第2章+微波中继通信系统
通信基础知识

通信基础知识中国电信维护岗位技能认证教材编写小组编制目录第1章通信概述 (3)1.1通信基础概念 (3)1.2通信系统模型 (5)1.3通信系统的分类 (7)1.4通信法规和通信标准 (8)第2章通信网的组成 (9)2.1通信网的概念 (9)2.2通信网的分类 (9)2.3电信网的组成 (9)2.4通信网的组网结构 (10)第3章通信信道 (12)3.1无线信道 (12)3.2有线传输信道 (18)3.3通信信道特性 (20)第4章通信网基础技术 (23)4.1信源编码 (23)4.2信道复用 (26)4.3数字信号的基带传输 (30)4.4调制技术 (37)4.5差错控制技术 (52)第5章网管基础知识 (55)5.1网管基本功能 (55)5.2性能管理 (57)5.3故障管理 (58)5.4配置管理 (59)5.5安全管理 (60)第1章通信概述1.1通信基础概念1.通信的定义通信按传统理解就是信息的传输与交换,信息可以是语音、文字、符号、音乐、图像等等。
任何一个通信系统,都是从一个称为信息源的时空点向另一个称为信宿的目的点传送信息。
以各种通信技术,如以长途和本地的有线电话网(包括光缆、同轴电缆网)、无线电话网(包括卫星通信、微波中继通信网)、有线电视网和计算机数据网为基础组成的现代通信网,通过多媒体技术,可为家庭、办公室、医院、学校等提供文化、娱乐、教育、卫生、金融等广泛的信息服务。
可见,通信网络已成为支撑现代社会的最重要的基础结构之一。
2.信息、数据和信号信息是客户事物的属性和相互联系特性的表现,它反映了客观事物的存在形式或运动状态。
数据是信息的载体,是信息的表现形式。
信号是数据在传输过程的具体物理表示形式,具有确定的物理描述。
传输介质是通信中传送信息的载体,又称为信道3.模拟通信和数字通信通信系统主要由5个基本系统元件构成,信源、转换器、信道、反转换器、信宿。
源系统将信源发出的信息转换成适合在传输系统中传输的信号形式,通过信道传输到目的系统,目的系统再将信号反变换为具体的信息。
2022年第三章微波中继通信系统

第三章 微波中继通信系统
三、中继方式
1、音频转发(中继)
f1 接收机
f2 一路
终
终
发射机
f4
端
端
f3
发射机 信道机
机
机
Ⅰ
Ⅱ
N路
音频转发
接收机 信道机
第三章 微波中继通信系统
三、中继方式 1、音频转发(中继) 缺点(1)所需的设备多而复杂; ( 2)信号在转发过程中,必须经过收发信机、两部终端机的变换、放大、 调制、解调等,因而信号的失真和掺入的噪声将会大大的增加,从而降低了通信 质量,限制了转发次数。 优点:就是便于在中间站分出和插入话路、报路;同时,值机员可以对所 有的话路进行监听和控制。 应用场合:当通信线路不需要很长,信号在线路传输过程中失真和噪声不 会超过要求时,以及通信路数不需要很多,即在终端机设备不太复杂庞大的情况 下,还是可以采用音频转发的。
二、微波中继线路的组成
微波通信是利用微波作为载波来携带信息,并通过自由空间电波传送信息。
第三章 微波中继通信系统
另外,微波电磁波具有直线传播特性,可以利用微波天线把电磁波聚集成很窄的波束,使微波天线具有很强的方向性,减少通信中的
相互干扰和被截获的概率。
微波的频率范围?300MHz~300GHz
( 2)信号在转发过程中,必须经过收发信机、两部终端机的变换、放大、调制、解调等,因而信号的失真和掺入的噪声将会大大的
第三章 微波中继通信系统
通信距离d
余隙hc
h1
h2
d 3 .5 7 2 (h 1 h ch 2 h c
例:h1=h2=18m,d≈?
第三章 微波中继通信系统
措施? 增加天线高度,增大发射功率?
数字微波中继通信技术

