燃烧器摆角控制为单回路的前馈-反馈控制系统,再热器出口蒸汽温度设定值由运行人员手动给出.再热器出口蒸汽温度设定值和实际值的偏差经PID调节器后加上前馈信号分别作为燃烧器摆角的控制指令.前馈信号由蒸汽流量经函数发生器后给出.当再热蒸汽温度偏低时,燃烧器摆角向上动作;当再热蒸汽温度偏高时,燃烧器摆角向下动作. 2. 再热蒸汽温度喷水减温控制系统汽包锅炉给水控制系统给水控制任务: 使锅炉的给水量适应锅炉的蒸发量,维持汽包水位在规定的范围内,同时保持稳定的给水流量.对象特性: 给水流量扰动的三个体现方面:4. 虚假水位现象: 当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增强,从而使水位升高.给水控制基本方案:1. 单冲量给水控制系统: 汽包水位和水位给定值调节的反馈控制系统某600MW发电机组给水热力系统示意图,机组配三台给水泵,其中一台容量为额定容量30%的电动给水泵,两台容量各为额定容量50%的汽动给水泵.电动给水泵一般是作为启动泵和备用泵,正常运行时用两台汽动给水泵,两台汽动给水泵由小汽轮机驱动,其转速控制由独立的小汽轮机电液控制系统(micro-electro hydraulic control system,MEH)完成,MEH系统的转速给定值是由给水控制系统设置,MEH 系统只相当于给水控制系统的执行机构.在高压加热器与省煤器之间有主给水电动截止阀、给水旁路截止阀和约15%容量的给水旁路调节阀.2. 给水控制系统1. 水位控制系统汽包水位控制系统如图所示,它是单冲量和串级三冲量两套控制系统构成,汽包水位设定值由运行人员在操作台面上手动设定.当锅炉启动或负荷小于15%额定负荷阶段,控制系统是通过调节器PID1调节给水旁路的调节阀开度来控制给水量以维持汽包水位,而此时切换器T2接Y端,通过调节器PID5调节电动给水泵的转速来维持给水泵出口母管压力与汽包压力之差.当旁路调节阀开到80%时,由SCS (Sequence control system, 顺序控制系统)完成开主给水电动阀,关旁路截止阀.当负荷在15%额定负荷以上,但小于30%额定负荷时,切换器T1接Y端,切换器T2接N端,这时汽包水位设定值的偏差经调节器PID2,并经调节器PID6控制给水泵转速来调节给水流量达到维持汽包水位目的.同时当机组负荷升至20%额定负荷时,第一台给水泵开始冲转升速.当负荷大于30%额定负荷,切换器T1接N端,给水控制切换为三冲量给水控制.汽包水位控制指令由两个串级调节器PID3和PID4根据汽包水位偏差、主给水流量和主蒸汽流量三个信号形成.水位设定值与汽包水位偏差经调节器PID3 后,加主蒸汽流量信号作为副回路PID4的设定值,副回路副参数为主给水流量,经PID运算后作为给水泵控制的设定值.当负荷大于30%额定负荷时,第一台汽动给水泵并入给水系统.当负荷达40%额定负荷时,第二台汽动给水泵开始冲转升速.当负荷达60%额定负荷时,第二台汽动给水泵并入给水系统,撤出电动给水泵,将其投入热备用.机组正常时,是通过改变两台汽动给水泵的转速来调节给水量.由于给水泵的工作特性不完全相同,为稳定各台给水泵的并列运行特性,避免发生负荷不平衡现象,设计了各给水泵出口流量调节回路,将各给水泵的出口流量和转速指令的偏差送入各给水泵调节器(PID6、 PID7 和PID8)的入口,以实现多台给水泵的输出同步功能.GAIN CHANGER & BALANCER作用是根据给水泵投入自动的数量,调整控制信号的大小.拇入自动数目越大,控制信号越小.2. 给水泵最小流量控制汽机跟随控制方式:控制特点: 锅炉侧调负荷,汽机侧调汽压. 在保证主蒸汽压力稳定的情况下,汽轮机跟随锅炉而动作.优点: 在运行中主蒸汽压力相对稳定,有利于发电机组的安全经济运行.机炉协调控制方式控制特点: 在负荷调节动态过程中,机炉协调控制可以使汽压在允许的范围内波动,这样可以充分利用锅炉蓄热,使单元机组较快适应负荷变化,同时主蒸汽压力p T的变动范围也不大,因而机组的运行工况比较稳定.