2018-2019北京市西城区一模数学理科试题和答案

合集下载

北京西城区2018-2019学年上学期高三数学理科期末试题卷

北京西城区2018-2019学年上学期高三数学理科期末试题卷

北京西城区2018-2019学年上学期高三期末数学理科试卷第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|2,}A x x k k ==∈Z ,2{|5}B x x =≤,那么A B =(A ){0,2,4} (B ){2,0,2}- (C ){0,2}(D ){2,2}-2.在等比数列{}n a 中,若32a =,58a =,则7a = (A )10(B )16(C )24(D )323.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为 (A )5 (B )6 (C )22 (D )104.在极坐标系中,点(2,)2P π到直线cos 1ρθ=-的距离等于(A )1(B )2(C )3(D )25. 在平面直角坐标系xOy 中,点(1,1)A ,点B 在圆224x y +=上,则||OA OB -的最大值为 (A )3 (B )12+(C )22+(D )46. 设,0M N >,01a <<,则“log log a b M N >”是“1M N <+”的 (A )充分而不必要条件(B )必要而不充分条件侧(左)视图正(主)视图俯视图211 11“L ”形骨牌国际象棋棋盘(C )充要条件 (D )既不充分也不必要条件7. 已知函数()sin πf x x =,2()2g x x x =-+,则(A )曲线()()y f x g x =+不是轴对称图形 (B )曲线()()y f x g x =-是中心对称图形 (C )函数()()y f x g x =是周期函数 (D )函数()()f x y g x =最大值为478. 一个国际象棋棋盘(由88⨯个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定). “L ”形骨牌由三个相邻的小方格组成,如图所示. 现要将这个破损的棋盘剪成数个“L ”形骨牌,则 (A )至多能剪成19块“L ”形骨牌(B )至多能剪成20块“L ”形骨牌 (C )一定能剪成21块“L ”形骨牌(D )前三个答案都不对第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数z 满足方程1i i z -⋅=,则z =____.10.已知角α的终边经过点(3,4)-,则tan α=____;cos(π)α+=____. 11.执行如图所示的程序框图,若输入的1m =,则输出数据的总个数为____.12.设x ,y 满足约束条件230,3,20,x y x y x y -+--+⎧⎪⎨⎪⎩≥≤0≥ 则3z x y =+的取值范围是____.m n =21n m =+ 开始 否 结束输出n是输入m(0,100)m ∈13. 能说明“若定义在R 上的函数()f x 满足(0)(2)0f f >,则()f x 在区间(0,2)上不存在零点”为假命题的一个函数是____.14.设双曲线22: 13y C x -=的左焦点为F ,右顶点为A . 若在双曲线C 上,有且只有2个不同的点P 使得=PF PA λ⋅成立,则实数λ的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中, 3a =,26b =,2B A =. (Ⅰ)求cos A 的值;(Ⅱ)试比较B ∠与C ∠的大小.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11B BCC 为正方形,M ,N 分别是11A B ,AC 的中点,AB ⊥平面BCM .(Ⅰ)求证:平面11B BCC ⊥平面11A ABB ; (Ⅱ)求证:1//A N 平面BCM ;(Ⅲ)若11A ABB 是边长为2的菱形,求直线1A N 与平面1MCC 所成角的正弦值.17.(本小题满分13分)为保障食品安全,某地食品监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据.已知该质量指标值对应的产品等级如下:质量指标值 [15,20) [20,25) [25,30) [30,35) [35,40) [40,45]等级次品 二等品 一等品 二等品 三等品 次品根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(图表如下,其中0a >).质量指标值 频数 [15,20)2 [20,25)18B 1AMBA 1CC 1N甲企业 乙企业(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;(Ⅱ)为守法经营、提高利润,乙企业将所有次品销毁.......,并将一、二、三等品的售价分别定为120元、90元、60元. 一名顾客随机购买了乙企业销售的2件该食品,记其支付费用为X 元,用频率估计概率,求X 的分布列和数学期望;(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.18.(本小题满分13分)已知函数()ln f x x x a =-+,其中a ∈R .(Ⅰ)如果曲线()y f x =与x 轴相切,求a 的值; (Ⅱ)如果函数2()()=f x g x x在区间(1,e)上不是单调函数,求a 的取值范围.19.(本小题满分14分)已知椭圆222 1(2)2x y C a a +=>:的离心率为22,左、右顶点分别为,A B ,点M 是椭圆C 上异于,A B 的一点,直线AM 与y 轴交于点P .(Ⅰ)若点P 在椭圆C 的内部,求直线A M 的斜率的取值范围;(Ⅱ)设椭圆C 的右焦点为F ,点Q 在y 轴上,且//AQ BM ,求证:PFQ ∠为定值.[25,30)48 [30,35)14 [35,40) 16 [40,45]2 合计100O质量指标值 15 20 25 30 35 40 45 0.020.0.022 频率组距0.0800.0420.028a20.(本小题满分13分)设正整数数列12 ,,,(3)N A a a a N >:满足i j a a <,其中1i j N <≤≤. 如果存在{2,3,,}k N ∈,使得数列A 中任意k 项的算术平均值均为整数,则称为“k 阶平衡数列”.(Ⅰ)判断数列2, 4, 6, 8, 10和数列1, 5, 9, 13, 17是否为“4阶平衡数列”?(Ⅱ)若N 为偶数,证明:数列 1,2,3,,A N :不是“k 阶平衡数列”,其中{2,3,,}k N ∈.(Ⅲ)如果2019N a ≤,且对于任意{2,3,,}k N ∈,数列均为“k 阶平衡数列”,求数列A 中所有元素之和的最大值.A A。

2019年1月北京市西城区高三数学理科期末试卷

2019年1月北京市西城区高三数学理科期末试卷

北京市西城区2018 — 2019学年度第一学期期末试卷高三数学(理科) 2019.1第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|2,}A x x k k ==∈Z ,2{|5}B x x =≤,那么A B =(A ){0,2,4} (B ){2,0,2}- (C ){0,2}(D ){2,2}-2.在等比数列{}n a 中,若32a =,58a =,则7a = (A )10(B )16(C )24(D )323.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为 (A(B(C) (D4.在极坐标系中,点(2,)2P π到直线cos 1ρθ=-的距离等于(A )1(B )2(C )3(D5. 在平面直角坐标系xOy 中,点(1,1)A ,点B 在圆224x y +=上,则||OA OB -的最大值为 (A )3 (B)1(C)2(D )4侧(左)视图正(主)视图俯视图国际象棋棋盘6. 设,0M N >,01a <<,则“log log a b M N >”是“1M N <+”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件7. 已知函数()sin πf x x =,2()2g x x x =-+,则(A )曲线()()y f x g x =+不是轴对称图形 (B )曲线()()y f x g x =-是中心对称图形 (C )函数()()y f x g x =是周期函数 (D )函数()()f x y g x =最大值为478. 一个国际象棋棋盘(由88⨯个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定). “L ”形骨牌由三个相邻的小方格组成,如图所示. 现要将这个破损的棋盘剪成数个“L ”形骨牌,则(A )至多能剪成19块“L ”形骨牌(B )至多能剪成20块“L ”形骨牌 (C )一定能剪成21块“L ”形骨牌(D )前三个答案都不对第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.复数z 满足方程1i i z -⋅=,则z =____.10.已知角α的终边经过点(3,4)-,则tan α=____;cos(π)α+=____. 11.执行如图所示的程序框图,若输入的1m =,则输出数据的总个数为____.12.设x ,y 满足约束条件230,3,20,x y x y x y -+--+⎧⎪⎨⎪⎩≥≤0≥ 则3z x y =+的取值范围是____.13. 能说明“若定义在R 上的函数()f x 满足(0)(2)0f f >,则()f x 在区间(0,2)上不存在零点”为假命题的一个函数是____.14.设双曲线22: 13y C x -=的左焦点为F ,右顶点为A . 若在双曲线C 上,有且只有2个不同的点P 使得=PF PA λ⋅成立,则实数λ的取值范围是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在ABC ∆中, 3a =,b =2B A =. (Ⅰ)求cos A 的值;(Ⅱ)试比较B ∠与C ∠的大小.16.(本小题满分14分)如图,在三棱柱111ABC A B C -中,侧面11B BCC 为正方形,M ,N 分别是11A B ,AC 的中点,AB ⊥平面BCM .(Ⅰ)求证:平面11B BCC ⊥平面11A ABB ; (Ⅱ)求证:1//A N 平面BCM ;(Ⅲ)若11A ABB 是边长为2的菱形,求直线1A N 与平面1MCC 所成角的正弦值.B 1AMBA 1CC 1N为保障食品安全,某地食品监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据.已知该质量指标值对应的产品等级如下:根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表(图表如下,其中0a >).甲企业 乙企业(Ⅰ)现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;(Ⅱ)为守法经营、提高利润,乙企业将所有次品销毁.......,并将一、二、三等品的售价分别定为120元、90元、60元. 一名顾客随机购买了乙企业销售的2件该食品,记其支付费用为X 元,用频率估计概率,求X 的分布列和数学期望;(Ⅲ)根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.18.(本小题满分13分)已知函数()ln f x x x a =-+,其中a ∈R .(Ⅰ)如果曲线()y f x =与x 轴相切,求a 的值; (Ⅱ)如果函数2()()=f x g x x在区间(1,e)上不是单调函数,求a 的取值范围.0.080已知椭圆222 1(2x y C a a +=>:,A B ,点M 是椭圆C 上异于,A B 的一点,直线AM 与y 轴交于点P .(Ⅰ)若点P 在椭圆C 的内部,求直线A M 的斜率的取值范围;(Ⅱ)设椭圆C 的右焦点为F ,点Q 在y 轴上,且//AQ BM ,求证:PFQ ∠为定值.20.(本小题满分13分)设正整数数列12 ,,,(3)N A a a a N >:满足i j a a <,其中1i j N <≤≤. 如果存在{2,3,,}k N ∈,使得数列A 中任意k 项的算术平均值均为整数,则称为“k 阶平衡数列”.(Ⅰ)判断数列2, 4, 6, 8, 10和数列1, 5, 9, 13, 17是否为“4阶平衡数列”? (Ⅱ)若N 为偶数,证明:数列 1,2,3,,A N :不是“k 阶平衡数列”,其中{2,3,,}k N ∈.(Ⅲ)如果2019N a ≤,且对于任意{2,3,,}k N ∈,数列均为“k 阶平衡数列”,求数列A 中所有元素之和的最大值.A A。

北京市西城区2018-2019学年度第一学期期末试卷高三数学(理科)(解析版)

北京市西城区2018-2019学年度第一学期期末试卷高三数学(理科)(解析版)