第20章 数字微波中继通信技术
将信号放大到上变频器所需旳功率电平,然后与 发信机本振信号进行上变频,输出载频为f2旳微波信号。 该信号经微波功放、天馈系统后,向中间站旳另一通 信方向发送出去。信号从中间站旳某一中继机旳收信 机转接到另一中继机旳发信机时,接口频带为中频, 所以称作中频转接,中频转接省去了调制、解调器, 简化了设备,但中频转接不能上、下话路,不能消除 噪声积累。
第20章 数字微波中继通信技术
2.中频转接方式 如图20―4(b),中间站把来自某一通信方向载 频为f1旳接受信号经相应中继机(微波收发信机)旳天 馈系统,将发信端输出旳微波信号经过高频馈线送至 天线,经天线变换为无线电波朝通信方向发射出去, 再经微波低噪声放大器后,与该中继机接受机本振信 号混频,混频输出信号经中放后转接到该中间站旳另 一中继机旳发信机功率中放,
图20―4 微波中继转接方式
第20章 数字微波中继通信技术
1.基带转接方式 中间站把来自某一通信方向载频为f1旳接受信号经 相应中继机(微波收发信机)旳天馈系统(天线馈线 系统),传送到收信机。再经微波低噪声放大器后, 与该中继机旳接受机本振信号混频,混频输出信号经 中放后送到解调器解调并输出基带信号,对基带信号 进行判决再生,再生后旳信码序列进行中频数字载波 调制(图20―4(a)只示出了前一种情况)。
第20章 数字微波中继通信技术
C B
中继站 中继站
A 终端站
终端站
图20―1 微波中继通信示意图
第20章 数字微波中继通信技术
可能有人会问:“为何要采用中继通信方式呢?” 对于地面上旳远距离微波通信,采用中继方式旳直接 原因有两个:一是微波传播具有视距传播特征,即电 磁波是沿直线传播旳,而地球表面是个曲面,所以若 通信两地之间距离较长,且天线所架高度有限,则发 信端发出旳电磁波就会受到地面旳阻挡,而无法到达 收信端。所以,为了延长通信距离,需要在通信两地 之间设置若干中继站,进行电磁波转接;另一种原因 就是微波在传播过程中有损耗,在远距离通信时有必 要采用中继方式对信号逐段接受、放大和发送。
微波通信原理演示幻灯片

天线参数
频段
天线口径
增益
典型性能
33
1.5 衰落
微波传播必须采用直射波,接收点的场强是直射空间波与地面反 射波的叠加。传播媒介质是地面上的低空大气层和路由上的地面 、地物。当时间(季节、昼夜等)和气象(雨、雾、雪等)条件发生 变化时,大气的温度、湿度、压力和地面反射点的位置、反射系 数等也将发生变化。这必然引起接收点场强的高低起伏变化。这 种现象,叫做电波传播的衰落现象。显然衰落现象具有很大的随 机性。
也可以在微波频段直接调制,但调制限于PSK; 6.微波通信的理论基础是电磁场理论;
8
1.4.1 不同的传输方法
同轴电缆
微波
MUX
卫星 光缆
MUX
9
微波设备 电话/数据图像等信息
A站
微波设备 电话/数据/图像等信息
B站
数字微波点对点传输模型
10
微波 设备
电话 / 数据 图像等信息
A站(端)
微波 设备
其中 a 为反射板有效面积 m 2
a Acos2
反射板无源
d 2 (km)
15
无源中继站(实物照片)
反射板式无源中继站 Plane reflectors
双抛物面无源中继站 Parabolic reflectors
16
应用范围
宏蜂窝、微蜂窝网络传输 专用网 接入网 临时话音或数据链路 传输线的备份
2. 普通无线电波会被高空的电离层所吸收或被反射回来,而微波则 能够穿过电离层至外层空间。电视广播、卫星通信、宇宙航行, 射电天文学,以及受控热核反应中的等离子体的参数测量等,都 是利用了微波的这一特性才得以实现的;
3. 微波的频率很高,因此可利用的频带较宽、信息容量大,从而使 微波通信得到了广泛的应用和发展。
《现代通讯系统》课件(第三章-微波中继通信系统)

