各种换热器工作原理和特点,值得收藏
最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)

最全面的板式换热器知识(原理、结构、设计、选型、安装、维修)板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。
各种板片之间形成薄矩形通道,通过板片进行热量交换。
板式换热器是液—液、液—汽进行热交换的理想设备。
它具有换热效率高、热损失小、结构紧凑轻巧、占地面积小、安装清洗方便、应用广泛、使用寿命长等特点。
本课件由暖通南社独立完成整合编辑,欢迎转载,但请注明出处。
板式换热器基本结构及运行原理板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。
钎焊换热器结构板式换热器主要结构⒈板式换热器板片和板式换热器密封垫片⒉固定压紧板⒊活动压紧板⒋夹紧螺栓⒌上导杆⒍下导杆⒎后立柱由一组板片叠放成具有通道型式的板片包。
两端分别配置带有接管的端底板。
整机由真空钎焊而成。
相邻的通道分别流动两种介质。
相邻通道之间的板片压制成波纹。
型式,以强化两种介质的热交换。
在制冷用钎焊式板式换热器中,水流道总是比制冷剂流道多一个。
图示为单边流,有些换热器做成对角流,即:Q1和Q3容纳一种介质,而Q2和Q4容纳另一种介质。
板式换热器所有备件都是螺杆和螺栓结构,便于现场拆卸和修复。
运行原理板式换热器是由带一定波纹形状的金属板片叠装而成的新型高效换热器,构造包括垫片、压紧板(活动端板、固定端板)和框架(上、下导杆,前支柱)组成,板片之间由密封垫片进行密封并导流,分隔出冷/热两个流体通道,冷/热换热介质分别在各自通道流过,与相隔的板片进行热量交换,以达到用户所需温度。
每块板片四角都有开孔,组装成板束后形成流体的分配管和汇集管,冷/热介质热量交换后,从各自的汇集管回流后循环利用。
换热原理:间壁式传热。
单流程结构:只有2块板片不传热-头尾板。
双流程结构:每一个流程有3块板片不传热。
板片和流道通常有二种波纹的板片(L 小角度和H 大角度),这样就有三种不同的流道(L,M 和H),如下所示:L:小角度由相邻小夹角的板片组成的通道。
换热器培训课件完整版

板式换热器 结构紧凑、传热效率高、压力损失小
管壳式换热器 结构简单、制造成本低、清洗方便
螺旋板式换热器
传热效率高、结构紧凑、自清洗能力 强
热管式换热器
传热效率高、温差适应性强、结构灵 活
CHAPTER 04
换热器设计方法与优化策略
设计流程概述
进行初步设计
选择合适的换热器类型
根据设计需求,选择适合的换热 器类型,如板式换热器、管壳式 换热器等。
建立完善的运行维护档案, 记录换热器运行状况、维 修记录等信息,便于追溯 和管理。
定期更换换热器密封件、 垫片等易损件,确保密封 性能良好。
CHAPTER 07
换热器故障排除与维修保养 技巧
常见故障类型及原因分析
换热效率下降
可能由于结垢、堵塞或内部泄漏导致,影响 换热效果。
泄漏
包括法兰泄漏、管板泄漏等,可能由密封件 老化、紧固螺栓松动等原因引起。
发现泄漏时,及时更换密封件和紧固螺栓, 确保密封性能。
检查控制系统和热媒流量
发现温度异常时,检查控制系统和热媒流量 是否正常,及时进行调整和修复。
维修保养周期建议及操作指南
01
02
03
04
05
定期清洗和除垢
定期检查密封件和 定期检查流体流动 定期检查控制系统 注意
紧固螺栓
状态
和热媒…
根据换热器使用情况和结垢 程度,建议每半年或一年进 行一次清洗和除垢。
选择高性能材料,提高换热器的耐腐蚀性、 耐高温性等。
制造工艺优化
控制策略优化
改进制造工艺,提高生产效率和产品质量。