北京市西城区2018-2019学年度第一学期期末试卷高三数学(理科)一、选择题(本大题共8小题,共40.0分)1.已知集合,,那么A. 2,B. 0,C.D.【答案】B【解析】解:集合,,0,.故选:B.先求出集合A,B,由此能求出.本题考查交集的求法,考查交集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.在等比数列中,若,,则A. 10B. 16C. 24D. 32【答案】D【解析】解:等比数列中,若,,则,故选:D.根据等比数列的性质即可求出.本题考查了等比数列的性质,考查了运算和求解能力,属于基础题3.一个四棱锥的三视图如图所示,那么这个四棱锥最长棱的棱长为A. B. C. D.【答案】C【解析】解:由三视图可知:该几何体如图所示,底面ABCD,,底面是一个直角梯形,其中,,,.可知其最长棱长为.故选:C.由三视图可知:该几何体如图所示,底面ABCD,,底面是一个直角梯形,其中,,,即可得出.本题考查了四棱锥的三视图的有关计算,属于基础题.4.在极坐标系中,点到直线的距离等于A. 1B. 2C. 3D.【答案】A【解析】解:在极坐标系中,点,,,点P的直角坐标方程为,直线,直线的直角坐标方程为,点到直线的距离.故选:A.求出点P的直角坐标方程为,直线的直角坐标方程为,由此能求出点到直线的距离.本题考查点到直线的距离的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是基础题.5.在平面直角坐标系xOy中,点,点B在圆上,则的最大值为A. 3B.C.D. 4【答案】C【解析】解:,故选:C.根据向量减法的三角形法则转化为求,再根据两边之和大于等于第三边可得最大值.本题考查了直线与圆的位置关系,属中档题.6.设M,,,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】解:当,则为减函数,又,所以,可得,即“”是“”的充分条件,由“”不能推出“”,故由“”不能推出“”,即“”是“”的不必要条件,即即“”是“”的充分不必要条件,故选:A.由,则为减函数,可得“”的充要条件为:,再判断即可.本题考查了对数函数的增减性及充分必要条件,属简单题.7.已知函数,,则A. 曲线不是轴对称图形B. 曲线是中心对称图形C. 函数是周期函数D. 函数最大值为【答案】D【解析】解:根据题意,依次分析选项:对于A,函数,为轴对称图形,且其中一条对称轴为,,为轴对称图形,且其对称轴为,故是轴对称图形,且其对称轴为,A错误;对于B,,不是中心对称图形,则曲线不是中心对称图形,B错误;对于C,不是周期函数,不是周期函数,C错误;对于D,,当时,取得最小值,而,当时,取得最大值1,则函数最大值为;D正确;故选:D.根据题意,依次分析选项,综合即可得答案.本题考查函数的对称性、周期性和最值,关键掌握函数的性质,属于基础题.8.一个国际象棋棋盘由个方格组成,其中有一个小方格因破损而被剪去破损位置不确定“L”形骨牌由三个相邻的小方格组成,如图所示现要将这个破损的棋盘剪成数个“L”形骨牌,则A. 至多能剪成19块“L”形骨牌B. 至多能剪成20块“L”形骨牌C. 一定能剪成21块“L”形骨牌D. 前三个答案都不对【答案】C【解析】解:由下图的一个图形能剪成2块“L”形骨牌,在个国际象棋棋盘由个方格组成,其中有一个小方格因破损而被剪去破损位置不确定,共包含有10个这样的能剪成2块“L”形骨牌的图形,且包含一个田字图形,这个田字图形能剪成1块“L”形骨牌,故要将这个破损的棋盘剪成数个“L”形骨牌,一定能剪成21块“L”形骨牌.故选:C.由右图的一个图形能剪成2块“L”形骨牌,在个国际象棋棋盘由个方格组成,其中有一个小方格因破损而被剪去破损位置不确定,共包含有10个这样的能剪成2块“L”形骨牌的图形,且包含一个田字图形,这个田字图形能剪成1块“L”形骨牌,由此能这个破损的棋盘剪成数个“L”形骨牌,一定能剪成“L”形骨牌的块数.本题考查满足条件的“L”形骨牌个数的求法,考查简单的计数问题等基础知识,考查化归与转化思想、数形结合思想,考查推理论论能力,是基础题.二、填空题(本大题共6小题,共30.0分)9.复数z满足方程,则______.【答案】【解析】解:由,得,则.故答案为:.把已知等式变形,再由复数代数形式的乘除运算化简得答案.本题考查复数代数形式的乘除运算,是基础题.10.已知角的终边经过点,则______;______.【答案】【解析】解:角的终边经过点,则;,故答案为:;.利用意角的三角函数的定义,诱导公式,求得所求式子的值.本题主要考查任意角的三角函数的定义,诱导公式,属于基础题.11.执行如图所示的程序框图,若输入的,则输出数据的总个数为______.【答案】6【解析】解:模拟程序的运行,可得满足条件,执行循环体,,输出n的值为3,满足条件,执行循环体,,输出n的值为7,满足条件,执行循环体,,输出n的值为15,满足条件,执行循环体,,输出n的值为31,满足条件,执行循环体,,输出n的值为63,满足条件,执行循环体,,输出n的值为127,此时,不满足条件,退出循环,结束.可得输出数据的总个数为6.故答案为:6.由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量n的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.12.设x,y满足约束条件则的取值范围是______.【答案】【解析】解:根据x,y满足约束条件作出可行域,如图1所示阴影部分.作出直线l:,将直线l向上平移至过点时,取得最小值:.则的取值范围是.故答案为:.作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合即可得到结论.本题主要考查线性规划的应用本题先正确的作出不等式组表示的平面区域,再结合目标函数的几何意义进行解答是解决本题的关键.13.能说明“若定义在R上的函数满足,则在区间上不存在零点”为假命题的一个函数是______.【答案】【解析】解:可举函数,可得,,即有,但在内存在零点1,可说明“若定义在R上的函数满足,则在区间上不存在零点”为假命题.故答案为:.可考虑函数,计算,但在内存在零点1.本题考查命题的真假判断,考查函数的零点问题,考查判断能力和推理能力,属于基础题.14.设双曲线:的左焦点为F,右顶点为若在双曲线C上,有且只有2个不同的点P使得成立,则实数的取值范围是______.【答案】【解析】解:双曲线:的左焦点为,右顶点为设,可得:,推出,,,,可得,,如图:当:时,在双曲线C上,有且只有2个不同的点P使得成立,故答案为:.设出P的坐标,求出双曲线:的左焦点为F,右顶点为利用推出的表达式,通过二次函数的性质,转化求解即可.本题考查双曲线的简单性质的应用,函数的最值的求法,考查数形结合以及转化思想的应用.三、解答题(本大题共6小题,共80.0分)15.在中,,,.Ⅰ求的值;Ⅱ试比较与的大小.【答案】本题满分为13分解:Ⅰ,,.由正弦定理可得:,分;分Ⅱ,,可得:,分,,分,分,,分,又函数在上单调递减,且B,,分【解析】Ⅰ由已知利用正弦定理,二倍角的正弦函数公式即可求得的值.Ⅱ利用同角三角函数基本关系式可求,利用二倍角公式可求,进而可求的值,根据三角形内角和定理,两角和的余弦函数公式可求的值,由于,根据余弦函数的图象和性质可求.本题主要考查了正弦定理,二倍角的正弦函数公式,同角三角函数基本关系式,三角形内角和定理,两角和的余弦函数公式,余弦函数的图象和性质在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.16.如图,在三棱柱中,侧面为正方形,M,N分别是,AC的中点,平面BCM.Ⅰ求证:平面平面;Ⅱ求证:平面BCM;Ⅲ若是边长为2的菱形,求直线与平面所成角的正弦值.【答案】证明:Ⅰ平面BCM,平面BCM,,正方形,,,平面,平面,平面平面.Ⅱ设BC中点为Q,连结NQ,MQ,,N分别是,AC的中点,,且,又,,,,四边形为平行四边形,,平面BCM,平面BCM,平面BCM.解:Ⅲ由Ⅰ知BA,BM,BC两两互相垂直,以B为原点,BA,BM,BC分别为x轴,y轴,z轴,建立空间直角坐标系,是边长为2的菱形,M为的中点,且,,0,,0,,,0,,,,,0,,,0,,,设平面的法向量y,,则,令,则,设直线与平面所成角为,则.直线与平面所成角的正弦值为.【解析】Ⅰ推导出,,从而平面,由此能证明平面平面.Ⅱ设BC中点为Q,连结NQ,MQ,推导出四边形为平行四边形,从而,由此能证明平面BCM.Ⅲ以B为原点,BA,BM,BC分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出直线与平面所成角的正弦值.本题考查面面垂直、线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.17.为保障食品安全,某地食品监管部门对辖区内甲、乙两家食品企业进行检查,分别从这两家企业生产的某种同类产品中随机抽取了100件作为样本,并以样本的一项关键质量指标值为检测依据已知该质量指标值对应的产品等级如下:根据质量指标值的分组,统计得到了甲企业的样本频率分布直方图和乙企业的样本频数分布表如下面表,其中.Ⅰ现从甲企业生产的产品中任取一件,试估计该件产品为次品的概率;Ⅱ为守法经营、提高利润,乙企业将所有次品销毁,并将一、二、三等品的售价分别定为120元、90元、60元一名顾客随机购买了乙企业销售的2件该食品,记其支付费用为X元,用频率估计概率,求X的分布列和数学期望;Ⅲ根据图表数据,请自定标准,对甲、乙两企业食品质量的优劣情况进行比较.【答案】解:Ⅰ由,解得,所以甲企业的样本中次品的频率为,即从甲企业生产的产品中任取一件,该件产品为次品的概率是;Ⅱ由图表知,乙企业在100件样本中合格品有96件,则一等品的概率为,二等品的概率为,三等品的概率为,由题意知,随机变量X的可能取值为:120,150,180,210,240;且,,,,,随机变量X的分布列为:所以X的数学期望为;Ⅲ答案不唯一,只要言之有理便可得分,参考如下;以产品的合格率非次品的占有率为标准,对甲、乙两家企业的食品质量进行比较,由图表可知,甲企业产品的合格率约为,乙企业产品的合格率约为,即乙企业产品的合格率高于甲企业产品的合格率,所以认为乙企业的食品生产质量更高.以产品次品率为标准,对甲、乙两家企业的食品质量进行比较也可得出结论.以产品中一等品的概率为标准,对甲、乙两家企业的食品质量进行比较,根据图表可知,甲企业产品中一等品的概率约为,乙企业产品中一等品的概率约为,即一企业产品中一等品的概率高于甲企业产品中一等品的概率,所以乙企业的食品生产质量更高.根据第Ⅱ问的定价,计算购买一件产品费用的数学期望,从而比较甲、乙两个企业产品的优劣.【解析】Ⅰ由频率和为1列方程求出a的值,再计算甲企业的样本中次品的频率;Ⅱ由题意知随机变量X的可能取值,计算对应的概率值,写出X的分布列,计算数学期望;Ⅲ答案不唯一,只要言之有理便可得分,可以参考产品的合格率为标准,以产品次品率为标准,以产品中一等品的概率为标准,根据第Ⅱ问的定价为标准等.本题考查了离散型随机变量的分布列与数学期望应用问题,是中档题.18.已知函数,其中.Ⅰ如果曲线与x轴相切,求a的值;Ⅱ若,证明:;Ⅲ如果函数在区间上不是单调函数,求a的取值范围.【答案】解:求导得曲线与x轴相切,此切线的斜率为0.由,解得,又由曲线与x轴相切,得解得.证明由题意,,令函数求导,得由,得,当x变化时,与的变化情况如下表所示:函数在上单调递增,在单调递减,故当时,,任给,,即,Ⅲ由题意可得,,,当时,在上恒成立,函数单调递增,当时,在上恒成立,函数单调递减,在上恒成立,或在上恒成立,在上恒成立,或在上恒成立,令,,由,解得,当时,,函数单调递减,当时,,函数单调递增,,,,或,或,函数在区间上不是单调函数,,故a的取值范围为.【解析】Ⅰ先求导,再根据导数的几何意义即可求出,Ⅱ构造函数,根据导数和函数单调性的关系以及最值得关系,即可证明Ⅲ先求出函数在上是单调函数a的范围即可,求导,分离参数构造函数,求出函数的最值即可.本题主要考查了利用导数研究函数的单调性和最值,以及导数的几何意义,同时考查了运算求解的能力,属于难题.19.已知椭圆C:的离心率为,左、右顶点分别为A,B,点M是椭圆C上异于A,B的一点,直线AM与y轴交于点P.Ⅰ若点P在椭圆C的内部,求直线AM的斜率的取值范围;Ⅱ设椭圆C的右焦点为F,点Q在y轴上,且,求证:为定值.【答案】解:Ⅰ由题意可得,,,,椭圆的方程为,设,由点P在椭圆C的内部,得,又,直线AM的斜率,又M为椭圆C上异于A,B的一点,,,证明Ⅱ由题意,,其中,则,直线AM的方程为,令,得点P的坐标为,,直线AQ的方程为,令,得点Q的坐标为,由,,,,即,故为定值【解析】Ⅰ根据题意可得得,由,解得即可出椭圆的方程,再根据点在其内部,即可线AM的斜率的取值范围,Ⅱ题意,,可得直线AM的方程,求出点P的坐标,再根据直线平行,求出直线AQ的方程,求出Q的坐标,根据向量的数量积即可求出,即可证明.本题考查直线与椭圆的位置关系的应用,考查转化思想以及计算能力,属于中档题20.设正整数数列A:,,,满足,其中如果存在3,,,使得数列A中任意k项的算术平均值均为整数,则称A为“k 阶平衡数列”.Ⅰ判断数列2,4,6,8,10和数列1,5,9,13,17是否为“4阶平衡数列”?Ⅱ若N为偶数,证明:数列A:1,2,3,,N不是“k阶平衡数列”,其中3,,.Ⅲ如果,且对于任意3,,,数列A均为“k阶平衡数列”,求数列A中所有元素之和的最大值.【答案】解:Ⅰ由不为整数,可得数列2,4,6,8,10不是4阶平衡数列;数列1,5,9,13,17为首项为1,公差为4的等差数列,则数列1,5,9,13,17是4阶平衡数列;Ⅱ证明:若N为偶数,设,考虑1,2,3,,k这k项,其和为.所以这k项的算术平均值为:,此数不是整数;若k为奇数,设,,考虑1,2,3,4,5,,;这k项,其和为,所以这k项的算术平均数为:,此数不是整数;故数列A,1,2,3,4,,N不是“k阶平衡数列”,其中3,4,;Ⅲ在数列A中任意两项,,,对于任意3,4,5,,,在A中任意取两项,,相异的项,并设这项和为由题意可得,都是k的倍数,即,,q为整数,可得,即数列中任意两项之差都是k的倍数,3,,,因此所求数列A的任意两项之差都是2,3,,的倍数,如果数列A的项数超过8,那么,,,均为2,3,4,5,6,7的倍数,即,,,均为420的倍数,为2,3,4,5,6,7的最小公倍数,,即,这与矛盾,故数列A的项数至多7项.数列A的项数为7,那么,,,均为2,3,4,5,6的倍数,即,,,均为60的倍数,为2,3,4,5,6的最小公倍数,又,且,所以,,,,所以当且仅当,取得最大值12873;验证可得此数列为“k阶平衡数列”,3,,,如果数列的项数小于或等于6,由,可得数列中所有项的之和小于或等于,综上可得数列A中所有元素之和的最大值为12873.【解析】Ⅰ由不为整数,数列1,5,9,13,17为等差数列,结合新定义即可得到结论;Ⅱ讨论k为偶数或奇数,结合新定义即可得证;Ⅲ在数列A中任意两项,,,作差可得数列中任意两项之差都是k的倍数,3,,,讨论数列A的项数超过8,推得数列A的项数至多7项讨论数列A的项数为7,数列的项数小于或等于6,奇数可得所求最大值.本题考查新定义的理解和运用,考查分类讨论思想和化简运算能力、推理能力,属于难题.。

