基因工程的现状发展及展望

合集下载

基因工程的研究现状与应用

基因工程的研究现状与应用

基因工程的研究现状与应用摘要:基因工程自上个世纪出现之后,一直处于蓬勃发展之中并被广泛关注。

进入新世纪以来,更是得到了长足的进步。

目前,在生物领域各相关行业内,均已受到一定的重视,并开展了一系列的研究并且在选修3中基因工程的操作和应用是要求学生掌握的重点内容。

本文主要介绍基因工程在农业、医学等方面的应用研究,探讨基因工程对于这些行业的巨大推动作用,用以扩大学生的生物学相关知识含量,提高学生对于基因工程的学习兴趣。

关键词:基因工程;医学;农业;应用基因工程是在分子水平上,对基因进行剪切、拼接、重组等操作,再将改造后的基因导入活细胞内,通过基因在活细胞内的转录翻译等操作,改变生物体的性状与遗传特性,达到提高生产和对生物体进行改造的目的。

由于可以改造生物,故而在生物相关行业内,均得到了广泛的发展和应用。

一、基因工程的主要步骤(1)目的基因的分离:从含有所需性状的生物体的基因组中,通过酶切等手段,找到并分离出所需dna片段。

(2)体外重组dna:在体外,将所需dna 片段连接到可自我复制并有一定标记的载体上,达到重组dna 分子的目的。

(3)导入目的基因:将重组后的dna转移到受体细胞内,并与之一起增殖。

而后从细胞群落中,筛选出获得了重组dna 分子的受体细胞。

(4)对目的基因进行检测和表达二、基因工程的发展与应用(一)医学上的应用1.在制药业的发展与应用传统医学的发展一直有一个棘手的问题,这个问题阻碍着医学的进步,某些时候也在人们的生命延续上造成了很大的困难。

这个问题就是,有些人体所必须的物质,在现存的生物体内很少产生。

如淋巴因子、凝血因子、胰岛素等。

针对于此,目前科研人员已经将目的基因通过基因工程技术,导入了某些细菌细胞内,使得这些基因得以转录翻译,并产生人体所需的这些物质和药物,为医学的发展做出了很大的贡献。

2.植物基因工程疫苗生物体的免疫过程,是生物体在抗原的刺激下,免疫系统产生抗体,并防御机体免受更大伤害的过程。

基因工程技术及其应用

基因工程技术及其应用

基因工程技术及其应用随着科技的不断进步和发展,人们对于生命科学的研究和探索也日益深入。

其中,基因工程技术作为一种生物技术的代表,将基因的轮廓调整和优化变成了可能。

它不仅在医学领域发挥了重要作用,还为人类社会的发展提供了新的契机。

本文将从基因工程技术的基本概念、研究发展现状、应用前景以及影响等方面进行分析探讨。

一、基因工程技术的基本概念基因工程技术是指通过对生物基因的分离、克隆和重组,对基因进行改造和操作以达到人为设计和控制的目的的一种技术手段。

其主要功能是将生物基因转移到其他生物体中,从而实现对生物功能的精准调控和改良。

基因工程技术包含的操作包括:基因克隆、转化、筛选、鉴定及表达等环节。

其中,基因克隆是通过PCR技术或者贡献基因文库,将寻找到的基因扩增或者分离出来,起到建立基础的功能单体的作用。

转化是将基因转移到宿主细胞中,筛选是通过多种技术手段从中寻找出具有理想表达性状的细胞。

二、基因工程技术的研究发展现状基因工程技术的研究历程可追溯到20世纪70年代初期,当时科学家们已经开始使用基因工程技术制备合成蛋白等生物大分子,并用此方法培育了许多新品种的植物和动物。

后来,随着研究的不断深入和技术手段的不断完善,基因工程技术已经成为现代生命科学领域中不可或缺的重要工具。

在过去的三十年里,随着世界各国在生命科学领域的不断探索和研究,基因工程技术也得到了更加广泛的应用。

目前,基因工程技术在生产、农业、医学以及环保等多个领域均取得了显著的成果。

例如,在农业早期,基因工程技术已被应用于进行植物基因的精准改良。

同时,在生产和医学方面,基因工程技术也在不断的发展。

比如说,研究人员利用基因工程技术成功地制备了大量的重组蛋白,如人干扰素、生长激素、血小板刺激因子等,这些蛋白已广泛用于医学临床治疗,对人类健康发挥了十分重要的作用。