优化控制策略,实现换热器的智能控制和节 能运行。
CHAPTER 05
固定管板换热器工作原理

固定管板换热器工作原理固定管板换热器是一种常用的换热设备,广泛应用于化工、石化、电力、冶金等领域。
它主要用于液体与蒸汽、液体与液体之间的热量传递,具有换热效率高、结构紧凑、操作简便等特点。
本文将从固定管板换热器的工作原理、结构特点、应用领域等方面进行详细介绍。
一、固定管板换热器的工作原理1. 热量传递原理固定管板换热器的主要作用是通过管内介质与管外介质之间的对流传热来完成热量交换。
通常情况下,热源介质(例如蒸汽)通过管内,被冷却介质(例如水或其他液体)包围在管外,通过管板将热源介质和冷却介质分开,使得两种介质之间的热量传递得以实现。
2. 流体动力学原理当热源介质进入固定管板换热器的管内时,经过管道布局设计,介质将产生一定的流体动力学效应,通过管道快速流动,从而增加对流传热的效率。
管外介质也在与管内介质相对应的管道内流动,通过管板和管束的布置,使得两者之间的热量传递得以最大程度地实现。
3. 热平衡原理在固定管板换热器内部,热源介质和冷却介质之间的热量传递是在管道内部完成的,热源介质在管内释放热量,而冷却介质则在管外吸收热量,通过热量传递的过程,使得两种介质的温度逐渐趋于平衡,从而实现热能的转化和利用。
二、固定管板换热器的结构特点1. 管束结构固定管板换热器的核心部件是管束,它由众多平行排列的管子组成,通常采用不锈钢、碳钢等材质制成。
管束的结构在换热过程中起着至关重要的作用,可以有效地增加管内流体的传热效率。
2. 管板设计固定管板换热器上设有管板,用于分隔管子内外的介质,同时也用于支撑管束,确保管子的位置保持稳定。
管板的设计可以根据具体的工艺要求进行调整,以满足不同介质之间的热量传递需求。
3. 设备外壳固定管板换热器的外壳通常采用钢制或合金制材质,具有较强的耐压和耐腐蚀性能。
外壳的结构设计能够有效地保护内部管束和管板,同时也能够降低设备的泄漏风险,确保设备的安全运行。
4. 清洗维护方便固定管板换热器的结构设计使得设备的清洗和维护变得更加便捷,可以通过拆卸管板和管束等部件,进行设备内部的清洗和维护工作,从而保证设备的换热效率和使用寿命。
换热器的工作原理

换热器的工作原理换热器是一种用于传递热能的装置,它起到了加热、冷却、调节温度的作用。
换热器广泛应用于工业生产和日常生活中,如空调系统、锅炉、汽车发动机等。
下面将详细介绍换热器的工作原理。
1. 热交换换热器的主要工作原理是通过热交换实现热能的传递。
热交换是指在两个不同的流体之间,通过热传导、热辐射或者对流传热的方式,使热量从一个流体传递到另一个流体。
换热器内部通常分为两个流体通道,分别为热源流体和冷却介质,通过这两个通道的热交换,实现热能的传递。
2. 热源流体热源流体是指需要被加热或冷却的流体。
它可以是气体或液体,常见的有蒸汽、水、油等。
热源流体进入换热器后,通过换热器内的管路,与冷却介质进行热交换。
在这个过程中,热源流体的温度会发生相应的变化。
如果需要加热,则热源流体的温度会升高;如果需要冷却,则热源流体的温度会降低。
3. 冷却介质冷却介质用于吸收或排放热源流体传递出来的热量。
它可以是水、空气等,根据不同的应用场景选择不同的冷却介质。
通常,冷却介质在进入换热器之前,通过一系列的控制装置,如水泵、风机等,将其送入换热器内部进行热交换。
在与热源流体进行热交换的过程中,冷却介质的温度也会相应地升高或降低。
4. 热交换管热交换管是换热器内部用于传输热能的主要构件。
它通常由金属或合金材料制成,具有良好的导热性能。
热交换管的数量和排列方式会根据换热器的设计要求而有所不同。
通过热交换管,热源流体和冷却介质之间发生热交换。