调节燃料量M控制主蒸汽压力p T(或机组负荷) 调节送风量V控制过剩空气系数(烟气含氧量) 调节引风量V控制炉膛压力p汽轮机控制系统为工频电液控制系统时:另一种送风控制系统方案. 锅炉指令BD经过函数发生器f2(x)后形成一个风量指令,氧量调节器输出σ对锅炉指令BD进行修正.3. 引风控制系统: 引风控制系统的任务是保证一定的炉膛压力. 由引风量改变到炉膛压力变化其动态响应快,测量也容易,因此一般采用单回路即可.3. 燃烧控制系统基本方案锅炉指令BD作为给定值送到燃料控制系统和送风控制系统,使燃料量和送风量同时改变,使燃烧率与机组要求的燃烧率相适应,保证风量与燃料量比例变化; 同时送风量作为前馈信号通过引到引风调节器PI4,改变引风量以平衡送风量的变化,使炉膛压力p s不变或变化很小.由于所有调节器都采用PI控制规律,因此,调节过程结束时,主蒸汽压力P T,燃烧经济性指标O2和炉膛压力p s,都稳定在给定值上;而锅炉的燃料量M,送风量V和引风量V都改变到与要求的燃烧率相适应的新数值上.总燃料量(总发热量)的构成形式为其中: O为燃油量,k o为燃油发热系数,M c为总煤量,k MQ为煤发热系数.当M c不变,而煤种变化造成发热量增加时,刚开始M也不变,但随着炉膛发热量的增加,D Q增大,D Q>M,由积分器正向积分增大k MQ,使M增大,直至M=D Q3. 增益自动调整乘法器为燃料调节对象的一部分,选择合适的函数,则可以做到不管给煤机投入的台数如何,都可以保持燃料调节对象增益不变,这样就不必调整燃料调节器的控制参数了.增益调整与平衡器,就是完成该功能.4. 风煤交叉限制在机组增减负荷动态过程中,为了使燃料得到充分燃烧,需要保持一定的过量空气系数. 因此,在机组增负荷时,就要求先加风后加煤;在机组减负荷时,就要求先减煤后减风.这样就存在一个风煤交叉限制.锅炉指令BD经函数器f1(x)后转换为所需的风量,风量经函数器f2(x)转换为相应风量下的最大燃料量,燃料量经函数器后转换为该燃料量下的最小风量.当增加负荷时,锅炉指令BD增大,在原风量未变化前,低值选择器输出为原风量下的最大燃料量指令,即仍为原来锅炉指令BD.在风量侧,锅炉指令BD增大,则其对应的风量指令增大,大于原燃料量所需最小风量,经高值选择后作为给定值送至送风控制系统以增大风量.只有待风量增加后,锅炉燃料的给定值才随之增加,直到与锅炉指令BD一致.由此可见,由于高值选择器的作用,风量控制系统先于燃料控制系统动作.由于低值选择器的作用,使燃料给定值受到风量的限制,燃料控制系统要等风量增加后再增加燃料量.同理,减负荷时,由于低值选择器的作用,燃料给定值先减少.由于高值选择器的作用,使风量给定值受到燃料量限制,风量控制系统要等待燃料量降低后再减少风量.上图为煤粉锅炉燃料系统的一般控制方案.其中虚框1的功能是完成总燃料量(发热量)的测量与修正.虚框2的功能是燃料侧的风煤交叉限制.5. 风机调节本节下略单元机组协调控制系统概述1. 单元机组协调控制系统的基本组成2. 机组负荷控制系统被控对象动态特性3. 机组负荷控制系统被控对象动态特性1. 单元机组动态特性:当汽轮机调门开度动作时,被调量p E和p T的响应都很快,即热惯性小.当锅炉燃烧率改变时,被调量p E和p T的响应都很快,即热惯性小.2. 负荷控制系统被控对象动态特性1. 机组主机,主要辅机或设备的故障原因有两类跳闸或切除,这类故障的来源是明确的,可根据切投状况加以确定工作异常,其故障来源是不明确的,无法直接确定,只能通过测量有关运行参数的偏差间接确定.2. 对机组实际负荷指令的处理方法有四种: 负荷返回RB, 快速负荷切断FCB, 负荷闭锁增/减BI/BD, 负荷迫升/迫降RU/RD. 其中,负荷返回RB和快速负荷切断FCB是处理第一类故障的;负荷闭锁增/减BI/BD 和负荷迫升/迫降RU/RD是处理第二类故障的.1. 负荷返回RB负荷返回回路具有两个主要功能: 计算机组的最大可能出力值;规定机组的负荷返回速率.发电机组负荷返回回路的设计方案: 该机组主要选择送风机,引风机,一次风机,汽动给水泵,电动给水泵及空气预热器为负荷返回监测设备.