三、基因工程技术的应用前景随着科学技术的不断进步,基因工程技术在医学、生物工程、灾害响应等领域的应用将愈加广泛。

基因工程的现状与发展趋势

基因工程的现状与发展趋势

题目:基因工程的现状与发展趋势专业:13食品科学与工程学号:132701105姓名:盛英奇日期:2015/7/1【摘要】从20世纪70 年代初发展起来的基因工程技术,经过40多年来的进步与发展,已成为生物技术的核心内容。

生物学成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。

基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。

【关键词】基因工程技术;应用;前景;现状一、墓因工程的原理及研究内容基因工程是人们在揭示生命之谜的过程中建立起来的。

早在300多年前,人们就发现,世界上生物尽管种类繁多,千姿百态,但都是细胞(如肉眼看不见的细菌等微生物)或者是由细胞构成的(如现存的200多万种多细胞动植物)。

人们还发现,生物有遗传和变异的特征,遗传保证了生物种类的延续不断,变异则赋予生物种的进化,保证生物种类对环境的适应。

而生物的所有特性及遗传变异都是由生物体细胞内的遗传物质所决定的,这种遗传物质就是被科学家称之为脱氧核糖核酸(简称DNA)的大分子物质,一般位于生物的细胞核内。

DNA是由许多核昔酸连接而成的高分子化合物,如把DNA比喻成长链条,核昔酸就是组成这链条的一个个环节。

生物细胞核内的DNA分子是由两条成对的多核昔酸长链互相缠人类开始学会干预生物的变异,即通过杂交、筛选等方式改变生物物种的某些特性,使之有利于人类,如水稻、小麦等作物的育种,家禽家畜优良品系的培育等,它是通过动植物父、母本交配繁殖时,生殖细胞内DNA上相应性状基因互相间可能出现的交换来实现的,这种交换的概率是人们不能控制的,所以选种的过程较为缓慢,需几年乃至几十年的时间,而且亲缘关系相差较远的生物种之间很难杂交。

而本世纪}o年代初诞生的基因工程,则是按照人类的需要,从某种生物体的基因组中,分离出带有目的基因(即所需基因)的DNA片段,运用重组DNA技术,对这些DNA片段进行体外操作,把不同来源的基因按照设计的蓝图,重新构成新的基因组(即重组体),再将重组DNA分子插入到原先没有这类DNA 片段的受体细胞(亦称宿主细胞)的DNA上,并使其不仅能“安家落户”,而且能“传种接代”,即能准确地把该外源基因的遗传特性在新的细胞(宿主细胞)里增殖和表达出来。

木薯基因工程育种研究现状与展望

木薯基因工程育种研究现状与展望
H ia 7 1 1 an n5 10 )
Abta t q e e trs ac rge si h p l ain o e ei n iern a sv re igwee it d c d i hsp p r sr c herc n ee rhpo rs n tea p i t fg n t egn i i csa abedn r r ue ti a e .Me n i ,ac rig c o c g n n o n a whl e codn t ea aye fte k yee t rltd c re tcsa abe dn o t n lsso h e v ns eae urn as v re ig,smed v lp n tae isfrcsa ai rv m n eemt eb sd o h rsn h o eeo me tsrtge o as v mpo e e tw r a ae n tepe e t d a he e ns ad teftr ee rh s civm t n h uue rs ace .Th o iaino as v n t n ie r ga d te bo s u lsrtg se h szd. e e cmbn t fcsa ag ei e gn ei n h imasfe t e ywa mp aie o e c n a
(. 1 中国热带农业科学院热带作物生物技术国家重点实验室 , 海南海 口 5 10 ; . 7 l l2 中国热带 农业科学 院热带 生物 技术研究所 , 海南海 口 5 10 ; 7 l l3 中国热带农业科学院热带 作物 品种资 源研究所 , 海南儋州 5 13 ) 7 77
摘要 通过 基 因工程 改 良木薯 遗传性状 , 其具有更 高的营养价值 和 经济价值 , 使 已成 为 当今 木薯遗 传 育种研 究的热 点。重 点介 绍 了近 年来基 因工程技 术在 木薯遗传 改 良中取得 的进 展 , 分析 了当前存在 的问题 , 展望 了未来的发展 前景 , 着重 强调 了木 薯基 因工程 与 国家生 物质 能源战略的 结合 。 关键词 木薯 ; 因工程 ; 基 育种 中图分类号 Q 8 文献标 识码 A 79 文章编 号 0 1— 61 070 — 1 6 0 57 6l( 0 ) 06 — 2 2 6 3