其中,热源流体进入管道的一端,通过管壁与冷却介质进行热交换,最后从另一端出口离开。
5. 热损失和效率在热交换的过程中,由于热传导、对流和辐射等因素的存在,换热器会发生一定程度的热损失。
这些损失导致了换热器的热效率降低。
为了提高换热器的效率,可以采取一些措施,比如增加交换面积、改善流体的流动方式、选择合适的绝热材料等。
此外,定期对换热器进行清洗和维护也是保持其高效工作的重要措施。
总结起来,换热器通过热交换实现热能的传递。
换热器及换热原理

图示
持热管简介
必要性及设计原理
• 正确的热处理要求牛乳在杀菌温度下保持一定 的时间,这可以通过外设保持管来实现。 • 若已知流量和保持管的内管径,就可以计算出 符合保持时间的合适的管长。
设计原理
• 由于保持管里流速分布不均匀,某些牛乳 粒子的流速要比平均值大。为了确保流速 最快的粒子也能充分地巴氏杀菌,必须采 用一效率系数来校正。这个系数取决于保 持管的设计,通常取0.8~0.9 之间。
工作示意图
补充
焊接式的板式换热器
• • • • 多用于水汽换热,具有很高的集成度 高换热系数,体积小,薄型材料 不用密封圈,铜\镍或钎焊接不锈钢成紧凑直 角型的包状 易于安装,高换热效率,低成本 抗腐蚀性强,抗震,耐高温,高压
图示
总结
板式热交换器是一种新型、高效的节能热 交换设备,它具有换热效率高,结构紧凑, 重量轻,适应性强,热损失少,可拆卸, 可清洗,装拆和维修方便等特点,主要应 用于液液、液汽热交换,特别适用于各种 工艺过程中的加热、冷却、热回收、冷凝 及食品消毒等方面.
公式解释
• • • • • p = 产品的密度 Cp = 产品的比热 △ t = 产品的温度变化 △ tm = 对数平均温差(LMTD) K = 总传热系数
单项分析
• 流量V,是由乳品厂的设计能力决定的。 • 产品密度p 由产品决定。比热cp也由产品 决定,比热值告诉我们将某种物质温度升 高1℃,需提供多少热量。
基础概念
层流:当流体以较小的流速流经管道时,流体成 平稳状态通过全管,流体的质点作平行运动,与 旁侧的流体并无宏观的混合,此流动形态称之为 层流。 湍流:当流体以较高流速流经管道时,流体成波 动状态,并形成旋涡向四周散开,与旁侧的流体 相混强,使流 体以对流方式传热,因而随着湍动程度的增 强传热的效果会更好,而层流使流体主要以 传导的方式进行传热。显而易见湍流状态下 的传热效果要比层流状态下的传热效果好。
换热器的工作原理

换热器的工作原理
换热器是一种工业操作过程中常见的设备,它能够传递热量,以使一个流体温升与另一个流体降温。
它通常可以分为两类,一类是直管换热器,另一类是板式换热器。
一、直管换热器
1、工作原理
直管换热器通过将热量传送给流经其中的冷却剂来实现热量传递,必要时还可引入一个加热剂,当热量出现失衡时,可以引入加热剂,来补充热量。
2、结构组成
直管换热器由热交换器、流量调节器、矩阵、管接头和电加热器组成。
热交换器的内部空间,由一系列的连续直管构成,直管间左一定的间隙,形成一种诸如网格或层状的复杂结构,液体通过这些管道,垂直流动。
3、安装方式
直管换热器可以根据使用环境要求实现水平安装或垂直安装。
在小口径或管壁细的情况下,最好采用垂直安装;在安装流体管路不够灵活的情况下,最好采用水平安装。
二、板式换热器
1、工作原理
板式换热器是以水平或垂直的板状结构特点,可使两种温度不同的流体经衡量而相互置换热量,从而实现热量传递的一种设备。
并且具有体积小,传热系数大,安装和维修方便,寿命长等优点。
2、结构组成
板式换热器由热交换箱体、翅片、支架、管头连接等部分组成。
热交换箱两侧的进出口管的数目,以及板式构成的复杂曲折结构均由制造商设计提供,由客户按照生产需要而定。
3、功能