本课件介绍微波通信及中继系统的基本概念,包括传输链路、参数设计、数 字化、应用领域等方面,旨在加深对现代通讯技术的理解。
微波通信的基本概念
微波通信的定义
微波通信是指利用微波电磁波进行通信的方法。
微波信道的特点
信道宽带大、传输速率快、免受电磁干扰等。
微波通信与其他通信方的比较
与有线通信比较,微波通信无需线路,安装方便;与卫星通信比较,微波通信无需面向卫星 天线,使用成本更低。
微波中继数字化的应用
主要应用在高速率通信和高质量 音频广播领域。
微波通信系统的应用领域
1 微波通信系统的应用领域
主要应用在军事通信、铁路通信、航空与航海通信、广播电视传输等。
2 微波通信系统的优势和短处
传输距离远,速度快,但受气象条件限制较大。
3 微波通信系统的未来发展方向
数字化技术的应用以及对天气干扰的优化处理等。
总结
1
微波通信的优越性
高速率、宽带、传输距离远。
2
微波中继系统的参数设计
需要综合考虑多种因素,如信道距离、频带等。
3
微波数字化在通信领域中的应用
在高速率通信及音频广播方面得到广泛使用。
需要多方面考虑,如信道距离、传输功 率、功率增益等。
中继站的功率放大器设计
需要根据传输信道特性以及信号的频带 和传输距离等因素进行设计。
微波中继通信系统的数字化
微波中继通信数字化的背 景和意义
数字化可以提高通信的可靠性和 数字处理的能力。
微波中继数字化的实现技 术和方法
主要有软件无线电、直接数字频 率合成和数字化下变频等。
微波中继系统的组成
微波中继系统的功能 和特点
实现超距离、高速率的通信。
第三章微波中继通信系统3-6

(二)自由空间传播损耗
pt p0 = 2 4π d
注意,此时的参数d 注意,此时的参数d是表示辐射源到接收天线的直视 距离,而不是沿地球表面的通信距离。但是,由于d 距离,而不是沿地球表面的通信距离。但是,由于d远小于 地球半径,可认为电波的直视传播距离与通信距离近似相等, 地球半径,可认为电波的直视传播距离与通信距离近似相等, 并用符号d表示。 并用符号d表示。
第三章 微波中继通信系统
一、微波中继通信的概念 二、微波中继通信的线路组成 三、微波中继通信的中继方式 时分复用、帧结构、 四、时分复用、帧结构、同步 五、微波信道特性
第三章 微波中继通信系统
五、微波信道特性
五、微波信道特性
(一)天线架高与传播距离 (二)自由空间传播损耗 (三)地面效应 (四)大气效应 (五)接收信号功率和接收信噪比
(二)自由空间传播损耗
2.有向天线辐射, 2.有向天线辐射,单位面积接收功率 有向天线辐射 在实际的微波中继通信系统中,天线一般是有方向性的, 在实际的微波中继通信系统中,天线一般是有方向性的, 并用“天线增益Gt”来表示。对于发射天线来说, 并用“天线增益Gt”来表示。对于发射天线来说,它是天线 Gt 在最大辐射方向上单位立体角的发射功率与无方向天线单位 立体角功率的比值。也就是说,发射天线增益Gt是该天线在 立体角功率的比值。也就是说,发射天线增益Gt是该天线在 Gt 最大辐射方向上辐射功率相对无方向天线在该方向上辐射功 率所增加的倍数或分贝数。 率所增加的倍数或分贝数。
r1 =
λd 1d 2 d1 + d 2
(三)地面效应
2.地面反射 地面反射 电波在较平滑的地面(如水面、沙漠、草原及小块平地等) 电波在较平滑的地面(如水面、沙漠、草原及小块平地等)上传播 容易产生较强的镜面反射,电波沿反射路径也可以到达接收天线, 时,容易产生较强的镜面反射,电波沿反射路径也可以到达接收天线, 形成多径传播。来自直射波和反射波的信号在接收端干涉叠加,合成信 形成多径传播。来自直射波和反射波的信号在接收端干涉叠加, 号的场强与地面反射系数, 号的场强与地面反射系数,以及由于不同路径延时差造成的两干涉信号 间的相位差有关。 间的相位差有关。 当来自不同路径的信号相位相同时,合成信号增强;而相位相反时, 当来自不同路径的信号相位相同时,合成信号增强;而相位相反时, 相互抵消。 相互抵消。 由于反射系数随地面条件而改变,反射点也可能有变化, 由于反射系数随地面条件而改变,反射点也可能有变化,因此接收 的合成信号电平将起伏不定,形成多径衰落。 的合成信号电平将起伏不定,形成多径衰落。
数字微波传输系统.