当其中设备因故跳闸,则发出负荷返回请求,同时计算出负荷返回速率.RB目标值和RB返回速率送到如图13-9所示的负荷指令处理回路中去.2. 负荷快速切断FCB当机组突然与电网解列,或发电机,汽轮机跳闸时,快速切断负荷指令,实现机组快速甩负荷.主机跳闸的负荷快速切断通常考虑两种情况: 一种是送电负荷跳闸,机组仍维持厂用电运行,即不停机不停炉; 另一种是发电机跳闸,汽轮机跳闸,由旁路系统维持锅炉继续运行,即停机不停炉.负荷指令应快速切到0(锅炉仍维持最小负荷运行).负荷快速切断回路的功能与实现和负荷返回回路相似.只不过减负荷的速率要大得多.3. 负荷闭锁增/减BI/BD当机组在运行过程中,如果出现下述任一种情况:任一主要辅机已工作在极限状态,比如给风机等工作在最大极限状态燃料量,空气量,给水流量等任一运行参数与其给定值的偏差已超出规定限值.认为设备工作异常,出现故障.该回路就对实际负荷指令加以限制,即不让机组实际负荷指令朝着超越工作极限或扩大偏差的方向进一步变化,直至偏差回到规定限值内才解除闭锁.4. 负荷迫升/迫降RU/RD对于第二类故障,采取负荷闭锁增/减BI/BD措施是机组安全运行的第一道防线.当采用BI/BD措施后,监测的燃料量,空气量,给水流量等运行参数中的任一参数依然偏差增大,这样需采取进一步措施,使负荷实际负荷指令减小/增大,直到偏差回到允许范围内.从而达到缩小故障危害的目的.这就是实际负荷指令的迫升/迫降RU/RD,负荷迫升/迫降是机组安全运行的第二道防线.负荷指令处理回路原则性方框图该负荷指令处理回路功能的1原则性框图,是在正常工况下符合指令处理原则性方案上,添加了异常工况下相应负荷指令处理功能.锅炉跟随方式在大型单元机组负荷控制中只是作为一种辅助运行方式.一般当锅炉侧正常,机组输出电功率因汽轮机侧的原因而受到限制时,如汽轮机侧的主、辅机或控制系统故障,汽轮机控制系统处2. 汽轮机跟随方式机组负荷响应速度慢,不利于带变动负荷和参加电网调频.这种负荷控制方式适用于带基本负荷的单为了克服正反馈,应以汽轮机的能量需求信号而不是实际的消耗能量信号作为对锅炉的能量要求信号,即应以蒸汽流量的需求(称为目标蒸汽流量)而不是实际蒸汽流量作为锅炉的前馈控制信号.为此必须对p1进行修正,以形成目标蒸汽流量信号.直流锅炉控制系统上面两种控制方案均没有考虑过热汽温对燃料量和给水流量的动态响应时间差异,,会造成燃水比的动态不匹配,使得过热汽温波动大.为此提出一种燃料-给水控制原则性方案:可以选择锅炉受热面中间位置某点蒸汽温度(又称为中间点温度或微过热温度)作为燃水比是否适当的信号.这是一个前馈-串级调节系统,副调节器PID2输出为给水流量控制指令,通过控制给水泵的转速使得锅炉总给水流量等于给水给定值,以保持合适的燃水比.主调节器PID1以中间点温度为被调量,其输出按锅炉指令BD形成的给水流量基本指令进行校正,以控制锅炉中间点汽温在适当范围内.控制系统可分同负荷下的分离器出口焓值给定值.焓值给定值加上PID1输出的校正信号构成给定值SP2,由分离器出口压力和温度经焓值计算模块算出分离器出口焓值,该出口焓值与给定值SP2的偏差经调节器PID2 进行PID运算后,作为校正信号,对给水基本指令进行燃水比校正. 调节器PID3的给定值SP3是由,锅炉指令BD指令给出的给水流量基本指令加上调节器PID2输出的校正信号构成.调节器PID3根据锅炉总给水流最与流量给定值SP3的偏差进行PID运算,输出作为给水流量控制指令调节给水泵转速来满足机组负荷变化对锅炉总给水流量的需求.3. 采用焓增信号的给水控制方案在上图所示的给水控制系统中,由调节器PID3根据给定值SP3与省煤器入口给水流量(锅炉给水流量)的偏差向给水泵控制回路发出给水流量控制指令,在给水泵控制回路中,通过调节给水泵转速来实现调节给水流量的要求.在此重点分析给水流量给定值SP3的形成.当锅炉负荷在35%~ 100%MCR范围内,没有循环水流量和省煤器入口最小流量限制时,省煤器入口给水流量(锅炉给水流量)给定值SP3为水吸收的热量焓增焓增修正其中的水吸收的热量和焓增如图所示给出.。