2019年北京市西城区高三年级一模数学(理)试题和答案

2019年北京市西城区高三年级一模数学(理)试题和答案

北京市西城区高三统一测试数学(理科) 2019.4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合{|02}A x x =<<,{3,1,1,3}B =--,则集合()UA B =(A ){3,1}-- (B ){3,1,3}-- (C ){1,3} (D ){1,1}-2.若复数1i2iz -=-,则在复平面内z 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3. 执行如图所示的程序框图,则输出的k 值为 (A )4(B )5(C )7(D )9输出 开始否 结束是4.下列直线中,与曲线C :12,()24x t t y t =+⎧⎨=-+⎩为参数没有公共点的是 (A )20x y += (B )240x y +-= (C )20x y -=(D )240x y --=5. 设 ,,a b m 均为正数,则“b a >”是“a m ab m b+>+”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件6.如图,阴影表示的平面区域W 是由曲线0x y -=,222x y +=所围成的. 若点(,)P x y 在W 内(含边界),则43z x y =+的最大值和最小值分别为(A )52,7-(B )52,52-(C )7,52-(D )7,7-7. 团体购买公园门票,票价如下表:W Oyx现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为 (A )20 (B )30 (C )35 (D )408. 如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为(A(B )3(C )(D )4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在等比数列{}n a 中,21a =,58a =,则数列{}n a 的前n 项和n S =____.10.设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.11.函数()sin2cos2f x x x =+的最小正周期T =____;如果对于任意的x ∈R 都有()f x a ≤,那么实数a 的取值范围是____.12.某四棱锥的三视图如图所示,那么此四棱锥的体积为____.13. 能说明“若sin cos αβ=,则36090k αβ+=⋅+,其中k ∈Z ”为假命题的一组α,β的值是___.14.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c . 例如,图中上档的数字和9a =. 若a ,b ,c 成等差数列,则不同的分珠计数法有____种.侧(左)视图 正(主)视图俯视图 221三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知222a c b mac +-=,其中m ∈R . (Ⅰ)判断m 能否等于3,并说明理由;(Ⅱ)若1m =-,27b =,4c =,求sin A .16.(本小题满分14分)如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直,//AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,2AB =.(Ⅰ)求证://BF 平面CDE ; (Ⅱ)求二面角B EF D --的余弦值; (Ⅲ)判断线段BE 上是否存在点Q ,使得平面CDQ ⊥平面BEF ?若存在,求DABCEF出BQBE的值,若不存在,说明理由.17.(本小题满分13分)为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动.活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a 表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a ,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量乙1 2 07 2 2 1 0 1 2 3 6 6 a8 6 2 1 0 1 2 4 4 甲的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)18.(本小题满分13分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.19.(本小题满分14分)已知椭圆W :2214x y m m +=的长轴长为4,左、右顶点分别为,A B ,经过点(,0)P n 的直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合).(Ⅰ)当0n =,且直线CD ⊥x 轴时, 求四边形ACBD 的面积;(Ⅱ)设1n =,直线CB 与直线4x =相交于点M ,求证:,,A D M 三点共线.20.(本小题满分13分)如图,设A 是由n n ⨯(2)n ≥个实数组成的n 行n 列的数表,其中ij a (,1,2,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.定义1122st s t s t sn tn p a a =(,1,2,,)s t n =为第s 行与第t 行的积. 若对于任意,s t (st ),都有0st p =,则称数表A 为完美数表. (Ⅰ)当2n =时,试写出一个符合条件的完美数表; (Ⅱ)证明:不存在10行10列的完美数表; (Ⅰ)设A 为n 行n 列的完美数表,且对于任意的1,2,,i l =和1,2,,j k =,都有1ij a =,证明:kl n ≤.北京市西城区高三统一测试数学(理科)参考答案及评分标准 2019.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.C5.C 6.A 7.B 8.B二、填空题:本大题共6小题,每小题5分,共30分.9.1122n --10.311. π;a 12.4313.答案不唯一,如110α=,20β= 14.32注:第11题第一问3分,第二问2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分)解:(Ⅰ)当3m =时,由题可知 2223a c b ac +-=,由余弦定理2222cos b a c ac B =+-,……………… 3分 得2223cos 22a cb B ac +-==. ……………… 4分这与cos [1,1]B ∈-矛盾,所以m 不可能等于3 . ……………… 6分(Ⅱ)由(Ⅰ),得 1cos 22m B ==-,所以2π3B =. ……………… 7分因为b =4c =,222a c b ac +-=-, 所以216284a a +-=-,解得6a =-(舍)或2a =. ……………… 9分在△ABC 中,由正弦定理sin sin a bA B=, ……………… 11分得sin sina B Ab ===. ……………… 13分16.(本小题满分14分)解:(Ⅰ)由底面ABCD 为平行四边形,知//AB CD ,又因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以//AB 平面CDE . ……………… 2分 同理//AF 平面CDE , 又因为ABAF A =,所以平面//ABF 平面CDE . ……………… 3分 又因为BF ⊂平面ABF ,所以//BF 平面CDE . ……………… 4分 (Ⅱ)连接BD ,因为平面ADEF ⊥平面ABCD ,平面ADEF平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD . 则DE DB ⊥. 又因为DE AD ⊥,AD BE ⊥,DE BE E =,所以AD ⊥平面BDE ,则AD BD ⊥.故,,DA DB DE 两两垂直,所以以,,DA DB DE 所在的直线分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 6分 则(0,0,0)D ,(1,0,0)A ,(0,1,0)B ,(1,1,0)C -,(0,0,2)E ,(1,0,1)F ,所以(0,1,2)BE =-,(1,0,1)EF =-,(0,1,0)=n 为平面DEF 的一个法向量.设平面BEF 的一个法向量为(,,)x y z =m ,由0BE ⋅=m ,0EF ⋅=m ,得20,0,y z x z -+=⎧⎨-=⎩令1z =,得(1,2,1)=m . ………………8分所以6cos ,||||3⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,所以二面角B EF D --的余弦值为63.………………10分 (Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,DA B C EyxzF所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩……………… 12分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, …………… 13分 解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. 14分17.(本小题满分13分)解:(Ⅰ)甲组10名学生阅读量的平均值为12681011121217211010+++++++++=,乙组10名学生阅读量的平均值为124412131616(10)20981010a a+++++++++++=. …………… 2分由题意,得981010a+>,即2a <. ……………… 3分 故图中a 的取值为0或1. …………… 4分 (Ⅱ)由图可知,甲组“阅读达人”有2人,乙组“阅读达人”有3人.由题意,随机变量X 的所有可能取值为:1,2,3. ……………… 5分且212335C C 3(1)C 10P X ⋅===,122335C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. 8分 所以随机变量的分布列为:………… 9分X所以3319()123105105E X =⨯+⨯+⨯=. …………10分 (Ⅲ)222102s s s <<. ………… 13分18.(本小题满分13分)解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e()3e 3xx m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. ……… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……… 8分对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分 由()0g x '=,解得11x =-,23x =. ……… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …… 11分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-, 所以当4132e e m -<<或36e m =时,直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. … 13分19.(本小题满分14分)解:(Ⅰ)由题意,得244a m ==, 解得1m =. …………… 2分所以椭圆W 方程为2214x y +=. ……………… 3分当0n =,及直线CD ⊥x 轴时,易得(0,1)C ,(0,1)D -. 且(2,0)A -,(2,0)B .所以||4AB =,||2CD =,显然此时四边形ACBD 为菱形,所以四边形ACBD 的面积为14242⨯⨯=. 5分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W的方程,得C,(1,D , 易得CB的方程为2)y x =-.则(4,M,(6,AM =,(3,AD =, 所以2AM AD =,即,,A D M 三点共线. ………… 7分 当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y ,联立方程22(1), 1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. … 9分 由题意,得0∆>恒成立,故2122841k x x k +=+,21224441k x x k -=+. ……… 10分 直线CB 的方程为11(2)2y y x x =--. 令4x =,得112(4,)2y M x -. ………… 11分 又因为(2,0)A -,22(,)D x y ,则直线AD ,AM 的斜率分别为222AD y k x =+,113(2)AM y k x =-, ……… 12分 所以21211221123(2)(2)23(2)3(2)(2)AD AM y y y x y x k k x x x x --+-=-=+--+. 上式中的分子 211221123(2)(2)3(1)(2)(1)(2)y x y x k x x k x x --+=----+121225()8kx x k x x k =-++22224482584141k k k k k k k -=⨯-⨯+++ 0=, 所以0AD AM k k -=.所以,,A D M 三点共线. ………… 14分20.(本小题满分13分) 解:(Ⅰ)答案不唯一. 如: (3)分(Ⅱ)假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:(1)把完美数表的任何一列的数变为其相反数(即1+均变为1-,而1-均变为1+),得到的新数表是完美数表;(2)交换完美数表的任意两列,得到的新数表也是完美数表. ……… 5分 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1, 2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1, 3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2, 3行中的数为-1”的有w 列(如上表所示), 则10x y z w +++= ○1由120p =,得x y z w +=+; ○2 由130p =,得x z y w +=+; ○3 由230p =,得x w y z +=+. ○4 解方程组○1,○2,○3,○4,得52x y z w ====. 这与,,,x y z w ∈N 矛盾,所以不存在10行10列的完美数表. …………… 8分 (Ⅲ)记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和122222l a a a X +++= ,……,第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =和1,2,,j k =,都有1ij a =,所以12k X X X l ====. …………… 9分又因为对于任意,s t (st ),都有0st p =, 所以22212n X X X ln +++=. ……………… 11分又因为22222221212n k X X X X X X l k ++++++=≥,所以2ln l k ≥,即kl n ≤. ………… 13分。