板式换热器的主要作用是将热量转换并在液体之间传递,改变流体的温度,提高冷却效率及减少流体损耗。
其次,板式换热器也可以利用压力差,使液体进行热回收,此外,他还可以进行蒸汽加热,实现加热和冷却的双重作用。
套管式换热器
套管式换热器套管式换热器是一种常见的换热设备,广泛应用于化工、石油、电力、食品等行业。
它以其简单、高效、可靠的特点,在工业生产中发挥着重要的作用。
本文将从套管式换热器的原理、结构、应用以及优缺点等方面进行详细介绍。
一、套管式换热器的原理套管式换热器是一种以管内流体和管外流体之间的热交换为基本原理的换热设备。
在套管式换热器中,管内流体通常是冷凝剂或蒸汽,而管外流体则是需要被加热或冷却的工艺流体。
套管式换热器的工作原理是通过管内流体和管外流体之间的热交换来完成的。
管内流体在管内流动,而管外流体则在管外流动,两者之间通过套管进行热传递。
管内流体通过管壁传递热量给管外流体,从而实现热能的转移。
二、套管式换热器的结构套管式换热器的主要结构包括壳体、管束、端盖、法兰和支撑等组成部分。
1. 壳体:套管式换热器的壳体通常由碳钢、不锈钢或其他耐腐蚀材料制成,具有足够的强度和耐腐蚀性。
壳体内部被分为多个独立的流体通道,用于分隔管内流体和管外流体。
2. 管束:管束是套管式换热器的核心部件,由一根根金属管组成。
管束的材料通常是不锈钢、铜合金或钛合金等,具有良好的导热性能和抗腐蚀性能。
管束的排列方式可以是单列式、双列式或多列式,根据实际应用需求来选择。
3. 端盖:端盖是安装在壳体两端的部件,用于固定管束和密封壳体内部。
端盖通常由铸铁或钢板制成,具有足够的强度和密封性。
4. 法兰:法兰是套管式换热器的连接部件,用于连接壳体、管束和管道。
它通常由碳钢、不锈钢等材料制成,具有良好的密封性和承载能力。
5. 支撑:支撑是用于支撑套管式换热器的结构部件,以保证其稳定性。
支撑通常由钢结构或混凝土结构构成,具有足够的强度和稳定性。
三、套管式换热器的应用套管式换热器广泛应用于各个行业的生产过程中,常见的应用领域包括:1. 化工行业:套管式换热器在化工行业中用于加热或冷却各种化工物料,例如反应器的冷却、溶液的加热等。
2. 石油行业:套管式换热器在石油行业中用于石油精炼、裂化和合成等过程中的热能转移。
6 换热器概述(各种换热器图片)
3.特殊形式的换热器ຫໍສະໝຸດ (1)翅片式换热器:a.翅片管式换热器 b.板翅式换热器 (2)热管换热器
(1)翅片式换热器
在传热面上加装翅片的措施不仅增大了传热面积,而且增强了流体 的扰动程度,从而使传热过程强化。
a.翅片管式(管翅式)换热器
管翅式换热器作为一种紧凑式换热器,在制冷行业具有广泛的应用。 随着空调与制冷行业的技术发展,以及环保法规的进一步严格控 制,对换热单元自身换热性能的要求更加严格,以弥补替代制冷剂 性能低下。因此,换热器结构(换热管和翅片类型)以及相关换热器 成形工艺是影响换热性能的重要因素,对于提高换热器的整体换 热性能具有重要的意义。
(1)夹套式换热器
属于间壁式换热器的一种,在容器外壁安装夹套制成,结构简单;但其加热面受容器壁面限制, 传热系数也不高.为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器.当夹套中 通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它增加湍动的措施,以 提高夹套一侧的给热系数.为补充传热面不足,也可在釜内部安装蛇管. 夹套式换热器广 泛用于反应过程的加热和冷却。 结构:主要用于反应过程的加热或冷却,是在容器外壁安装夹套制成。 优点:结构简单。缺点:传热面受容器壁面限制,传热系数小。为提高传热系数且使釜内 液体受热均匀,可在釜内安 装搅拌器。也可在釜内安装蛇管。