基因编辑技术的发展现状与未来趋势

基因编辑技术的发展现状与未来趋势

基因编辑技术的发展现状与未来趋势基因编辑技术是人类历史上一次革命性的科技进步,也被誉为“创造力的新时代”。

基因编辑技术的发展不仅可以帮助科学家更好地了解人类基因组的结构和功能,还可以用来治疗和预防一系列疾病。

本文将分为三个部分,分别是基因编辑技术的现状、发展趋势和未来应用。

基因编辑技术的现状基因编辑技术源于复制病毒基因的机制,经过多次改进,如今已经发展成为一种能够高效、精准地修改基因序列的技术。

现有常见基因编辑技术包括ZFN、TALEN和CRISPR/Cas9。

其中,CRISPR/Cas9技术是目前最为广泛使用的一种基因编辑技术。

CRISPR/Cas9技术具有相对简便的实验操作流程和准确性高、效率高的优点。

该技术使用一种小型RNA(CRISPR)来指导一个特殊的内切酶(Cas9)到要编辑的DNA序列。

Cas9会切割这个序列并导致细胞启动修复过程,并继而变更错误之处。

该技术的发展使得科学家们可以准确地修改基因组中的目标基因,从而改变细胞、组织或甚至整个生物体的特性。

尽管基因编辑技术的应用领域非常广泛,但目前该领域中存在一些挑战。

首先,基因编辑技术并不是一种完全准确的技术,其中可能会导致意外效果或者侧效应。

其次,在使用该技术时需要安全性评估,因为基因编辑技术有可能导致基因序列发生未知的变化。

因此,科学家们需要加大对基因编辑技术的研究力度,确保其安全性和有效性。

基因编辑技术的发展趋势未来,基因编辑技术将会成为科学研究和生物医疗治疗领域的重要手段。

在科学研究领域,基因编辑技术将有助于更好地理解基因组的结构和功能。

比如,基因编辑技术可以用来创造基因变异动物模型,以研究人类疾病的发病机制。

同时,基因编辑技术还可以用来创建更强壮的植物、提高养畜业的生产力等。

基因编辑技术在生物医疗治疗领域也有着巨大的潜力。

基因编辑技术可以用来治疗某些遗传疾病,比如囊性纤维化、血友病、肌萎缩性侧索硬化症等。

此外,利用基因编辑技术,还可以更好地了解某些癌症基因变异和对某些癌症进行更为精准的治疗。

材料基因工程技术的应用及前景分析

材料基因工程技术的应用及前景分析

材料基因工程技术的应用及前景分析随着科技的不断发展,工程材料的设计及构建越来越得心应手。

而材料基因工程技术,作为材料科学界的一个新领域,逐渐成为设计新型材料的有效工具。

本文将探讨材料基因工程技术的应用及其前景分析。

一、什么是材料基因工程技术材料基因工程技术,是一种结合物理和物化理论的方法,通过模拟和计算材料各种结构、性质和性能,探究材料的构建和设计方式,为高性能材料的研究提供科学方法和工程手段。

该技术能够从繁琐、费时的实验设计中解放出来,提高材料设计的精度和效率。

二、材料基因工程技术的应用及成果材料基因工程技术已经在各个领域得到广泛应用。

下面分别从材料设计、研究与发展、功效提升等角度进行探讨。

1. 材料设计材料基因工程技术相对于传统材料设计方法,具有更高的准确性和精度。

研究表明,基于材料基因工程技术的设计与构造不仅能够提高材料结构、性能和品质,还可以进一步提高材料生产的效率和降低生产成本。

例如,2018年南京航空航天大学、解放军理工大学发布了一种新型碳纤维涂层,使用该涂层的钛合金切削工具,可将材料加工时间缩短一半以上,减少了材料加工过程中刀具磨损、工作环境污染和加工成本等问题,深受工程界的欢迎。

2. 材料研究与发展许多研究表明,材料基因工程技术可促进材料的研究与发展。

该技术利用计算模型与实验模型相结合,可以很快地确定某种材料的结构与性质,并通过计算、模拟和评估等手段寻找最佳结构的材料。

例如,科学家们利用材料基因工程技术,设计出一种新型锂离子电池正极材料,该材料的电化学稳定性、容量和循环性能得到极大提升,并成功地应用于电子产品与车载设备等领域。

3. 功效提升利用材料基因工程技术,人们可以通过定量计算、模拟与预测等手段,深入探究材料的微观结构和物理特性,并通过结构调控与性能优化,进一步提高材料功效和应用性能。