2019年【西城一模】北京市西城区高三一模试卷数学(理)试题及答案

2019年【西城一模】北京市西城区高三一模试卷数学(理)试题及答案

高考数学精品复习资料2019.5北京市西城区高三一模试卷数 学(理科) 20xx.4第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()U A B =ð( )(A )(,2]-∞(B )(,1]-∞(C )(2,)+∞(D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( ) (A )2(B )12(C )114(D )114-3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( ) (A )2ρ=(B )2θπ=(C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4(C )5(D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( )(A ) 4个 (B )6个(C )10个(D )14个BADC. P第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD =,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:○1 当2a =时,函数()f x 的值域为[1,4]; A BD CP○2 (0,)a ∀∈+∞,都有(1)1f =成立;○3 (0,)a ∀∈+∞,函数()f x 的最大值都等于4. 其中所有正确结论的序号是_________.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos =B ,2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品.(Ⅰ)根据频率分布表中的数据,写出a ,b 的值;(Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按.三个..等级分层抽样......所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望.17.(本小题满分14分)如图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,E 是CD 的中点,1D E CD ⊥,22AB BC ==.(Ⅰ)求证:1⊥BC D E ; (Ⅱ)求证:1B C // 平面1BED ;(Ⅲ)若平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,求线段1D E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212x W y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.1(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<; (Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区高三一模试卷参考答案及评分标准高三数学(理科) 20xx.4一、选择题:本大题共8小题,每小题5分,共40分.1.C 2.B 3.D 4.C 5.D 6.A 7.A 8.C 二、填空题:本大题共6小题,每小题5分,共30分. 9.25-10.8 4x =-11. 12.(3,5) 13.4814.○2,○3注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)(Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==, ……………… 3分 又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos =B ,(0,π)∈B ,所以 sin 3B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分 因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . ………………11分故△ABC 的面积1sin 22S bc A ==. ………………13分16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分 (Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分 所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. ……………… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验, 所以033127(0)C (1)464P X ==⨯-=, 1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X 的分布列为:………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. ………………13分(注:写出1(3,)4X B ,3311()C ()(1)44k kk P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥, 又因为 1=CDCC C ,所以 BC ⊥平面11DCC D , ………………2分 因为 1D E ⊂平面11DCC D , 所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . ………………6分 又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,所以 1//B C 平面1BED . (8)(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥, 又因为 1D E CD ⊥,BCCD C =,1所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴 如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G . 设平面1BED 法向量为(,,)x y z =n , 因为1(1,1,0), (0,0,)EB ED a ==,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x =,得(1,1,0)=-n . ………………11分 设平面11BCC B 法向量为111(,,)x y z =m , 因为1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩m m得11110,0.x x y az =⎧⎨++=⎩令11z =,得(0,,1)a =-m . ………………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3, 得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分 解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=, 又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. ……………… 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……………… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分 以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+,令()ln 10h x x '=+=,解得1e=x . ……………… 9分 随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,且min 11()()e e==-h x h . ……………… 11分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e[1]. ……………… 13分19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==, ……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分 (Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412kmx x k-+=+, 21222212m x x k -=+. ……………… 9分 由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, ………………10分 解得2k =±……………… 11分 由,C D 是线段MN 的两个三等分点,得||3||MN CD =.12|x x -= ……………… 12分即 12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立.所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为2y x =±,或2y x =-±. ……………… 14分20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥, 所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤, 所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠.所以 112b ≤, ……………… 6分 因为 514b b d =+,50b >, 所以 51511422d b b b =-->-≥,即18d >-,综上,得108d -<<. ……………… 7分 (Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q -++++=++++.因为{}n c 为{}n a 的一个m 项子列, 所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,Kq K L L*=∈N ,且,K L 互质,2L ≥). 当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++211111()()222≤-++++m , 112()2-=-m ,所以 112312()2m m c c c c -++++-≤. ……………… 10分当1K ≠时,因为 11111m m m m K c c q a L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a KM M N ,所以 211231(1)m m c c c c c q q q -++++=++++1232111111()----=++++m m m m M K K L K LL . 因为 2L ≥,*K M ∈N ,, 所以 21112311111()()2()2222m m m c c c c --++++++++=-≤.综上, 1231122m m c c c c -++++-≤. ……………… 13分。

2018-2019北京市西城区一模数学理科试题及答案

2018-2019北京市西城区一模数学理科试题及答案

北京市西城区高三统一测试数学(理科) 2019.4第Ⅰ卷(选择题 共40分)一、 选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设全集U =R ,集合{|02}A x x =<<,{3,1,1,3}B =--,则集合()U A B =ð(A ){3,1}-- (B ){3,1,3}-- (C ){1,3} (D ){1,1}-2.若复数1i2iz -=-,则在复平面内z 对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限(D )第四象限3. 执行如图所示的程序框图,则输出的k 值为 (A )4 (B )5(C )7 (D )94.下列直线中,与曲线C :12,()24x t t y t =+⎧⎨=-+⎩为参数没有公共点的是 (A )20x y += (B )240x y +-= (C )20x y -=(D )240x y --=5. 设 ,,a b m 均为正数,则“b a >”是“a m ab m b+>+”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件6.如图,阴影表示的平面区域W 是由曲线0x y -=,222x y +=所围成的. 若点(,)P x y 在W 内(含边界),则43z x y =+的最大值和最小值分别为(A)7-(B)-(C )7,-(D )7,7-7. 团体购买公园门票,票价如下表:现某单位要组织其市场部和生产部的员工游览该公园,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数之差为(A )20 (B )30 (C )35 (D )408. 如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线422x y +=围成的平面区域的直径为 (A(B )3(C )(D )4第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在等比数列{}n a 中,21a =,58a =,则数列{}n a 的前n 项和n S =____.10.设1F ,2F 为双曲线2222 1(0,0)x y C a b a b-=>>:的两个焦点,若双曲线C 的两个顶点恰好将线段12F F 三等分,则双曲线C 的离心率为____.11.函数()sin 2cos2f x x x =+的最小正周期T =____;如果对于任意的x ∈R 都有()f x a ≤,那么实数a 的取值范围是____.12.某四棱锥的三视图如图所示,那么此四棱锥的体积为____.13. 能说明“若sin cos αβ=,则36090k αβ+=⋅+,其中k ∈Z ”为假命题的一组α,β的值是___.14.如图所示,玩具计数算盘的三档上各有7个算珠,现将每档算珠分为左右两部分,左侧的每个算珠表示数2,右侧的每个算珠表示数1(允许一侧无珠),记上、中、下三档的数字和分别为a ,b ,c . 例如,图中上档的数字和9a =. 若a ,b ,c 成等差数列,则不同的分珠计数法有____种.侧(左)视图 正(主)视图俯视图2三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,已知222a c b mac +-=,其中m ∈R . (Ⅰ)判断m 能否等于3,并说明理由; (Ⅱ)若1m =-,b =4c =,求sin A .16.(本小题满分14分)如图,在多面体ABCDEF 中,梯形ADEF 与平行四边形ABCD 所在平面互相垂直, //AF DE ,DE AD ⊥,AD BE ⊥,112AF AD DE ===,AB(Ⅰ)求证://BF 平面CDE ;(Ⅱ)求二面角B EF D --的余弦值; (Ⅲ)判断线段BE 上是否存在点Q ,使得 平面CDQ ⊥平面BEF ?若存在,求 出BQBE的值,若不存在,说明理由.17.(本小题满分13分)为培养学生的阅读习惯,某校开展了为期一年的“弘扬传统文化,阅读经典名著”活动. 活动后,为了解阅读情况,学校统计了甲、乙两组各10名学生的阅读量(单位:本),统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以a 表示.(Ⅰ)若甲组阅读量的平均值大于乙组阅读量的平均值, 求图中a 的所有可能取值;(Ⅱ)将甲、乙两组中阅读量超过..15本的学生称为“阅读达人”. 设3a =,现从所有“阅读达人”里任取3人,求其中乙组的人数X 的分布列和数学期望.(Ⅲ)记甲组阅读量的方差为20s . 在甲组中增加一名学生A 得到新的甲组,若A 的阅读量为10,则记新甲组阅读量的方差为21s ;若A 的阅读量为20,则记新甲组阅读量的方差为22s ,试比较20s ,21s ,22s 的大小.(结论不要求证明)DABCE F18.(本小题满分13分)设函数2()e 3x f x m x =-+,其中∈m R .(Ⅰ)当()f x 为偶函数时,求函数()()h x xf x =的极值;(Ⅱ)若函数()f x 在区间[2,4]-上有两个零点,求m 的取值范围.19.(本小题满分14分)已知椭圆W : 2214x y m m+=的长轴长为4,左、右顶点分别为,A B ,经过点(,0)P n 的直线与椭圆W 相交于不同的两点,C D (不与点,A B 重合).(Ⅰ)当0n =,且直线CD ⊥x 轴时, 求四边形ACBD 的面积;(Ⅱ)设1n =,直线CB 与直线4x =相交于点M ,求证:,,A D M 三点共线.20.(本小题满分13分)如图,设A 是由n n ⨯(2)n ≥个实数组成的n 行n 列的数表,其中ij a (,1,2,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.定义1122st s t s t sn tn p a a =s 行与第t 行的积. 若对于任意,s t(s t ¹),都有0st p =,则称数表A 为完美数表.(Ⅰ)当2n =时,试写出一个符合条件的完美数表; (Ⅱ)证明:不存在10行10列的完美数表;(Ⅲ)设A 为n 行n 列的完美数表,且对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =,证明:kl n ≤.北京市西城区高三统一测试数学(理科)参考答案及评分标准 2019.4一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.D 3.D 4.C 5.C 6.A 7.B 8.B 二、填空题:本大题共6小题,每小题5分,共30分.9.1122n --10.311. π;a 12.4313.答案不唯一,如110α=,20β= 14.32注:第11题第一问3分,第二问2分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分. 15.(本小题满分13分)解:(Ⅰ)当3m =时,由题可知 2223a c b ac +-=,由余弦定理2222cos b a c ac B =+-, (3)分得2223cos 22a cb B ac +-==. ……………… 4分这与cos [1,1]B ∈-矛盾,所以m 不可能等于 3 . ……………… 6分(Ⅱ)由(Ⅰ),得 1cos 22m B ==-,所以2π3B =. ……………… 7分因为b =4c =,222a c b ac +-=-, 所以216284a a +-=-,解得6a =-(舍)或2a =. ……………… 9分在△ABC中,由正弦定理sin sina bA B=, (11)分得sinsin14a BAb===. (13)分16.(本小题满分14分)解:(Ⅰ)由底面ABCD为平行四边形,知//AB CD,又因为AB⊄平面CDE,CD⊂平面CDE,所以//AB平面CDE. ………………2分同理//AF平面CDE,又因为AB AF A=,所以平面//ABF平面CDE. ………………3分又因为BF⊂平面ABF,所以//BF平面CDE. ………………4分(Ⅱ)连接BD,因为平面ADEF⊥平面ABCD,平面ADEF平面ABCD AD=,D E AD⊥,所以DE⊥平面ABCD. 则D E D B⊥.又因为D E AD⊥,AD BE⊥,DE BE E=,所以AD⊥平面BDE,则AD BD⊥.故,,DA DB DE两两垂直,所以以,,DA DB DE所在的直线分别为x轴、y轴和z轴,如图建立空间直角坐标系,………………6分则(0,0,0)D,(1,0,0)A,(0,1,0)B,(1,1,0)C-,(0,0,2)E,(1,0,1)F,所以(0,1,2)BE=-,(1,0,1)EF=-,(0,1,0)=n为平面DEF的一个法向量.设平面BEF的一个法向量为(,,)x y z=m,由0BE⋅=m,0EF⋅=m,得20,0,y zx z-+=⎧⎨-=⎩令1z=,得(1,2,1)=m. ………………8分所以cos ,||||⋅<>==m n m n m n .如图可得二面角B EF D --为锐角,所以二面角B EF D --………………10分 (Ⅲ)结论:线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF . ………………11分证明如下:设(0,,2)([0,1])BQ BE λλλλ==-∈,所以(0,1,2)DQ DB BQ λλ=+=-.设平面CDQ 的法向量为(,,)a b c =u ,又因为(1,1,0)DC =-,所以0DQ ⋅=u ,0DC ⋅=u ,即(1)20,0,b c a b λλ-+=⎧⎨-+=⎩ (12)分若平面CDQ ⊥平面BEF ,则0⋅=m u ,即20a b c ++=, (13)分解得1[0,1]7λ=∈.所以线段BE 上存在点Q ,使得平面CDQ ⊥平面BEF ,且此时17BQ BE =. …… 14分17.(本小题满分13分)解:(Ⅰ)甲组10名学生阅读量的平均值为12681011121217211010+++++++++=,乙组10名学生阅读量的平均值为124412131616(10)20981010a a+++++++++++=. (2)分由题意,得981010a+>,即2a <. ……………… 3分 故图中a 的取值为0或1. ……………… 4分(Ⅱ)由图可知,甲组“阅读达人”有2人,乙组“阅读达人”有3人.由题意,随机变量X 的所有可能取值为:1,2,3. (5)分且212335C C 3(1)C 10P X ⋅===,122335C C 3(2)C 5P X ⋅===, 3335C 1(3)C 10P X ===. …… 8分所以随机变量的分布列为:……………… 9分所以3319()123105105E X =⨯+⨯+⨯=. ………………10分 (Ⅲ)222102s s s <<. ……………… 13分18.(本小题满分13分)解:(Ⅰ)由函数()f x 是偶函数,得()()f x f x -=,即22e ()3e 3x x m x m x ---+=-+对于任意实数x 都成立,所以0m =. ……………… 2分 此时3()()3h x xf x x x ==-+,则2()33h x x '=-+.由()0h x '=,解得1x =±. ……………… 3分 当x 变化时,()h x '与()h x 的变化情况如下表所示:所以()h x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-上单调递增. …………… 5分 所以()h x 有极小值(1)2h -=-,()h x 有极大值(1)2h =. ……………… 6分(Ⅱ)由2()e 30xf x m x =-+=,得23ex x m -=.所以“()f x 在区间[2,4]-上有两个零点”等价于“直线y m =与曲线23()ex x g x -=,[2,4]x ∈-有且只有两个公共点”. ……………… 8分X对函数()g x 求导,得223()e xx x g x -++'=. ……………… 9分由()0g x '=,解得11x =-,23x =. ……………… 10分 当x 变化时,()g x '与()g x 的变化情况如下表所示:所以()g x 在(2,1)--,(3,4)上单调递减,在(1,3)-上单调递增. …………… 11分 又因为2(2)e g -=,(1)2e g -=-,36(3)(2)e g g =<-,413(4)(1)e g g =>-, 所以当4132e em -<<或36e m =时,直线y m =与曲线23()e x x g x -=,[2,4]x ∈-有且只有两个公共点. 即当4132e em -<<或36e m =时,函数()f x 在区间[2,4]-上有两个零点. ……… 13分19.(本小题满分14分)解:(Ⅰ)由题意,得244a m ==, 解得1m =. ……………… 2分所以椭圆W 方程为2214x y +=. ……………… 3分 当0n =,及直线CD ⊥x 轴时,易得(0,1)C ,(0,1)D -. 且(2,0)A -,(2,0)B . 所以||4AB =,||2CD =,显然此时四边形ACBD 为菱形,所以四边形ACBD 的面积为14242⨯⨯=. …… 5分(Ⅱ)当直线CD 的斜率k 不存在时,由题意,得CD 的方程为1x =,代入椭圆W 的方程,得C ,(1,D ,易得CB 的方程为2)y x =-.则(4,M ,(6,AM =,(3,AD =, 所以2AM AD =,即,,A D M 三点共线. ……………… 7分当直线CD 的斜率k 存在时,设CD 的方程为(1)(0)y k x k =-≠,11(,)C x y ,22(,)D x y , 联立方程22(1),1,4y k x x y =-⎧⎪⎨+=⎪⎩ 消去y ,得2222(41)8440k x k x k +-+-=. ……… 9分由题意,得0∆>恒成立,故2122841k x x k +=+,21224441k x x k -=+. …………… 10分 直线CB 的方程为11(2)2y y x x =--. 令4x =,得112(4,)2y M x -. ……………… 11分又因为(2,0)A -,22(,)D x y , 则直线AD ,AM 的斜率分别为222AD y k x =+,113(2)AM y k x =-, …………… 12分 所以21211221123(2)(2)23(2)3(2)(2)AD AM y y y x y x k k x x x x --+-=-=+--+. 上式中的分子 211221123(2)(2)3(1)(2)(1)(2)y x y x k x x k x x --+=----+ 121225()8kx x k x x k =-++22224482584141k k k k k k k -=⨯-⨯+++ 0=, 所以0AD AM k k -=.所以,,A D M 三点共线. ……………… 14分20.(本小题满分13分) 解:(Ⅰ)答案不唯一. 如:……………… 3分(Ⅱ)假设存在10行10列的完美数表A .根据完美数表的定义,可以得到以下两个结论:(1)把完美数表的任何一列的数变为其相反数(即1+均变为1-,而1-均变为1+),得到的新数表是完美数表;(2)交换完美数表的任意两列,得到的新数表也是完美数表. ……………… 5分 完美数表A 反复经过上述两个结论的变换,前三行可以为如下形式:x 共列y 共列z 共列w 共列在这个新数表中,设前三行中的数均为1的有x 列,前三行中“第1, 2行中的数为1,且第3行中的数为-1”的有y 列,前三行中“第1, 3行中的数为1,且第2行中的数为-1”的有z 列,前三行中“第1行中的数为1,且第2, 3行中的数为-1”的有w 列(如上表所示),则10x y z w +++= ○1由120p =,得x y z w +=+; ○2 由130p =,得x z y w +=+; ○3 由230p =,得x w y z +=+. ○4 解方程组○1,○2,○3,○4,得52x y z w ====. 这与,,,x y z w ∈N 矛盾,所以不存在10行10列的完美数表. ……………… 8分 (Ⅲ)记第1列前l 行中的数的和112111l a a a X +++=,第2列前l 行中的数的和12222la a a X +++= ,……,第n 列前l 行中的数的和12n n ln n a a a X +++=,因为对于任意的1,2,,i l =L 和1,2,,j k =L ,都有1ij a =, 所以12k X X X l ====. (9)分又因为对于任意,s t (s t ¹),都有0st p =,所以22212n X X X ln +++=. (11)分又因为22222221212n k X X X X X X l k ++++++=≥,所以2ln l k ≥,即kl n ≤. ……………… 13分。