热工自动控制系统的主要内容

热工自动控制系统的主要内容

热工自动控制系统的主要内容
1. 热工自动控制系统能精准控制温度啊!就像妈妈能精准掌握你最爱吃的菜的火候一样,比如在炼钢的时候,它能确保温度恰到好处,钢材质量杠杠的!
2. 它还可以稳定压力呢!这就像人要保持情绪稳定一样重要,在化工厂里,它让压力始终处在安全范围内,避免出大问题呀!
3. 流量控制也是热工自动控制系统的拿手好戏哟!就如同水龙头调节水流一样,在管道运输中,它能精确控制物料的流量。

比如说石油输送,那可全靠它来把关呢!
4. 它对液位的控制那也是超厉害的呀!好比给杯子倒水要控制好水位,在蓄水池中,热工自动控制系统能确保液位高度正合适。

你能想象没有它会怎样吗?
5. 热工自动控制系统还能实现自动化调节呢!就像你设定好闹钟,它就会自动响一样方便,工厂里不用人工时刻盯着就能自动运作啦,多厉害呀!
6. 它的监控功能也不容忽视啊!这就如同有一双眼睛时刻盯着,一有异常就能马上发现,比如在电站里,它时刻保障着各项参数正常呢!
7. 故障诊断也是热工自动控制系统的强项咧!就好像医生能快速找出病因,它能迅速发现系统的毛病,及时进行处理。

这可太重要了吧!
8. 而且它的适应性很强哦!不管环境多复杂,它都能应对自如,就像一个全能战士,在各种场合都能发挥作用,比如在高温高湿的环境下也能正常工作呢!
9. 热工自动控制系统真的好牛啊!在工业生产中简直就是不可或缺的存在,有了它,我们的生产才能又稳又高效!
我的观点结论:热工自动控制系统具有极其重要的作用,在各个领域都能大显身手,我们真的应该重视并好好利用它!。

热工自动控制系统1

热工自动控制系统1
基本方法: 先根据阶跃响应曲线的几何形状,选定被控 对象传递函数的形式, 然后通过作图法或计算法,确定传递函数的 未知参数。
项目一 热工控制系统 基本知识
任务三 调节器的动作规律及其 对过渡过程的影响
任务三 调节器的动作规律及其对过渡过程的影响

一、比例调节规律( P ) 二、积分调节规律( I )
1、开环控制(前馈控制)系统
特点:1)根据扰动大小对被控 量进行调节; 2)控制作用及时,结构 简单; 3)调节效果未知,控制 精度差,只能克服单一扰动。