例如,近年来,世界各地的科学家们通过对活性炭材料的研究,设计出一个新的功能炭材料,该材料具有更高的吸附选择性和电导性能,可以作为氧化还原、电容器、传感器等多功能材料,进一步提高了材料的应用效能。

基因工程技术的前景和挑战

基因工程技术的前景和挑战

基因工程技术的前景和挑战基因工程技术是一项重要的科学技术,它已经在医学、农业和工业领域取得了巨大的进展。

通过改变和修复生物体的基因序列,基因工程技术为人类解决许多重大问题提供了新的途径。

然而,这项技术也面临着一些挑战和争议。

本文将探讨基因工程技术的前景和挑战。

首先,基因工程技术在医学领域展现出广阔的前景。

例如,基因治疗已经成为一种新兴的治疗方式,它通过引入或修复缺陷基因来治愈遗传性疾病。

基因编辑技术如CRISPR-Cas9的发展,使得医生们能够更有效地治疗癌症和其他严重疾病。

此外,基因工程技术还带来了个性化医学的概念,即根据个体基因信息,为每个患者提供量身定制的治疗方案,从而提高医疗效果。

其次,基因工程技术对农业的发展也具有巨大的潜力。

通过转基因技术,科学家们已经成功地改良了许多农作物,使其具有抗虫、抗病和耐旱能力,从而提高了农作物的产量和质量。

此外,基因工程还可以提供解决世界饥饿问题的可能性,通过改良作物的营养价值和耐受性,使其在恶劣条件下生长。

尽管转基因食品引发了一些争议,但其潜力和价值仍然不可忽视。

然而,基因工程技术也面临着一些挑战和争议。

首先,基因编辑技术的准确性和安全性是一个重要的问题。

虽然现在已经存在许多基因编辑工具,但仍然存在意外的副作用和潜在的风险。

因此,科学家们需要更多的研究和实验来确保基因编辑技术的安全性和可靠性。

此外,道德和伦理问题也是基因工程技术争议的核心。

对于人类基因编辑等一些具有潜在风险的应用,社会和科学界需要进行深入研讨和监管,以确保科学技术的合理和道德的应用。

此外,基因工程技术的商业化和专利问题也是一个挑战。

由于技术的复杂性和独特性,许多基因工程技术的专利权成为企业之间的争夺焦点。

这可能导致技术的不公平分配和高昂的成本。

因此,需要建立更加公正和有效的知识产权保护机制,以确保技术的更广泛和公平的应用。

尽管基因工程技术面临着一些挑战和争议,但其前景仍然广阔。

随着科学的不断发展,我们将能够更好地理解和利用基因编码的生物信息,为人类创造出更好的未来。

人类基因工程的未来展望

人类基因工程的未来展望

人类基因工程的未来展望随着生物科技的发展和人们对基因的了解越来越深入,人类基因工程已经成为一个备受关注的领域。

未来,基因工程可能会带来一系列新的技术进展和医疗突破,但同时也伴随着一些道德和伦理问题,需要我们进行深入的探讨和思考。

基因改造及基因药品基因改造是人类基因工程领域中最为广泛的应用之一,它可以通过改变单个基因或一组基因的方式,使得个体具备某些特定的生理、心理或行为特征。

比如,通过改变某个基因,可以使得个体具备更高的智商、更强的体质,甚至能够改变人的外貌等等。

不过,这项技术还存在许多争议。

从一方面看,这项技术有助于预防、治疗一些疾病,例如癌症、囊性纤维化症等等,也可以减少一些天生的先天性缺陷。

然而,如果这项技术被滥用,将会给正常的生育方式和人体本身带来不可预见的影响和副作用,比如不平等、种族主义和人机混杂等等。

同时,在基因工程领域中的基因药品也是一个新兴的领域,经过改造过的细胞可以用于生产一些可以提高身体免疫力的药品,还可以用于研究各种慢性疾病,例如糖尿病、心脏病和阿尔茨海默病等等。