2019届西城高三数学(理)试卷及答案

北京市西城区 2018 — 2019 学年度第一学期期末试卷高三数学(理科)2019.1第Ⅰ卷(选择题共 40 分)一、 选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 设集合 A = {x | x > 1} ,集合 B ={a + 2},若A B =∅,则实数a 的取值范围是( )(A )(-∞, -1](B )(-∞,1](C )[-1, +∞)(D )[1, +∞)2. 下列函数中,值域为R 的偶函数是()(A ) y = x 2 +1(B ) y = e x - e - x(C ) y = lg | x |(D ) y =3. 设命题 p :“若sin α = 1 ,则α = π”,命题 q :“若a > b ,则 1 < 1 ”,则()2 6 a b(A )“ p ∧ q ”为真命题 (B )“ p ∨ q ”为假命题 (C )“ ⌝q ”为假命题(D )以上都不对4. 在数列{a }中,“对任意的n ∈ N * , a2 = a a ”是“数列{a }为等比数列”的( )nn +1n n +2n(A )充分而不必要条件(B )必要而不充分条件(C ) 充分必要条件(D )既不充分也不必要条件5. 一个几何体的三视图如图所示,那么这个几何体的表面积是( )(A )16 + 2(B )16 + 2正(主)视图侧(左)视图(C ) 20 + 2 (D )20 + 2俯视图2 2x 2353 51 1⎨ ⎩不超过 4 千米的里程收费 12 元;超过 4 千米的里程按每千米 2 元收费(对于其中不足千米的部分,若其小于0.5 千米则不收费,若其大于或等于 0.5 千米则按 1 千米收费);当车程超过 4 千米时,另收燃油附加费 1 元.⎧ y - x ≤1, 6. 设 x ,y 满足约束条件⎪x + y ≤3, ⎪ y ≥m ,若 z = x + 3y 的最大值与最小值的差为 7,则实数m =()(A ) 32 (B ) -3 2 (C ) 1 4(D ) - 1 47. 某市乘坐出租车的收费办法如下:相应系统收费的程序框图如图所示,其中 x (单位:千米)为行驶里程, y (单位:元)为所 收费用,用[x ]表示不大于x 的最大整数,则图中○1 处应填( )(A )y = 2[x - 1] + 4 2 1开始输入 x(B ) y = 2[x -(C ) y = 2[x + ] + 52 1] + 42 是 x > 4否(D ) y = 2[x + 1] + 528. 如图,正方形 ABCD 的边长为 6,点 E , F 分别在边 AD , BC 上,且 DE = 2AE , CF = 2BF . 如果对于常数λ ,在正方形 ABCD 的四条边上,有且只有 6 个不同的点 P 使得PE ⋅ P F =λ 成立,那 么λ 的取值范围是()(A ) (0, 7)(B ) (4, 7)(C ) (0, 4)(D ) (-5,16)ABFDPC输出 y结束y=12○1MNB OC第Ⅱ卷(非选择题共110 分)二、填空题:本大题共 6 小题,每小题5 分,共30 分.9.已知复数z 满足z(1+i) =2 -4i,那么z = .10.在∆ABC 中,角A,B,C 所对的边分别为a,b,c. 若A =B ,a = 3,c = 2 ,则cos C = .x2 y211.双曲线C:-16 4=1的渐近线方程为;设F1, F2为双曲线C 的左、右焦点,P 为C 上一点,且| PF1|= 4 ,则| PF2 |= .12.如图,在∆ABC 中,∠ABC = 90 ,AB = 3 ,BC = 4 ,点O 为BC 的中点,A以BC 为直径的半圆与AC ,AO 分别相交于点M ,N ,则AN = ;AM=.MC13.现有5 名教师要带3 个兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2 人,但其中甲教师和乙教师均不能单独带队,则不同的带队方案有种.(用数字作答)⎧64,x≤0, 14.某食品的保鲜时间t(单位:小时)与储藏温度x(单位:C )满足函数关系t =⎨⎩2kx+6 ,x > 0.且该食品在4 C 的保鲜时间是16 小时.已知甲在某日上午10 时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示. 给出以下四个结论:○1 该食品在6C的保鲜时间是8 小时;○2 当x∈[-6,6]时,该食品的保鲜时间t 随着x 增大而逐渐减少;○3 到了此日13 时,甲所购买的食品还在保鲜时间内;○4 到了此日14 时,甲所购买的食品已然过了保鲜时间.其中,所有正确结论的序号是.MAF三、解答题:本大题共 6 小题,共 80 分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分 13 分)已知函数 f (x ) = cos x (sin x +3 cos x ) -3, x ∈ R .2(Ⅰ)求 f (x ) 的最小正周期和单调递增区间;(Ⅱ)设α > 0 ,若函数 g (x ) = f (x + α) 为奇函数,求α 的最小值.16.(本小题满分 13 分)甲、乙两人进行射击比赛,各射击 4 局,每局射击 10 次,射击命中目标得 1 分,未命中目标得0 分. 两人 4 局的得分情况如下:甲 6 6 9 9乙79xy(Ⅰ)若从甲的 4 局比赛中,随机选取 2 局,求这 2 局的得分恰好相等的概率;(Ⅱ)如果 x = y = 7 ,从甲、乙两人的 4 局比赛中随机各选取 1 局,记这 2 局的得分和为 X , 求 X 的分布列和数学期望;(Ⅲ)在 4 局比赛中,若甲、乙两人的平均得分相同,且乙的发挥更稳定,写出 x 的所有可能取值.(结论不要求证明)17.(本小题满分 14 分)如图,在四棱锥 P - ABCD 中,底面 ABCD 是平行四边形,∠BCD = 135 ,侧面 PAB ⊥ 底面 ABCD ,∠BAP = 90 , AB = AC = PA = 2 , E , F 分别为BC , AD 的中点,点 M 在线段PD 上.(Ⅰ)求证: EF ⊥平面PAC ;P(Ⅱ)若 M 为 PD 的中点,求证:ME // 平面PAB ;(Ⅲ)如果直线 ME 与平面 PBC 所成的角和直线ME 与平面 ABCD 所成的角相等,求PM的值.DPDBEC318.(本小题满分 13 分)已知函数 f (x ) = x 2-1,函数 g (x ) = 2t ln x ,其中t ≤1 .(Ⅰ)如果函数 f (x ) 与 g (x ) 在 x = 1处的切线均为l ,求切线l 的方程及t 的值; (Ⅱ)如果曲线 y = f (x ) 与 y = g (x ) 有且仅有一个公共点,求t 的取值范围.19.(本小题满分 14 分)已知椭圆 C : x a 2+ y 2 b 2 = 1(a > b > 0) 的离心率为 2,点 A (1, ) 在椭圆 C 上. 2(Ⅰ)求椭圆 C 的方程;(Ⅱ)设动直线l 与椭圆 C 有且仅有一个公共点,判断是否存在以原点 O 为圆心的圆,满足此圆与l 相交两点 P 1 , P 2 (两点均不在坐标轴上),且使得直线OP 1 , OP 2在,求此圆的方程;若不存在,说明理由.的斜率之积为定值?若存20.(本小题满分 13 分)在数字1, 2,, n (n ≥2) 的任意一个排列 A :a , a ,中,如果对于i , j ∈ N *, i < j ,有a i > a j ,12那么就称(a i , a j ) 为一个逆序对. 记排列 A 中逆序对的个数为S ( A ) .如n =4 时,在排列 B :3, 2, 4, 1 中,逆序对有(3, 2) ,(3,1) ,(2,1) , (4,1) ,则S (B ) = 4 . (Ⅰ)设排列 C 3, 5, 6, 4, 1, 2,写出S (C ) 的值;(Ⅱ)对于数字1,2, ,n 的一切排列 A ,求所有S ( A ) 的算术平均值;(Ⅲ)如果把排列 A :a 1, a 2 ,, a n 中两个数字a i , a j (i < j ) 交换位置,而其余数字的位置保持不变,那么就得到一个新的排列 A ': b 1, b 2 ,, b n ,求证: S (A ) + S (A ') 为奇数.北京市西城区 2018 — 2019 学年度第一学期期末高三数学(理科)参考答案及评分标准2019.1一、选择题:本大题共 8 小题,每小题 5 分,共 40 分.3 , a n21.A 2.C 3.B 4.B 5.B 6.C 7.D 8.C 二、填空题:本大题共6 小题,每小题5 分,共30 分.9.-1- 3i11.y =±1x210.7912 12.13 - 291613.54 14.○1 ○4注:第11,12 题第一问2 分,第二问3 分.三、解答题:本大题共6 小题,共80 分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13 分)(Ⅰ)解:f (x) = cos x(sin x +3 cos x) -32= sin x cos x +=1sin 2x +3(2cos2x -1)23cos 2x………………4 分2 2= sin(2x +π) ,............................................... 6 分3所以函数f (x) 的最小正周期T =2π=π............................................................................... 7 分2由2kπ -π≤2x +π≤2kπ+π,k ∈Z ,2 3 2得kπ -5π≤x≤kπ+π,12 12所以函数f (x) 的单调递增区间为[kπ-5π,kπ+π] ,k ∈Z ...................................... 9 分12 12(注:或者写成单调递增区间为(kπ -5π,kπ+π) ,k ∈Z . )12 12(Ⅱ)解:由题意,得g(x) =f (x +α) = sin(2x + 2α+π) ,3因为函数g(x) 为奇函数,且x ∈R ,所以g(0) = 0 ,即sin(2α+π) = 0 ,......................................11 分3所以2α+π=kπ ,k ∈Z ,3解得α=kπ-π,k ∈Z ,验证知其符合题意.2 6又因为α> 0 ,C 3 2 所以α 的最小值为π ........................................................................................................... 13 分316.(本小题满分 13 分)(Ⅰ)解:记 “从甲的 4 局比赛中,随机选取 2 局,且这 2 局的得分恰好相等”为事件 A ,………………1 分由题意,得 P ( A ) =2 = 1 , 4所以从甲的 4 局比赛中,随机选取 2 局,且这 2 局得分恰好相等的概率为1. ……4 分3 (Ⅱ)解:由题意, X 的所有可能取值为13 ,15 ,16 ,18 ,...................... 5 分 且 P ( X = 13) = 3 , P ( X = 15) = 1 , P ( X = 16) = 3 , P ( X = 18) = 1,… ........ 7 分8 8 8 8所以 X 的分布列为:X 13 15 16 18 P381 83 81 8……………… 8 分所以E ( X ) = 13⨯ 3 +15⨯ 1 +16⨯ 3 +18⨯ 1= 15 .............................................................. 10 分 8 8 8 8 (Ⅲ)解: x 的可能取值为6 , 7 , 8 .......................................................................................... 13 分17.(本小题满分 14 分)(Ⅰ)证明:在平行四边形 ABCD 中,因为 AB = AC , ∠BCD = 135 ,所以 AB ⊥ AC .由E , F 分别为BC , AD 的中点,得 EF //AB ,所以 EF ⊥ AC ................................................................................................................................ 1 分 因为侧面PAB ⊥底面 ABCD ,且∠BAP = 90 ,所以PA ⊥底面 ABCD ................................................................................................................... 2 分 又因为EF ⊂底面 ABCD ,所以 PA ⊥ EF ................................................................................................................................ 3 分 又因为 PA AC = A , PA ⊂ 平面PAC , AC ⊂ 平面PAC ,所以 EF ⊥ 平面PAC ................................................................................................................... 