当地面反射系数较小时,线路(山区、丘陵、城市、森林 等地区)天线不能太低, 否则会使大气折射电波向下弯曲。
当地面反射系数较大时,线路(如水面、 湖面、 稻田等 地区), 余隙不能太小。
微 波中继通 信
3. 3数字微波信道的干扰和噪声 微波线路的干扰主要来自天馈系统和空间传播 引入, 一般有回波干扰、交叉极化干扰、收发干扰、 邻近波道干扰、 天线系统同频干扰等。 噪声主要来自设备, 如收、 发信机热噪声以及 本振源的热噪声等。
微 波中继通 信
微波技术专题
• 微波技术是在第二次世界大战期间为了研制雷达而成 熟起来的。当大战将结束时,美国调整雷达的工程师 发现自己口袋里的巧克力经常熔化了!立刻明白,这 是电磁波对物质的作用所引起的,是和大功率电缆中 绝缘介质损耗发热是一回事。好奇心驱使他们用微波 装置作爆米花取得成功。这就是微波功率应用设备的 雏形。早在三十年代在调试大功率无线电发射机时, 常常发现苍蝇或昆虫干瘪的死在空心螺线管中,这些 偶然发现,明白的向人们启示了微波和无线电波均可 造成加热、干燥现象。
电磁波频率不同, 波长不同(频率越低, 波长越 长), 其空间传播的特性也不一样, 因而用途也 有不同。
微 波中继通 信
长波绕射能力最强, 靠地波传播, 常用于长波 电台进行海上通信。中波较稳定, 主要用于短 距离广播。短波利用了电离层反射进行远距离 传播, 主要用于短波通信和短波广播。
在短波传输时,由于电离层的变化, 信号起伏 变化较大, 接收信号时强时弱; 晚上电离层较 稳定,因此传播效果也较好, 信号较稳定; 在 听无线电广播时人们能体会到这一特性。
第二章 数字微波传输系统
数字传输是以数字信号的形式传递消息,采 用时分复用方式实现多路通信。早期的数字传输 系统主要是数字微波通信系统,后来发展起来的 SDH系统是现代电信网中数字信号传输的基本模式 。计算机的普及使得数据传输越来越多,利用数 字信道传输数据信号成为一种新的电信业务,DDN 系统的诞生满足了这种业务的要求。
微波通信原理

Y
EY
EX Z
地面
X
入射面 E
Z
椭圆极化波
水平线极化波
地面
入射面 E
Z
垂直线极化波
Techie.han
几个基本概念 矩形波导中H10模的场结构
a
b
H10模是波导中传输的电磁 波主模,截至波长最长为2a。
向左图那样放置波导,它的 电力线与地面垂直。
所以这样的极化方式称垂直 极化
V=Vertical
H=Horizontal
Techie.han
自由空间的电波传播
自由空间损耗的定义
自由空间损耗 Free space loss:
在自由空间传播的电磁波不产生反射、折射、吸收和散射等现象, 即总能量未被损耗。 但电波在自由空间传播时,会因能量向空间扩散而衰耗,这如空中 一只孤独的灯泡所发出的光,均匀地向四周扩散。 显然距离光源越远的地方,单位面积上的能量就越少。这种电波的 扩散衰耗就称为自由空间损耗。
180
Techie.han
几个基本概念
费涅耳区定义(The Fresnel Zone Definition) The Second Fresnel Zone
Techie.han
Line of sight
1st zone
+
2nd -zone
The signal power is distributed in the space surrounding the direct line of sight
FM); TV etc ...
Techie.han
Microwave links
Radio beam One multiplex per radio channel Applications: Civiliars and military