基因药品可以更精确地指导我们针对性地治疗疾病,同时也避免了我们在处理过程中将药物用于非常目的的情况。

人类基因编辑技术作为基因工程领域中的一种新技术,人类基因编辑技术,也被称为基因剪辑,它可以通过修改基因序列的方式,将人体细胞中存在的丝氨酸蛋白酶剪切出具体的DNA片段,以达到彻底治疗,借以治愈某些疾病的目的。

基因编辑技术在进行基因人体疗方面具有很高的可塑性和适用性,例如我们可以依赖一些激光技术来进行细胞透明化和光学放大,以期使得对人体细胞的操作更加精准,同时也避免影响到细胞内正常的功能。

基因编辑技术可以利用人体自身的免疫核磁等生理机制,摆脱在人体内存活的那些病毒。

它的研究和成果,也在一定程度上帮助了医学科技的进步。

基因编辑技术被视为实现“人类工程”所必须的工具之一,虽然这项技术仍然面临许多挑战和议论,但是在其中很多应用场景中,它已经开始被大规模应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基因工程的现状发展及展望 课程:食品生物技术 专业: 班级: 学号: 姓名:

完成时间:2011 年5月25日 基因工程的现状发展及展望 【摘要】从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。

【关键词】基因工程技术;生物反应器;基因治疗 基因工程的发展史 1860至1870年 奥地利学者孟德尔根据豌豆杂交实验提出遗传因子概念,并总结出孟德尔遗传定律。 1909年 丹麦植物学家和遗传学家约翰逊首次提出“基因”这一名词,用以表达孟德尔的遗传因子概念。 1944年 3位美国科学家分离出细菌的DNA(脱氧核糖核酸),并发现DNA是携带生命遗传物质的分子。 1953年 美国人沃森和英国人克里克通过实验提出了DNA分子的双螺旋模型。 1969年 科学家成功分离出第一个基因。 1990年10月 被誉为生命科学“阿波罗登月计划”的国际人类基因组计划启动。 1998年 一批科学家在美国罗克威尔组建塞莱拉遗传公司,与国际人类基因组计划展开竞争。 1998年12月 一种小线虫完整基因组序列的测定工作宣告完成,这是科学家第一次绘出多细胞动物的基因组图谱。 1999年9月 中国获准加入人类基因组计划,负责测定人类基因组全部序列的1%。中国是继美、英、日、德、法之后第6个国际人类基因组计划参与国,也是参与这一计划的惟一发展中国家。 1999年12月1日 国际人类基因组计划联合研究小组宣布,完整破译出人体第22对染色体的遗传密码,这是人类首次成功地完成人体染色体完整基因序列的测定。 2000年4月6日 美国塞莱拉公司宣布破译出一名实验者的完整遗传密码,但遭到不少科学家的质疑。 2000年4月底 中国科学家按照国际人类基因组计划的部署,完成了1%人类基因组的工作框架图。 2000年5月8日 德、日等国科学家宣布,已基本完成了人体第21对染色体的测序工作。 2000年6月26日 科学家公布人类基因组工作草图,标志着人类在解读自身“生命之书”的路上迈出了重要一步。 2000年12月14日 美英等国科学家宣布绘出拟南芥基因组的完整图谱,这是人类首次全部破译出一种植物的基因序列。 2001年2月12日 中、美、日、德、法、英6国科学家和美国塞莱拉公司联合公布人类基因组图谱及初步分析结果。 科学家首次公布人类基因组草图“基因信息”。

一、基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。 由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。 随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了 不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,大大提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。1 二、基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。 目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 三、基因工程应用于环保方面 工业发展以及其它人为因素造成的环境污染已远远超出了自然界微生物的净化能力,已成为人们十分关注的问题。基因工程技术可提高微生物净化环境的能力。美国利用DNA重组技术把降解芳烃、萜烃、多环芳烃、脂肪烃的4种菌体基因链接,转移到某一菌体中构建出可同时降解4种有机物的“超级细菌”,用之清除石油污染,在数小时内可将水上浮油中的2/3烃类降解完,而天然菌株需1年之久。也有人把Bt蛋白基因、球形芽孢杆菌、且表达成功。它能钉死蚊虫与害虫,而对人畜无害,不污染环境。现已开发出的基因工程菌有净化农药的DDT的细菌、降解水中的染料、环境中有机氯苯类和氯酚类、多氯联苯的工程菌、降解土壤中的TNT炸药的工程菌及用于吸附无机有毒化合物(铅、汞、镉等)的基因