U形管式换热器
(4)填料函式换热器
这类换热器管束一端可以自由膨胀,结构比浮头式简单,造价也比浮头式低。因填料处易 产生泄漏,填料函式换热器一般适用于4MPa以下的工作条件,且不适用于易挥发、易 燃、易爆、有毒及贵重介质,使用温度也受填料的物性限制。填料函式换热器现在已 很少采用。 填料函式换热器结构如右图所示。这种设备的结构特点与浮头式换热器相类似,浮头部分 露在壳体以外,在浮头与壳体的滑动接触面处采用填料函式密封结构。由于采用填料 函式密封结构,使得管束在壳体轴向可以自由伸缩,不会产生壳壁与管壁热变形差而 引起的热应力。其结构较浮头式换热器简单,加工制造方便,节省材料,造价比较低 廉,且管束从壳体内可以抽出,管内、管间都能进行清洗,维修方便。
换热器工作原理
换热器工作原理换热器是一种用于传输热能的机械设备,它通过介质之间的接触来进行热传递。
它主要用于在两个不同介质之间传递热量。
它具有体积小,换热面积大,起作用快,抗堵塞能力强,可靠性高,封装结构紧凑,维护保养简单,运行成本低等优点。
换热器是利用物料的热能而发生的不同程度的热传导作用来改变换热器的温度和状态的装置,它主要用于液体和气体的对流热交换。
换热器的工作原理可以总结为三种:对流热交换原理、涡流热交换原理和传热原理。
(1)t对流热交换原理:是指在换热器内,介质间的温差通过物体表面形成热辐射,其好处是:(1)像素变小,增加了热交换比;(2)相对于涡流热交换,对流热交换具有噪声较低的特点;(3)对温度和压力都很敏感。
(2)t涡流热交换原理:它是通过涡流热交换的原理,在换热器内,介质通过涡流的形式传递热能,这样可以有效地提高传热效率。
它的优点是:(1)小尺寸,紧凑;(2)可抗震动;(3)可调节;(4)外形美观;(5)低压差换热率高。
(3)t传热原理:是指在换热器内,介质通过器件内部介质传热,形成一个完全封闭的空间,并且在这个封闭空间中形成净热流,这样,可以进行有效、高效的传热。
它的优点在于:(1)操作简单;(2)保温性能好;(3)热交换效率高;(4)对温度变化比较灵敏。
以上是换热器的工作原理,它的优势使它应用于工业、冶金、化工、机械及其他行业。
换热器的设计和使用一般遵守一定的规范,需要考虑物料的温度、压力、流量及流体性质等因素。
此外,制造时要考虑介质、结构、规格等,以保证换热器的养护保养和使用寿命。
换热器由法兰、管壳、管程、散热片、螺旋板等组件组成,换热器的设计及制造标准规定了换热器的一些特性及设计要素,如流体的流量、温度、压力,介质的流性能及换热效果等。
考虑到使用环境、温度、流量、介质特性等,换热器的设计尺寸、材料以及结构形式等都要相应地作出相应的调整。
换热器的正确使用、维护、抽检和保养极其重要,必须按照正确的技术方法进行,如定期检查换热器内外的介质,定期检查换热器的螺旋板及其他零部件,定期清洗换热器,及时调整换热器的工作参数等。
换热器工作原理五篇
换热器工作原理五篇第一篇:换热器工作原理管壳式换热器的三种分类管壳式换热器按照应力补偿的方式不同,可以分为以下三个种类:1、固定管板式换热器固定管板式换热器是结构最为简单的管壳式换热器,它的传热管束两端管板是直接与壳体连成一体的,壳体上安装有应力补偿圈,能够在固定管板式换热器内部温差较大时减小热应力。
固定管板式换热器的热应力补偿较小,不能适应温差较大的工作。
2、浮头式换热器浮头式换热器是管壳式换热器中使用最广泛的一种,它的应力消除原理是将传热管束一段的管板放开,任由其在一定的空间内自由浮动而消除热应力。
浮头式换热器的传热管束可以从壳体中抽出,清洗和维修都较为方便,但是由于结构复杂,因此浮头式换热器的价格较高。