闭环控制(反馈控制)系统 系统中的被调量反馈到输入端作为调节器产生控制作用的依据。 只要被调量的偏差存在,控制设备就不停地向控制对象施加控制作用, 直到被调量符合要求为止。单元机组自动控制系统大多属于闭环控制 系统。 1)根据被控量与给定值的偏差进行调节,控制精度高;

3、综合自动化阶段(计算机控制阶段):
(1)集中型计算机控制:用一台计算机实现几十甚至几百个控制回路 和若干个过程变量的控制、显示及操作、管理等。 (2)分散型计算机控制:指控制过程采用的系统是一种控制功能分散、 操作管理集中、兼顾复杂生产过程的局部自治与整体协调的新型分布 式计算机控制系统(又称分散控制系统) (3)综合自动化:是一种集控制、管理、决策为一体的全局自动化模 式 计算机控制的发展: 1、集中型计算机控制:可靠性要求高,风险高。(DDC) 2、分散型计算机控制:微机局部控制,协调困难。
自动控制系统中常用术语

1、被控量(被调量):表征生产过程是否符合要求需要 加以控制的物理量。 2、给定值:按生产要求被控量必须维持的希望值。 3、调节量:由控制作用改变并对被调量进行调节的物理 量。 4、扰动:引起被控量偏离给定值的各种原因。 按来源分为外扰和内扰。

自动控制基础知识

自动控制基础知识

热工自动控制系统的投运和优化一、自控基础知识1.手自动控制以电厂汽包炉的水位控制为例,控制的任务是保持汽包水位在正常值,使机组能安全运行。

为了维持汽包水位在正常值,就需要经常调整给水量的大小。

水位控制的任务可以用如下两种方法实现。

汽包水位自动控制汽包水位人工控制2.自控系统的分类按信号的结构特点,控制系统可以分为反馈控制系统、前馈控制系统和前馈—反馈复合控制系统。

反馈控制系统反馈控制系统是根据被控量和给定值的偏差进行控制,最终使偏差为零,达到被控量等于给定值的目的。

因为反馈控制系统是将被控量反馈到控制器的输入端,形成了闭合回路,所以反馈控制系统也一定是闭环控制系统。

一个复杂的控制系统,可能由多个反馈信号组成多个闭合回路,称为多回路反馈控制系统。

前馈控制系统前馈控制系统是根据可测量的扰动信号直接进行控制,扰动量是控制的依据。

由于它没有被控量的反馈信号,不形成闭合回路,所以这是一种开环控制系统,不能保证被控量的控制精度。

在实际生产过程的自动控制中,前馈控制系统通常不单独使用。

前馈与反馈的差别:1)调节的依据不同2)调节的效果不同3)系统的结构不同4)实现的可能性及经济性不同。

前馈-反馈复合控制系统 在反馈控制系统的基础上,增加了对于主要扰动的前馈控制,构成了前馈-反馈复合控制系统。

当扰动发生后,前馈控制器能及时消除外部扰动对被控量的影响。

另外,反馈控制器能保证被控量较精确地等于给3.自控系统的性能指标3.1动态过程单调过程被控量单调变化,缓慢地到达新的稳态值(即新的平衡状态)。

这是一种稳定的控制系统。

衰减振荡过程被控量的动态过程是一个振荡过程,但是振荡的幅度不断在衰减。

到过渡过程结束时,被控量能达到新的稳态值。

该系统也是一种稳定的控制系统。

不衰减振荡过程被控量持续振荡,始终不能达到新的稳态值。

称系统处于临界稳定状态。

如果振荡的幅度非常小,在生产过程允许的范围内,则认为是稳定的系统;如果振荡的幅度较大,生产过程不允许,则认为是一种不稳定的系统。

热工自动控制试题库

热工自动控制试题库

热工自动控制试题库一、单选题(共58题,每题1分,共58分)1.当系统某处或多处的信号是脉冲信号或数字形式时,这种系统称为(____)控制系统。

A、连续B、分散C、离散D、开关量正确答案:C2.引起被调量变化的各种原因叫(____)A、扰动B、调节量C、给定值D、被调量正确答案:A3.在送风量引风量的扰动下,炉膛压力的动态特性惯性很小,可近似认为是()。