1 工程菌及植物等。90年代后期问世的DNA改组技术可以创新基因,并赋予表达产物以新的功能,创造出全新的微生物,如可将降解某一污染物的不同细菌的基因通过PCR技术全部克隆出来,再利用基因重组技术在体外加工重组,最后导入合适的载体,就有可能产生一种或几种具有非凡降解能力的超级菌株,从而大大地提高降解效率。2 四、分子进化工程的研究 分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程,以达到创造新基因、新蛋白质的目的。 这需要三个步骤,即扩增、突变、和选择。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的碱基发生变异,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不可。 现在,科学家已应用此方法,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物,来治疗心肌梗塞、脑血栓等疾病。3 五、前景展望 由于基因工程运用DNA分子重组技术,能够按照人们预先的设计创造出许多新的遗传结合体,具有新奇遗传性状的新型产物,增强了人们改造动植物的主观能动性、预见性。而且在人类疾病的诊断、治疗等方面具有革命性的推动作用,对人口素质、环境保护等作出具大贡献。所以,各国政府及一些大公司都十分重视基因工程技术的研究与开发应用,抢夺这一高科技制高点。其应用前景十分广阔。我国基因工程技术尚落后于发达国家,更应当加速发展,切不可坐失良机。 但是,任何科学技术都是一把“双刃剑”,在给人类带来利益的同时,也会给人类带来一定的灾难。比如基因药物,它不仅能根治遗传性疾病、恶性肿瘤、心脑血管疾病等,甚至人的智力、体魄、性格、外表等亦可随意加以改造;还有,克隆技术如果不加限制,任其自由发展,最终有可能导致人类的毁灭。还有,尽管目前的转基因动植物还未发现对人类有什么危害,但不等于说转基因动植物就是十分安全的,毕竟这些东西还是新生事物,需要实践慢慢地检验。转基因生物和常规繁殖生长的品种一样,是在原有品种的基础上对其部分性状进行修饰或增加新

2 3 性状,或消除原来的不利性状,但常规育种是通过自然选择,而且是近缘杂交,适者生存下来,不适者被淘汰掉。而转基因生物远远超出了近缘的范围,人们对可能出现的新组合、新性状会不会影响人类健康和环境,还缺乏知识和经验,按目前的科学水平还不能完全精确地预测。所以,我们要在抓住机遇,大力发展基因工程技术的同时,需要严格管理,充分重视转基因生物的安全性。 六、基因工程技术的发展方向 1、开发针对神经系统、肿瘤、心血管系统、艾滋病及免疫缺陷等重大疾病的多肽、蛋白质和核酸等新生物技术产品; 2、选择一批市场前景好的生物技术产品及疫苗、诊断用单克隆抗体,开发重点是乙肝基因疫苗与单克隆抗体诊断试剂等; 3、开发靶向药物主要是开发抗肿瘤药物。目前治疗肿瘤药物确实存在一个所谓"敌我不分"的问题。在杀死癌细胞的同时,也杀死正常细胞。导向治疗就是针对这个问题提出来。所谓导向治疗就是利用抗体寻找靶标,如导弹的导航器,把药物准确引入病灶,而不伤及其他组织和细胞; 4、人源化的单克隆抗体的研究开发。抗体可以对抗各种病原体,亦可作为导向器,但目前的单克隆抗体,多为鼠源抗体,其本身也被异种生物体视为抗原,当被注入人体后会诱导产生抗体(抗抗体)或激发免疫反应。目前国外已研究噬菌体抗体技术,嵌合抗体技术,基因工程抗体技术以解决人源化抗体问题; 5、血液替代品的研究与开发仍然占重要地位。血液制品是采用大批混合的人体血浆制成的,由于人血难免被各种病原体所污染,如艾滋病病毒及乙肝病毒等,通过输血而使接受输血的人感染艾滋病或乙型肝炎的案例时有发生,因此利用基因工程开发血液替代品引人注目。4 六、我国的生物技术前景 今天,人们借助于所谓的DNA切片已能同时研究上百个遗传基质。基因的研究达到了这样一个发展高度,几年后,随着对人类遗传物质分析的结束,人们开始集中所有的手段对人的其他部分遗传物质的优缺点进行有系统地研究。但是,生物学的发展也有其消极的一面:它容易为种族主义提供新的遗传学方面的依据对新的遗传学持批评态度的人总喜欢描绘出一幅可怕的景象:没完没了的测试、操纵和克隆、毫无感情的士兵、基因很完美的工厂工人……遗传密码使基因

相关文档
最新文档