3、U型管换热器U型管换热器的换热器传热管束是呈U形弯曲换热器,管束的两端固定在同一块管板的上下部位,再由管箱内的隔板将其分为进口和出口两个部分,而完全消除了热应力对管束的影响。
U型管换热器的结构简单、应用方便,但很难拆卸和清洗。
管壳式换热器,管壳式换热器结构原理管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。
管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。
通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。
一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。
工作原理和结构图1 [固定管板式换热器]为固定管板式换热器的构造。
A流体从接管1流入壳体内,通过管间从接管2流出。
B流体从接管3流入,通过管内从接管4流出。
如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。
壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种换热器工作原理和特点,值得收藏一、换热器1、U形管式换热器每根管子都弯成U形,固定在同一侧管板上,每根管可以自由伸缩,也是为了除去热应力。
性能特点:(1)优点此类换热器的特点是管束可以自由伸缩,不会因管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压本领强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
(2)缺点是管内清洗不便,管束中心部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分布管不紧凑,所以管子数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分需用壁较厚的管子。
这就影响了它的使用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质清洁及不易结垢,高温、高压、腐蚀性强的情形。
2、沉浸式蛇管换热器沉浸式蛇管换热器以蛇形管作为传热元件的换热器,是间壁式换热器种类之一。
依据管外流体冷却方式的不同,蛇管式换热器又分为沉浸式和喷淋式。
(1)优点这是一种古老的换热设备。
它结构简单,制造、安装、清洗和维护和修理便利,便于防腐,能承受高压,价格低廉,又特别适用于高压流体的冷却、冷凝,所以现代仍得到广泛应用。
(2)缺点由于容器体积比管子的体积大得多、笨重、单位传热面积金属耗量多,因此管外流体的表面传热系数较小。
为提高传热系数,容器内可安装搅拌器。
3、列管式换热器冷流体走管内,热流体经折流板走管外,冷、热流体通过间壁换热。
性能特点:列管式换热器的结构比较简单、紧凑、造价便宜,但管外不能机械清洗。
此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。
通常在管外装置一系列垂直于管束的挡板。
同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。
因此,当管壁与壳壁温差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以至管子扭弯或使管子从管板上松脱,甚至毁坏换热器。
为了克服温差应力必需有温差补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。
但补偿装置(膨胀节)只能用在壳壁与管壁温差低于60~70℃和壳程流体压强不高的情况。