4 分| ME ⋅ m | = | ME ⋅ n | ⎩ (Ⅱ)证明:因为M 为PD 的中点, F 分别为 AD 的中点,所以MF //PA ,又因为MF ⊄ 平面PAB , PA ⊂ 平面PAB , z所以MF // 平面PAB . ………………5 分PM同理,得 EF // 平面PAB .又因为MF EF =F , MF ⊂ 平面MEF , EF ⊂平面MEF , ADF 所以平面MEF // 平面PAB ........................................ 7 分 又因为ME ⊂平面MEF ,BECxy所以ME // 平面PAB ................................................... 9 分(Ⅲ)解:因为PA ⊥底面 ABCD , AB ⊥ AC ,所以 AP , AB , AC 两两垂直,故以 AB , AC , AP分别为 x 轴、 y 轴和 z 轴,如上图建立空间直角坐标系,则 A (0, 0, 0), B (2, 0, 0), C (0, 2, 0), P (0, 0, 2), D (-2, 2, 0), E (1,1, 0) ,所以PB = (2, 0, -2), PD = (-2, 2, -2) , BC = (-2, 2, 0),..................... 10 分设 PM = λ (λ ∈[0,1]) ,则PM = (-2λ, 2λ, -2λ) , PD 所以M (-2λ, 2λ, 2 - 2λ) , ME = (1+ 2λ,1- 2λ, 2λ - 2),易得平面 ABCD 的法向量m = (0, 0,1) ............................................................................................... 11 分 设平面 PBC 的法向量为n = (x , y , z ) ,由n ⋅ BC = 0 , n ⋅ PB = 0 ,得⎧-2x + 2 y = 0,⎨2x - 2z = 0,令x = 1, 得n = (1,1,1) .............................................................................................................................................12 分 因为直线ME 与平面PBC 所成的角和此直线与平面 ABCD 所成的角相等,所以| cos < ME , m >|=| cos < ME , n >| ,即| ME | ⋅ | m | | ME | ⋅ | n |, ............... 13 分 所以 | 2λ - 2 |=| 2λ | ,3解得λ =3 - 2 3 ,或λ = 3 +23 (舍) ...................................... 14 分18.(本小题满分 13 分)t (Ⅰ)解:求导,得 f '(x ) = 2x ,g '(x ) = 2t, (x > 0) . ............................. 2 分x由题意,得切线 l 的斜率k = f '(1) = g '(1) ,即k = 2t = 2 ,解得t = 1. ......... 3 分 又切点坐标为(1, 0) ,所以切线l 的方程为2x - y - 2 = 0 . .................. 4 分 (Ⅱ)解:设函数h (x ) = f (x ) - g (x ) = x 2 -1- 2t ln x ,x ∈(0, +∞) . ................. 5 分 “曲线 y = f (x ) 与 y = g (x ) 有且仅有一个公共点”等价于“函数 y = h (x ) 有且仅有一个零点”.2t 2x 2 - 2t求导,得h '(x ) = 2x - =6 分x x① 当t ≤0 时,由 x ∈(0, +∞) ,得h '(x ) > 0 ,所以h (x ) 在(0, +∞) 单调递增.又因为h (1) = 0 ,所以 y = h (x ) 有且仅有一个零点1,符合题意. .............. 8 分 ② 当t = 1时,当 x 变化时, h '(x ) 与h (x ) 的变化情况如下表所示:x(0,1)1 (1, +∞)h '(x )-+h (x )↘↗所以h (x ) 在(0,1) 上单调递减,在(1, +∞) 上单调递增, 所以当 x = 1时, h (x ) min = h (1) = 0 ,故 y = h (x ) 有且仅有一个零点1,符合题意. ............................10 分③ 当0 < t < 1时,令h '(x ) = 0 ,解得 x = .当 x 变化时, h '(x ) 与h (x ) 的变化情况如下表所示:x(0, t ) t ( t , +∞)h '(x ) -+h (x )↘↗所以h (x ) 在(0, t ) 上单调递减,在( t , +∞) 上单调递增,t 3 1 ⎩1所以当 x = 时, h (x ) min = h ( t ) . .....................................11 分因为h (1) = 0 , < 1,且h (x ) 在( t , +∞) 上单调递增,所以h ( t ) < h (1) = 0 .又因为存在 - 1 , - 1 -1 - 1 -,e 2t ∈(0,1) h (e 2t ) = e t -1- 2t ln e 2t = e t > 0所以存在 x 0 ∈(0,1) 使得h (x 0 ) = 0 ,所以函数 y = h (x ) 存在两个零点 x 0 ,1,与题意不符.综上,曲线 y = f (x ) 与 y = g (x ) 有且仅有一个公共点时, t 的范围是{t | t ≤0 ,或t = 1} .………………13 分19.(本小题满分 14 分) (Ⅰ)解:由题意,得 c=a3, a 2 = b 2 + c 2 , ................................2 分 2 又因为点 A (1, 3) 在椭圆C 上,2所以 1 + a 2 3 4b 2= 1, ................................................... 3 分解得a = 2 , b = 1 , c = ,所以椭圆 C 的方程为 x 4 + y 2 = 1 .................................................................................... 5 分(Ⅱ)结论:存在符合条件的圆,且此圆的方程为 x 2 + y 2 = 5 ................................................ 6 分证明如下:假设存在符合条件的圆,并设此圆的方程为 x 2 + y 2 = r 2 (r > 0) .当直线l 的斜率存在时,设l 的方程为 y = kx + m .................................................... 7 分⎧ y = kx + m ,⎪由方程组⎨ x 2 ⎪⎩ 4y 2= 1, 得(4k 2 +1)x 2 + 8kmx + 4m 2 - 4 = 0 , ................ 8 分因为直线l 与椭圆C 有且仅有一个公共点,所以∆ = (8km )2 - 4(4k 2 +1)(4m 2-4) = 0 ,即 m 2 = 4k 2 +1 .................................... 9 分⎧ y = kx + m , 由方程组⎨x 2 + y 2 = r 2 , 得(k 2 +1)x 2 + 2kmx + m 2 - r 2 = 0 , ................ 10 分t + 22则∆ = (2km )2 - 4(k 2 +1)(m 2 - r 2) > 0 .设 P (x , y ) , P (x , y ) ,则 x + x = -2km , x ⋅ x =1 1 12 2 2 1 2 k 2+ 1 1 2m 2 - r 2k 2 + 1, .............. 11 分设直线OP 1 , OP 2 的斜率分别为k 1 , k 2 ,y y (kx + m )(kx + m ) k 2 x x + km (x + x ) + m 2所以k k =1 2 = 1 2 = 1 2 1 2x 1 x 2 x 1 x 2 x 1 x 2k 2⋅ = m 2 - r 2k 2+ 1+km ⋅ -2km+ m 2 k 2 + 1= m 2 - r 2 k 2m 2 - r 2k 2 + 1 2 2m 2 - r 2(4 - r 2 )k 2 +1 , ...................... 12 分 将 m = 4k +1 代入上式,得k 1 ⋅ k 2 = 4k 2+ (1 - r 2 ). 4 - r 2 1 2要使得k 1k 2 为定值,则 4 = ,即r = 5 ,验证符合题意. 1 - r 2所以当圆的方程为 x 2 + y 2 = 5 时,圆与l 的交点 P , P 满足k k 为定值- 1.1 2 1 2当直线l 的斜率不存在时,由题意知l 的方程为 x = ±2 , 此时,圆 x 2 + y 2 = 5 与l 的交点 P , P 也满足k k =- 1. 4………………13 分1 2 1 24综上,当圆的方程为 x 2 + y 2 = 5 时,圆与l 的交点 P , P 满足斜率之积k k 为定值- 1.1 2 1 24………………14 分20.(本小题满分 13 分)(Ⅰ)解: S (C ) = 10 ;........................................................ 2 分(Ⅱ)解:考察排列 D d 1, d 2 ,d n 与排列 D 1:d n , d n -1,, d 2 , d 1 ,因为数对(d i , d j ) 与(d j , d i ) 中必有一个为逆序对(其中1≤i < j ≤n ),且排列D 中数对(d , d ) 共有C 2 = n (n -1) 个, ................................3 分 ijn2所以S (D ) + S (D ) =n (n -1) ........................................................................................................5 分12所以排列 D 与D 的逆序对的个数的算术平均值为 n (n -1) ................................................... 6 分14而对于数字 1,2,,n 的任意一个排列 A : a 1, a 2 , , a n ,都可以构造排列 A 1 :, d n -1, 1 2a , a , , a , a ,且这两个排列的逆序对的个数的算术平均值为n(n -1) . n n-1 2 1 4所以所有S(A) 的算术平均值为n(n -1) .......................................................................................7 分4(Ⅲ)证明:○1 当j=i+1,即a i,a j相邻时,不妨设a i <a i+1 ,则排列A'为a1,a2 , ,a i-1,a i+1,a i ,a i+2 , ,a n ,此时排列A'与排列A:a1,所以S(A') =S(A) +1,a2, ,an 相比,仅多了一个逆序对(ai+1, ai) ,所以S(A) +S(A') = 2S(A) +1为奇数......................................... 10 分○2 当j≠i+1,即a i,a j不相邻时,假设a i , a j 之间有m 个数字,记排列A:a1,a2 , ,a i ,k1,k2 , ,k m ,a j , ,a n ,先将a i 向右移动一个位置,得到排列A1:a1,a2 , ,a i-1,k1,a i ,k2 , , , k m ,a j , ,a n ,由○1 ,知S(A1)与S(A)的奇偶性不同,再将a i 向右移动一个位置,得到排列A2:a1,a2 , ,a i-1,k1,k2 ,a i ,k3 , , k m ,a j , ,a n ,由○1 ,知S(A2)与S(A1)的奇偶性不同,以此类推,a i 共向右移动m 次,得到排列A m:a1,a2 , , k1,k2 , , k m ,a i ,a j , ,a n ,再将a j 向左移动一个位置,得到排列A m+1:a1,a2 , ,a i-1,k1, , k m , a j ,a i , ,a n ,以此类推,a j 共向左移动m+1 次,得到排列A2m+1:a1,即为排列A',a2, ,aj,k1, ,km,ai, , an,由○1 ,可知仅有相邻两数的位置发生变化时,排列的逆序对个数的奇偶性发生变化,而排列A 经过2m +1次的前后两数交换位置,可以得到排列A',所以排列A 与排列A'的逆序数的奇偶性不同,所以S(A) +S(A') 为奇数.综上,得S(A) +S(A') 为奇数............................................ 13 分。