A、延迟环节B、比例环节C、积分环节D、惯性环节正确答案:B4.电路中电感L的复阻抗为(____)。

A、LB、R+LsC、1/LsD、Ls正确答案:D5.单回路控制系统中,控制通道的迟延与时间常数的比值越小,则控制质量()。

A、越坏B、越好C、不变D、不确定正确答案:B6.衰减率等于1的调节过程为(____)调节过程。

A、等幅振荡B、扩散振荡C、衰减振荡D、非周期正确答案:D7.对象的()是确定系统结构、调节器控制规律、设置调节器参数的依据。

A、正反特性B、动态特性C、基本特征D、静态特性正确答案:B8.前馈控制系统是(____)控制系统。

A、开环B、闭环C、双闭环D、以上都不是正确答案:A9.一阶系统的单位阶跃响应是(____)的。

A、有增有减B、单调递增C、单调递减D、不确定正确答案:BS的意思是()A、顺序控制系统B、燃烧控制系统C、协调控制系统D、汽温控制系统正确答案:C11.在工业生产过程中不可控的或者工艺上不允许控制的物料流量一般选为()。

A、副流量B、主流量C、无法确定D、从流量正确答案:B12.在反馈控制系统中,控制装置对被控对象施加的控制作用,是取自被控量的(____)。

A、测量信息B、反馈信息C、放大信息D、偏差信息正确答案:B13.若输入已经给定,则系统的输出完全取决于其(____)。

A、传递函数B、反馈C、闭环系统D、稳态误差正确答案:A14.控制系统的稳定程度一般可以用(____)来表示。

A、过调量B、调整时间C、衰减率D、稳态误差正确答案:C15.某典型环节的传递函数是,则该环节是(____)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实现生产过程自动化是非常有必要的
火电厂热力过程自动化可以分为四个部分: (1)热工检测:是自动化操作的依据。 (2)自动调节:是自动化操作的主体。 (3)远方控制及程序控制:是自动化操作的
重要补充。
(4)自动保护:是自动化操作的重要保障。
第一章 热工测量的基本知识 1.1 测量的定义及方法
一、测量概述:
1.绝对误差:
绝对误差是被测参数的测量值与真实值之代
数差。
δ=X-X0
绝对误差有大小,有符号,有单位,称为绝 对误差的三要素。
例: 1、哈尔滨-北京,铁路全长1388Km,测
量结果为1389Km,求绝对误差。
2、用m尺测量1m长的线段,测量结果为
1.001m,求绝对误差。
3、测量某炉膛的火焰温度,测量结果为
几种过渡过程:
不稳定的调节过程: 稳定的调节过程
二、调节系统的品质指标 调节系统品质好坏用稳定性、准确性和快速性三 个指标来表示。
看一个 过渡过程
1、稳定性:通常用衰减率来表示
衰减率是指每经过一个周期,被调量波动幅值衰
减的百分数,用ψ表示,即
ψ = (y1-y3)/ y1= 1- y3/y1 ψ< 0:调节过程是发散振荡;
第二章 自动控制系统概述 2.1 自动控制系统的基本知识 一、常用术语: 1、调节对象:指被调节的生产过程或生产设备 2、被调量:表征生产过程是否符合工艺要求的 物理量,也是调节作用所要维持为给定值或 维持在一定范围内的参数。 3、给定值:被调量应维持的数值。 4、扰动:引起被调量改变的各种因素。 扰动分为内扰和外扰
其他参数的影响:
二、单容无自平衡的对象
特征参数:
三、多容有自平衡的对象 微分方程:
传递函数:
汽轮机数字电液控制系统(DEH) 12学时
第一部分:基本概念
火电厂生产过程:
一组数据: 300MW亚临界机组: 锅炉蒸发量: 1025t/h 主蒸汽温度/压力:545±5℃/16.7Mp 燃煤量(标准煤): 约105t/h 炉膛尺寸:13.335×12.829×54.300m 600MW超临界机组: 锅炉蒸发量: 2008t/h 主蒸汽温度/压力:571±5℃/25.4Mp 燃煤量(标准煤): 约210t/h 炉膛尺寸:19.419×15.456×67.000m