一般壳程压强超过0.6MPa时,由于补偿圈过厚,难以伸缩,失去温差补偿的作用,就应考虑其它结构。
4、螺旋板式换热器由两块相互平行的钢板,卷制成相互隔开的螺旋形流道。
螺旋板的两端焊有盖板。
冷热流体分别在两流道内流动。
性能特点:(1)传热效率高(性能好)一般认为螺旋板式换热器的传热效率为列管式换热器的1~3倍。
等截面单通道不存在流动死区,定距柱及螺旋通道对流动的扰动降低了流体的临界雷诺数,水水换热时,螺旋板式换热器的传热系数最大可达3000W/(㎡·K)。
(2)有效回收低温热能螺旋板式换热器由两张卷制而成,进行余热回收,充分利用低温热能。
(3)运行牢靠性强不可拆式螺旋板式换热器螺旋通道的端面采纳焊接密封,因而具有较高的密封性,保证两种工作介质不混合。
(4)阻力小在壳体上的接管采纳切向结构。
比较低的压力损失,处理大容量蒸汽或气体;有自清刷本领,因其介质呈螺旋型流动,污垢不易沉积;清洗简单,可用蒸汽或碱液冲洗,简单易行,适合安装清洗装置;介质走单通道,允许流速比其他换热器高。
(5)可多台组合使用单台设备不能充足使用要求时,可以多台组合使用。
但组合时,必需符合下列规定:并联组合、串联组合,设备和通道间距相同。
混合组合:一个通道并联,一个通道串联。
5、喷淋式换热器热流体在暴露的管中流过,冷却水喷淋流过蛇管。
性能特点:这种换热器是将换热管成排地固定在钢架上,热流体在管内流动,冷却水从上方喷淋装置均匀淋下,故也称喷淋式冷却器。
喷淋式换热器的管外是一层湍动程度较高的液膜,管外给热系数较沉浸式增大很多。
另外,这种换热器大多放置在空气流通之处,冷却水的蒸发亦带走一部分热量,可起到降低冷却水温度,增大传热推动力的作用。
因此,和沉浸式相比,喷淋式换热器的传热效果大有改善。
6、热管换热器一根密封的金属管子,管内壁覆盖一层有毛细结构材料作成的芯网,其中心是空的。
管内装有肯定量的热载体(如液氨、氟利昂等),被气化,流向冷端,蒸汽在冷端被冷凝,放出汽化潜热,而加热了冷流体。
冷凝液又流回热端,如此反复。
性能特点:(1)热管换热器可以通过换热器的中隔板使冷热流体完全分开,在运行过程中,单根热管由于磨损、腐蚀、超温等原因发生破坏时,基本不影响换热器运行。
热管换热器用于易然、易爆、腐蚀性强的流体,换热场合具有很高的牢靠性。
(2)热管换热器的冷、热流体完全分开流动,可以比较简单的实现冷、热流体的逆流换热。
冷热流体均在管外流动,由于管外流动的换热系数远高于管内流动的换热系数,用于品位较低的热能回收场合特别经济。
(3)对于含尘量较高的流体,热管换热器可以通过结构的变化、扩展受热面等形式,解决换热器的磨损和堵灰问题。
(4)热管换热器用于带有腐蚀性的烟气余热回收时,可以通过调整蒸发段、冷凝段的传热面积来调整热管管壁温度,使热管尽可能避开最大的腐蚀区域。
7、套管式换热器冷、热流体分别在内管和套管中流动并换热。
(1)优点这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。
结构简单,传热面积增减自若。
由于它由标准构件组合而成,安装时,无需另外加工。
传热效能高。
它是一种纯逆流型换热器,同时还可以选取合适的截面尺寸,以提高流体速度,增大两侧流体的传热系数,因此它的传热效果好。
液液换热时,传热系数为870~1750W/(m2·℃)。
这一点特别适合于高压、小流量、低传热系数流体的换热。
套管式换热器的缺点是占地面积大;单位传热面积金属耗量多,约为管壳式换热器的五倍;管接头多,易泄漏;流阻大。
结构简单,工作适应范围大,传热面积增减便利,两侧流体均可提高流速,使传热面的两侧都可以有较高的传热系数,是单位传热面的金属消耗量大,为增大传热面积、提高传热效果,可在内管外壁加设各种形式的翅片,并在内管中加设刮膜扰动装置,以适应高粘度流体的换热。