2018届北京市西城区高三第一次模拟考试卷数学(理)附答案

2018届北京市西城区高三第一次模拟考试卷数学(理)附答案第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.若集合,,则()A.B.C.D.2.执行如图所示的程序框图,输出的值为()A.2 B.3 C.4 D.53.已知圆的方程为.以原点为极点,轴正半轴为极轴建立极坐标系,该圆的极坐标方程为()A.B.C.D.4.正三棱柱的三视图如图所示,该正三棱柱的表面积是( )A .B .C .D .5.已知是正方形的中心.若,其中,,则( )A .B .C .D .6.设函数.则“有两个不同的零点”是“,使”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件7.函数,则的图象上关于原点对称的点共有( )A .0对B .1对C .2对D .3对8.某计算机系统在同一时间只能执行一项任务,且该任务完成后才能执行下一项任务.现有三项任务,,,计算机系统执行这三项任务的时间(单位:)依次为,,,其中.一项任务的“相对等待时间”定义为从开始执行第一项任务到完成该任务的时间与计算机系统执行该任务的时间之比.下列四种执行顺序中,使三项任务“相对等待时间”之和最小的是( ) A .B .C .D .U V W s U V W →→V W U →→W U V →→U W V→→第Ⅱ卷(非选择题共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.若复数的实部与虚部相等,则实数____.10.设等差数列的前项和为,若,,则____;____.11.已知抛物线的焦点与双曲线的一个焦点重合,则____;双曲线的渐近线方程是____________.12.设,若函数的最小正周期为,则____.13.安排甲、乙、丙、丁4人参加3个运动项目,每人只参加一个项目,每个项目都有人参加.若甲、乙2人不能参加同一个项目,则不同的安排方案的种数为____.(用数字作答)14.如图,在长方体中,,,点在侧面上.若点到直线和的距离相等,则的最小值是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(13分)在△中,已知.(1)求的大小;(2)若,,求△的面积.16.(13分)某企业2017年招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到1%)如下:(1 (2)从应聘岗位的6人中随机选择2人.记为这2人中被录用的人数,求的分布列和数学期望;(3)表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于5%),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)A B C D E E A B C D E17.(14分)如图1,在△中,,分别为,的中点,为的中点,,.将△沿折起到△的位置,使得平面平面,如图2.(1)求证:;(2)求直线和平面所成角的正弦值;(3)线段上是否存在点,使得直线和所成角的余弦值为?若存在,求出的值;若不存在,说明理由.图1 图218.(13分)已知函数,其中.(1)若曲线在处的切线与直线垂直,求的值;(2)当时,证明:存在极小值.19.(14分)已知圆和椭圆,是椭圆的左焦点.(1)求椭圆的离心率和点的坐标;(2)点在椭圆上,过作轴的垂线,交圆于点(不重合),是过点的圆的切线.圆的圆心为点,半径长为.试判断直线与圆的位置关系,并证明你的结论.20.(13分)数列:满足:.记的前项和为,并规定.定义集合.(1)对数列:,,,,,求集合;(2)若集合,证明:;(3)给定正整数.对所有满足的数列,求集合的元素个数的最小值.2018届北京市西城区高三第一次模拟考试卷数学(理)答案一、选择题:本大题共8小题,每小题5分,共40分.1-5.DCBDB 6-8.CCA二、填空题:本大题共6小题,每小题5分,共30分.9.10.6,11.,12.213.30 14.注:第10,11题第一空3分,第二空2分.三、解答题:本大题共6小题,共80分.其他正确解答过程,请参照评分标准给分.15.【答案】(1);(2)见解析.【解析】(1)因为,所以.在△中,由正弦定理得,所以.因为,所以.(2)在△中,由余弦定理得,所以,整理得,解得,或,均适合题意.当时,△的面积为.当时,△的面积为.16.【答案】(1);(2)分布列见解析,;(3)、、、. 【解析】(1)因为表中所有应聘人员总数为,被该企业录用的人数为,所以从表中所有应聘人员中随机选择1人,此人被录用的概率约为.(2)X 可能的取值为0,1,2.因为应聘E 岗位的6人中,被录用的有4人,未被录用的有2人,所以;;.所以X 的分布列为:.(3)这四种岗位是:、、、.17.【答案】(1)见解析;(2);(3)存在,.【解析】(1)因为在△中,,分别为,的中点,()43E X =B C DE B C D E所以,.所以,又为的中点,所以.因为平面平面,且平面,所以平面,所以.(2)取的中点,连接,所以.由(1)得,.如图建立空间直角坐标系.由题意得,,,,.所以,,.设平面的法向量为,则,即,令,则,,所以.设直线和平面所成的角为,则.所以直线和平面所成角的正弦值为.(3)线段上存在点适合题意.设,其中.设,则有,所以,从而,所以,又,所以.令,整理得.解得,舍去.所以线段上存在点适合题意,且.18.【答案】(1);(2)见解析.【解析】(1)的导函数为.依题意,有,解得.(2)由及知,与同号.令,则.所以对任意,有,故在单调递增.因为,所以,,故存在,使得.与在区间上的情况如下:↘极小值↗所以在区间上单调递减,在区间上单调递增.所以存在极小值.19.【答案】(1),;(2)相切,证明见解析. 【解析】(1)由题意,椭圆的标准方程为.所以,,从而.因此,.故椭圆的离心率,椭圆的左焦点的坐标为.(2)直线与圆相切.证明如下:设,其中,则,依题意可设,则.直线的方程为,整理为.所以圆的圆心到直线的距离.因为.所以,e =()F即,所以直线与圆相切.20.【答案】(1);(2)见解析;(3).【解析】(1)因为,,,,,,所以.(2)由集合的定义知,且是使得成立的最小的k,所以.又因为,所以,所以.(3)因为,所以非空.设集合,不妨设,则由(2)可知,同理,且.所以.因为,所以的元素个数.取常数数列:,并令,则,适合题意,且,其元素个数恰为.综上,的元素个数的最小值为.。