(3)起变送作用。
3.显示件 显示件接受中间件送来的信号,并将其转 变为测量人员可以识别的信号,它是与测 量人员直接联系的部件。可分为三种: (1)模拟显示:由指针、光标、色带等反映 被测参数的连续变化。 (2)数字显示:直接用数字显示被测参数的 大小或高低。 (3)屏幕显示:用计算机和电视屏幕等显示 测量结果。还可以给出要求的图形、数据 表格、曲线等。
ψ= 0:调节过程是等幅振荡;
0<ψ<1:调节过程是衰减振荡;
ψ= 1:调节过程是非周期过程。
自动调节系统稳定的条件是0<ψ≤1
2、准确性
动态偏差 :调节过程中被调量偏离给定值的最
ห้องสมุดไป่ตู้
大短期偏差
静态偏差:调节过程结束后,被调量与给定值
的长期偏差
3、快速性
快速性常用过渡过程时间来表示
第三章
控制对象的动态特性
热工自动控制系统培训
主讲:徐虎平
热工自动控制系统
56学时
第一部分:基本概念
热工测量及控制系统的基本知识 分散控制系统的基本知识 6学时 8学时
第二部分 :单元机组自动控制系统分析
单元机组协调控制系统 (CCS)
炉膛安全监控系统(FSSS) 顺序控制系统(SCS) 热工报警和保护系统
10学时
8学时 8学时 4学时
3.1环节特性的表示方法: 环节动态特性的表示方法主要有以下三种: 微分方程法、传递函数法、阶跃响应曲线 一、微分方程法 微分方程法是用微分方程来表示环节的输出与 输入之间的变化关系。 如图电路,ui为输入, uc为输出列出微分方程为
又如图单容水箱:
q1为输入,q2为输出
微分方程为:
两者比较,
基本形式相同。
2.3自动控制系统的性能指标
一、自动调节系统的过渡过程
1、系统的静态和动态
被调量不随时间变化的平衡状态称为系统的 静态(稳态),被调量随时间变化的不平衡状态 称为系统的动态。
2、系统的过渡过程 被调参数随时间变化的过程称为自动调节系 统的调节过程或过渡过程
阶跃信号:
t < t0 时,X=0;
t ≥ t0 时,X=X0
2、随机误差 随机误差是指在相同条件下多次测量同一 被测量时产生的绝对值和符号不可预知的 随机变化着的误差,又称偶然误差。 大多数随机误差服从正态分布规律,因此 可用求取算术平均值的方法予以消除随机 误差。
3、粗大误差 粗大误差是指由于操作人员的操作错误、 粗心大意及仪表的误动作等原因而造成的 误差,也称为疏失误差。即明显歪曲事实 的误差,称为粗大误差。 粗大误差通常表现为数值较大且无任何规 律,含粗大误差的测量值称为坏值,应当 剔除。为避免测量结果出现粗大误差,要 求操作人员在测量过程中避免失误。
一、单容有自平衡的对象 有自平衡的单容对象就是 前面介绍过的惯性环节。 微分方程为:
微分方程的解为:
传递函数为:
阶跃响应曲线: 特征参数: 1、K值:放大倍数
2、T值:时间常数
3、ρ值:自平衡率 被调量变化1个单位引起的 流量变化的数量
4、ε值:飞升速度 单位阶跃扰动下被调量的 最大变化速度
综上所述:
自动调节系统的方框图
方框图由环节、信号线、相加点、分支点四要 素组成。 (1)环节。方框图中的方框,表示一个设备、元 件或者一个生产过程,包括输入量和输出量。
(2)信号线。以箭头方式传递的某种信号,用以 反映各设备之间的逻辑关系。 (3)相加点。相当于加法器,表示两个信号的代 数和 (4)分支点。表示把一个信号送到两个地方。
二、误差的分类 1、系统误差
在相同条件下多次重复测量同一被测量,
如果每次测量值的误差恒定不变(绝对值 和符号均保持不变)或按某种确定的规律 变化,这种误差称为系统误差。