可以依据安装位置任意更改形态,利于安装。
(2)缺点检修、清洗和拆卸都较麻烦,在可拆连接处简单造成泄漏。
生产中,有较多材料选择受限,由于套管式换热器大多是内管中不允许有焊接,由于焊接会造成受热膨胀开裂,而套管式换热器大多数为了节省空间选择,弯制,盘制成蛇管形态,故有较多特别的耐腐蚀材料无法正常生产。
套管换热器国内还没有形成统一的焊接标准,各个企业都是依据其它换热产品阅历选择焊接方式,所以,套管式换热器的焊接处,显现各类问题司空见惯,需要常常注意检查,保养。
二、具有补偿圈的换热器1、浮头式换热器两端的管板,有一段不与壳体相连,可以在管长方向自由浮动,当壳体与管束因温度不同而引起不同的热膨胀时,可以除去热应力。
冷流体入口热流体入口(1)优点管束可以抽出,以便利清洗管、壳程;介质间温差不受限制;可在高温、高压下工作;可用于结垢比较严重的场合;可用于管程易腐蚀场合。
(2)缺点小浮头易发生内漏;金属材料耗量大,成本高20%;结构多而杂。
2、夹套式换热器夹套式换热器是间壁式换热器的一种,在容器外壁安装夹套制成。
性能特点:结构简单,但其加热面受容器壁面限制,传热系数也不高。
为提高传热系数且使釜内液体受热均匀,可在釜内安装搅拌器。
当夹套中通入冷却水或无相变的加热剂时,亦可在夹套中设置螺旋隔板或其它加添湍动的措施,以提高夹套一侧的给热系数。
为补充传热面的不足,也可在釜内部安装蛇管。
夹套式换热器广泛用于反应过程的加热和冷却。
3、板翅式换热器由隔板、肋片和侧条构成单元体,多个单元体经逆流或错流组装为组装件,再将带有集流出口的集流箱焊接到组装件上。
由于材料轻薄,换热面积与换热器体积之比可达4000m2/m3。
性能特点:(1)传热效率高,由于肋片对流体的扰动使边界层不断分裂,因而具有较大的换热系数;同时由于隔板、肋片很薄,具有高导热性,所以使得板肋式换热器可以达到很高的效率。
(2)紧凑,由于板肋式换热器具有扩展的二次表面,使得它的比表面积可达到1000m2/m3。
(3)灵巧,起因于紧凑且多为铝合金制造,现在钢制,铜制,复合材料等的也已经批量生产。
(4)适应性强,板肋式换热器可适用于:气-气、气-液、液-液、各种流体之间的换热以及发生集态变化的相变换热。
通过流道的布置和组合能够适应:逆流、错流、多股流、多程流等不同的换热工况。
通过单元间串联、并联、串并联的组合,可以充足大型设备的换热需要。
工业上可以定型、批量生产以降低成本,通过积木式组合扩大互换性。
(5)制造工艺要求严格,工艺过程多而杂。
(6)简单堵塞,不耐腐蚀,清洗检修很困难,故只能用于换热介质干净、无腐蚀、不易结垢、不易沉积、不易堵塞的场合。
4、涡流热膜换热器流热膜换热器体积只有传统管壳式换热器的1/5,采纳全不锈钢焊接结构。
既具有钎焊板式换热器体积小、耐高温的优势,又克服了框架板式换热器胶条老化、维护费用高的缺陷,它采纳经纳米技术处理的不锈钢涡流管作为换热元件,极大提高了换热器的整体性能。
性能特点:高效节能,该换热器传热系数为6000~8000W/(m2·℃);全不锈钢制作,使用寿命长,可达20a以上,十年内显现换热器质量问题免费更换;改层流为湍流,提高了换热效率,降低了热阻;换热速度快,耐高温(400℃),耐高压(2.5MPa);结构紧凑,占地面积小,重量轻,安装便利,节省土建投资;设计快捷,规格齐全,应用针对性强,节省资金;应用条件广泛,适用较大的压力、温度范围和多种介质热交换;维护费用低,易操作,清垢周期长,清洗便利;采纳纳米热膜技术,显著增大传热系数;应用领域广阔,可广泛用于热电、厂矿、石油化工、城市集中供热、食品医药、能源电子、机械轻工等领域。