2019年北京西城区高三数学理科试题答案

北京市西城区高三模拟测试数学(理科)参考答案及评分标准 2019.5一、选择题:本大题共8小题,每小题5分,共40分.1.B 2.C 3.D 4.A5.B 6.C 7.D 8.C二、填空题:本大题共6小题,每小题5分,共30分.9.1010.2214y x -=,2y x =± 11.4- 12.2 13.答案不唯一,如4n a n =- 14.① ③ 注:第10题第一问3分,第二问2分;第14题漏选、多选或错选均不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分)解:(Ⅰ)因为π()cos(2)2sin cos 6f x x x x =-+ ππcos2cos sin 2sin sin 266x x x =++……………… 4分3sin 22x x =+π)6x =+. ……………… 6 分 所以函数()f x 的最小正周期2ππ2T ==. ……………… 8分(Ⅱ)由(Ⅰ),知π())6f x x =+,所以ππ5π())])366g x x x =++=+. …………… 10分 由π5ππ2π22π262k x k -+++≤≤,k ∈Z , 得2ππππ36k x k -+-+≤≤, 所以()g x 的单调增区间为2ππ[π,π]36k k -+-+,k ∈Z . ……………… 13分 (注:单调区间写成开区间不扣分)16.(本小题满分14分)解:(Ⅰ)将从A ,B 这两个手机店售出的新款手机中分别随机抽取的1部手机记为甲和乙,记事件“甲手机为T 型号手机”为1M ,记事件“乙手机为T 型号手机”为2M , 依题意,有1122()6123P M ==+,293()695P M ==+,且事件1M ,2M 相互独立. ……………… 2分 设“抽取的2部手机中至少有1部为W 型号手机”为事件M ,4分 (Ⅱ)由表可知:W 型号手机销售量超过T 型号的手机店共有2个,故X 的所有可能取值为:0,1,2. ……………… 5分且032335C C 1(0)C 10P X ⋅===,122335C C 3(1)C 5P X ⋅===,212335C C 3(2)C 10P X ⋅===.……………… 8分 故5610325311010)(=⨯+⨯+⨯=X E . ……………… 10分 (Ⅲ).92m s =……………… 13分17.(本小题满分14分)解:(Ⅰ)在图1中,由2AE =,AF =,45A ∠= ,得AE EF ⊥.所以在图2中1A E EF ⊥. ……………… 1分 因为平面1A EF ⊥平面BCDEF ,平面1A EF 平面BCDEF EF =,所以1A E ⊥平面BCDEF . ……………… 3分 又因为CD ⊂平面BCDEF ,所以1A E CD ⊥. ……………… 4分(Ⅱ)由(Ⅰ)可得1,,EF ED EA 两两垂直,故以1,,EF ED EA 分别为x 轴、y 轴和z 轴,如图建立空间直角坐标系, ……………… 5分 则(0,0,0)E ,(2,0,0)F ,(0,2,0)D ,(4,2,0)B ,(4,6,0)C ,1(0,0,2)A ,(2,3,1)M .所以(4,0,0)DB = ,(2,1,1)DM = .设平面MBD 的一个法向量为(,,)x y z =m ,由0DB ⋅= m ,0DM ⋅= m ,得40,20,x x y z =⎧⎨++=⎩令1y =,得(0,1,1)=-m . (7)易得平面BCD 的法向量(0,0,1)=n . 所以cos ,||||⋅<>==m n m n m n . 由图可得二面角M BD C --为锐二面角,所以二面角M BD C --的大小为45. ……………… 9分 (Ⅲ)当N 为线段1A D 的中点(注:表述不唯一)时,平面//NEF 平面MBD . ……… 10分证明如下:由N 为线段1A D 的中点,得(0,1,1)N .所以(0,1,1)EN = ,又因为(2,0,0)EF = ,设平面NEF 的法向量为(,,)a b c =u ,由0EN ⋅= u ,0EF ⋅= u ,得0,20,b c a +=⎧⎨=⎩ 令1c =,得(0,1,1)=-u . ……………… 12分 又因为平面MBD 的法向量为(0,1,1)=-m ,所以=-m u ,即//m u ,所以平面//NEF 平面MBD . ……………… 14分解:(Ⅰ)求导,得()2ln f x x '=+, ……………… 1分 所以曲线()y f x =在点00(,())x f x 处的切线的斜率为00()2ln f x x '=+. ……… 3分 由题意,得02ln 1x +<,解得100e x -<<. ……………… 5分(Ⅱ)“1()()2f x k x -≥对(0,)x ∈+∞恒成立”等价于“当0x >时,1()()02f x k x --≥恒成立”. 令11()()()ln (1)22=--=+-+g x f x k x x x k x k , ……………… 7分 求导,得()ln 2g x x k '=+-,由()0g x '=,得2e k x -=. ……………… 8分 随着x 变化,()g x '与()g x 的变化情况如下表所示:所以()g x 在2(0,e )k -上单调递减,在2(e ,)k -+∞上单调递增.所以函数()g x 的最小值221(e )e 02k k g k --=-≥. ……………… 10分 令21()e 2k h k k -=-,则221(2)2e 02h -=⨯-=, 当2k =时,因为()g x 的最小值2(e )(1)0k g g -==,所以1()()2f x k x -≥对于0x >恒成立,符合题意; ……………… 11分 当2k >时,由22211()e e 022k h k --'=-<-<,得函数21()e 2k h k k -=-在(2,)+∞单调递减, 所以()(2)0h k h <=,故此时()g x 的最小值2(e )()0k g h k -=<,不符合题意.所以整数k 的最大值是2. ……………… 13分解:(Ⅰ)由题意,可知12p =,所以2p =. ……………… 1分 所以抛物线方程为24y x =,焦点为(1,0)F .不妨设00(,)A x y ,则0||15AF x =+=,解得04x =.代入抛物线方程,得04y =±,则点A 的坐标为(4,4)或(4,4)-,所以||OA = ……………… 3分故以OA 为直径的圆的方程为22(2)(2)8x y -+-=或22(2)(2)8x y -++=. …… 5分 (Ⅱ)结论:四边形OABC 不可能为等腰梯形. ……………… 6分 理由如下:假设四边形OABC 为等腰梯形,由题意,可知直线OA 的斜率k 存在且不为零,故设直线OA 的方程为y kx =,直线BC 的方程为(1)y k x =-,11(,)B x y ,22(,)C x y , ……………… 7分 联立2,4,y kx y x =⎧⎨=⎩消去y ,得2240k x x -=, 解得0x =或24x k =, 所以点244(,)A k k ,线段OA 的中点M 的坐标为222(,)k k. ……………… 9分 联立2(1)4 y k x y x =-⎧⎨=⎩,,消去y ,得2222(24)0k x k x k -++=. 因为直线BC 过焦点(1,0)F ,斜率存在且不为0,所以0∆>恒成立,所以212224k x x k++=,121x x =. ……………… 11分 设线段BC 的中点为33(,)N x y ,则2123222x x k x k ++==,332(1)y k x k =-=,故2222(,)k N k k+. ………………12分 因为直线MN 的斜率22222022MN k k k k k k-==+-,OA 的斜率为k ,所以1MN k k ⋅≠-,故直线MN 与直线OA 不垂直.这与等腰梯形上下底中点的连线垂直于上下底矛盾, 所以四边形OABC 不可能为等腰梯形. ……………… 14分20.(本小题满分13分)解:(Ⅰ)100(1,1,0)X =. ……………… 3分 (Ⅱ)假设,,i i i a b c 三个数中有2个为0,或三个数均为0. ……………… 4分(1)当,,i i i a b c 三个数中有2个为0时,显然i ≥1. 不妨设0(1)i i a b i ==≥,0i c ≠,则11||0i i i a a b --=-=,11||0i i i b b c --=-=,即111i i i a b c ---==. 这与11||0i i i c c a --=-≠矛盾; ……………… 6分(2)当,,i i i a b c 三个数均为0时,显然i ≥1.则11||0i i i a a b --=-=,11||0i i i b b c --=-=,11||0i i i c c a --=-=. 所以111i i i a b c w ---===(定值).由000,,a b c 三数互不相等,得2i ≥,且122||i i i a a b w ---=-=,122||i i i b b c w ---=-=,122||i i i c c a w ---=-=. 不妨设222i i i a b c ---≤≤,则有22i i b a w ---=,22i i c b w ---=,22i i c a w ---=, 由222222()()i i i i i i b a c b c a -------+-=-,得2w w =, 所以0w =,即1110i i i a b c ---===.以此类推,可得2220i i i a b c ---===,3330i i i a b c ---===,,1110a b c ===,0000a b c ===, 这与000,,a b c 三个数互不相等矛盾,所以对于任意的i ∈N ,,,i i i a b c 三个数中至多有一个数为0. ……………… 8分 (Ⅲ)设,,i i i a b c 三个数中最大的为i m ,记作max{,,}i i i i m a b c =.因为1||i i i a a b +=-,1||i i i b b c +=-,1||i i i c c a +=-,且,,i i i a b c ∈N ,所以1i i m m +≤,其中=0123i ,,,,, 由题意,可知i m ∈N ,其中=0123i ,,,, 所以123,,,m m m 不可能单调递减,即必存在某个*k ∈N ,使得1k k m m +=. ……………… 10分 根据1k X +的定义,可得向量(,,)k k k k X a b c =中的三个数,,k k k a b c 中必有0. 由(Ⅱ)知,,k k k a b c 中有且仅有一个为0,不妨设0k a =,(1)若k k b c ≠,由题意,不妨设0k k b c <<,则1||=k k k k a a b b +=-,1||=k k k k k b b c c b +=--,1||=k k k k c c a c +=-,1k k k m m c +== 所以2111||max{,}k k k k k k k a a b b c b m ++++=-<-<,同理21k k b m ++<,21k k c m ++<, 所以21k k m m ++<.又因为i m ∈N ,所以此种情形不可能一直出现(至多出现1k m +次).所以一定能找到某个*j ∈N ,使得j j b c =. ……………… 12分(2)若k k b c =,由题意,得(0,,)k k k X b b =,1(,0,)k k k X b b +=,2(,,0)k k k X b b +=,3(0,,)k k k X b b +=,所以存在正整数t k =,使得3t t X X +=.综上,存在正整数t ,使得3t t X X +=. ……………… 13分。

2018北京西城初三一模数学及答案(最新Word版本)

北京市西城区2018年九年级统一测试数学试卷一、选择题(此题共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成绩,自主研发的人工智能“绝艺”取得全世界最前沿的人工智能赛事冠军,这得益于所成立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为().A.105.810⨯C.9⨯B.115.8100.5810⨯⨯D.115810【答案】A【解析】用科学记数法表示为105.810⨯.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,能够看做中心对称图形的是().A.B.千里江山图京津冀协同发展C .D .【答案】C【解析】中心对称绕中心转180︒与自身重合.3.将34b b -分解因式,所得结果正确的选项是( ).A .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-【答案】D【解析】324(4)(2)(2)b b b b b b b -=-=+-.4.如图是某个几何体的三视图,该几何体是( ).A .三棱柱B .圆柱C .六棱柱D .圆锥内蒙古自治区成立七十周年河北雄安新区建立纪念俯视图左视图主视图【答案】C【解析】由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱.5.假设实数a ,b ,c ,d 在数轴上的对应点的位置如下图,那么正确的结论是( ).A .5a <-B .0b d +<C .0a c -< D.c <【答案】D【解析】①5a >-,故A 错. ②0b d +>,故B 错. ③0a c ->,故C 错.④01c <<2,应选D .6.若是一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ).A .45︒B .60︒C .72︒D .90︒【答案】B【解析】多边形内角和(2)180720n -⨯︒=︒,∴6n =.正多边形的一个外角360360606n ︒︒===︒.7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.1依照以上信息,以下推断不合理的是A.AQI类别为“优”的天数最多的是2018年1月B.AQI数据在0~100之间的天数最少的是2014年1月C.这五年的1月里,6个AQI类别中,类别“优”的天数波动最大D.2018年1月的AQI数据的月均值会达到“中度污染”类别【答案】D【解析】①AQI为“优”最多的天数是14天,对应为2018年1月,故A对.②优良轻度污染中度污染重度污染严重污染1月1月1月1月1月AQI在0~1001B③观看折线图,类别为“优”的波动最大,故①对.④2018年1月的AQI在“中度污染”的天数为1天,其他天AQI均在“中度污染”之上,因此D推断不合理.8.将A,B两位篮球运动员在一段时刻内的投篮情形记录如下:①投篮30次时,两位运动员都投中23次,因此他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750周围摆动,显示出必然的稳固性,能够估量A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数必然为160次.其中合理的是().A.①B.②C.①③D.②③【答案】B【解析】①在大量重复实验时,随实在验次数的增加,能够用一个事件显现的概率估量它的概率,投篮30次,次数太少,不可用于估量概率,故①推断不合理.②随着投篮次数增加,A运动员投中的概率显示出稳固性,因此能够用于估量概率,故②推断合理.③频率用于估量概率,但并非是准确的概率,因此投篮次时,只能估量投中200次数,而不能确信必然是160次,故③不合理.二、填空题(此题共16分,每题2分)9.假设代数式11x x -+的值为0,那么实数x 的值为__________.【答案】1x =【解析】101x x -=+,10x -=,1x =.10.化简:()()42(1)a a a a +--+=__________.【答案】8a -【解析】22421288()()()a a a a a a a a a +--+=+---=-.11.如图,在ABC △中,DE AB ∥,DE 别离与AC ,BC 交于D ,E 两点.假设49DEC ABC S S =△△,3AC =,那么DC =__________.【答案】2 【解析】∵DE AB ∥,E DCBA∴249DEC ABC S CD S AC ⎛⎫== ⎪⎝⎭△△, ∴23CD AC =. ∵3AC =, ∴2CD =.12.从杭州东站到北京南站,原先最快的一趟高铁G20次约用5h 抵达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁振兴号”,它的运行速度比原先的G20次的运行速度快35km/h ,约用4.5h 抵达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

相关文档
最新文档