系统误差产生的原因主要有:
(1)测量仪器或测量系统本身不够完善,如 仪表本身刻度不准、测量原理不完善等。 (2)仪表使用不当,如测量人员操作不当、 读数不准等。 (3)测量时外界环境条件变化,如环境温度、 湿度、电磁场影响等。 由于系统误差具有一定的规律性,测量时 应尽可能地设法消除此类误差或对测量结 果加以修正,以提高测量的准确程度。
二、仪表的分类 (1)按被测参数不同,可分为温度、压力、 流量、物位、成分分析仪表等。 (2)按用途不同,可分为标准用、实验室用、 工程用仪表。 (3)按显示特点不同,可分为指示式、积算 式、记录式、数字式、屏幕式。 (4)按工作原理不同,可分为机械式、电气 式、电子式、化学式、气动式。 (5)按使用能源不同,可分为电动式、气动 式、液动式仪表。
根据各类仪表的设计、制造质量不同,国家 对每种仪表均规定了基本误差的最大允许值, 即允许误差。它可用绝对误差来表示,也可 以用引用误差来表示。
3、准确度等级: 仪表的准确度等级在数值上等于允许误差 去掉百分号后的绝对值。国家规定的准确 度等级系列有0.005,0.01,0.04,0.05, 0.1,0.2,0.5,1.0,1.5,2.5,4.0,5.0 等级别。数值越小,准确度越高。通常准
测量就是利用测量工具,通过实验方法将
被测量与同性质的标准量(测量单位)进行
比较,以确定被测量是标准量多少倍数的
过程。其所得倍数就是测量值,可见,被
测量由测量值和测量单位两部分组成。
二、测量方法: 直读法:
直接测量:
比较法:
零值法:
微差法:
间接测量: 组合测量:
1.2 测量误差 一、误差的表示方法
确度等级用小圆圈内的阿拉伯数字标志在
仪表的刻度盘上。
4、变差:
仪表在规定的使用条件下,从正、反行程 两个方向测量同一参数,两次测量值之差 称为该示值点上的变差,在仪表测量范围 内,各示值点上变差的最大值称为仪表的 变差,表示为:
一块合格的仪表的基本误差和变差均不应 超过允许误差。
5、灵敏度: 灵敏度是指仪表输出信号的变化量与产生 该变化的被测信号的变化量之比。 即: S=△L/△X 6、分辨率: 仪表指示器发生可见动作的被测量的最小 值,称为仪表的分辨率, 7、不灵敏区: 不能引起仪表输出变化的被测输入信号的 最大变化范围称为仪表的不灵敏区或死区
一个实例: 要求水温控制为40℃, 调节手段为冷、热水 门。 调节对象、被调量、 给定值、内扰、外扰?
另一个实例:
用术语描述的自动调节过程: 自动调节系统受到外扰的作用, 使被调量偏离了给定值,测 量部件检测到两者的偏差, 通过调节器的调节作用,产 生一个相应的内扰,用来平 衡外扰,并使被调量恢复到 给定值,达到新的动态平衡, 调节过程结束。
1001℃,实际为1000 ℃,求绝对误差。
2、相对误差
绝对误差占所选取的参考值的百分比,称
为相对误差。
如果参考值为真实值,则该相对误差称为
实际相对误差,记为:
γ=δ/ X0 ×100%
如果参考值为测量值,则该相对误差称为
标称相对误差,记为:
γ=δ/ X ×100%
如果参考值为测量仪表的量程,则该相对 误差称为引用相对误差,或者折合相对误 差,记为: γ=δ/ (Xmax-Xmin) ×100% 例:体温计和高温计,量程分别为32~ 42℃,0~1000℃,如果同时有1 ℃的绝 对误差,求引用相对误差。 结果表明,引用相对误差更能说明测量的 准确程度,因此是最常用的表示方法。
二、传递函数 传递函数是在用拉氏变换求解常系数线性微分 方程的过程中引申出来的概念。 传递函数的定义:在零初始条件下,输出信号 的像函数y(S)与输入信号的像函数X(S)之比称 为该环节或系统的传递函数。即 对上述两个微分方程求解其 传递函数为:
相关文档
最新文档