带禁区约束的直线上选址问题

合集下载

《管理运筹学》第二课后习题答案

《管理运筹学》第二课后习题答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124m a xx x x Z ++= s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

森林航空消防工程建设标准(森林消防行业标准)

森林航空消防工程建设标准(森林消防行业标准)

森林航空消防工程建设标准第一章总则第一条为了加强森林航空消防工程建设,提高预防和扑救森林火灾能力和科学管理水平,使森林航空消防工程项目设计、建设做到标准统一、技术先进、安全适用、经济合理,特制定本标准。

第二条《森林航空消防工程项目建设标准》是为森林航空消防工程项目决策服务,控制建设水平的行业统一标准。

是编制、评估、审批、核准森林航空消防工程项目建议书和可行性研究报告的重要依据,也是有关部门审查该类工程项目初步设计和监督检查项目建设内容和建设规模的衡量标准。

第三条本标准适用于新建、扩建和改建的下列森林航空消防工程项目建设:1 航空护林站(以下简称航站);2 森林航空消防机场(以下简称森防机场);3 森林航空消防移动保障系统(以下简称移动保障系统);4 森林航空消防巡护区设施建设(野外停机坪、取水池)。

第四条森林航空消防工程项目建设应依据下列基本原则:1科学论证、规模适宜。

应根据森林资源分布情况和区域性火灾发生规律,合理规划森林航空消防面积及巡护半径,按区域自然条件和基础设施现状,合理确定航站的使用性质和类别、建设等级、设计机型、停机架数等。

2统一规划、合理布局。

应参考已规划巡护航线建设航站及其配套基础设施,尽量避免重复的巡护航线,做到技术上允许,经济上合理,同时符合行业发展建设规划,履行建设程序。

3安全可靠、功能完备。

统筹航站和巡护区森林航空消防设施的建设,使各项基础设施建设符合国家和民用航空行业有关技术标准和规范的要求,必须保证飞行安全。

4 技术先进、满足需求。

项目建设应进行多方案技术、经济比较,应注重技术进步和节能减排。

5以人为本、节约资源。

充分考虑机组和航站工作和生活需求,在保证森林航空消防安全和需求的前提下,因地制宜、合理规划、节约用地、节约能源、重视环境保护。

6合理利用,节约投资。

在有条件利用民航、军队或其他机场执行森林航空消防任务的情况下,宜尽量加以利用。

第五条森防机场属于《中华人民共和国民用航空法》中的“通用航空”范畴。

运筹学2012年复习

运筹学2012年复习


• • • • • • • • • • • •
NO. ITERATIONS=
2
RANGES IN WHICH THE BASIS IS UNCHANGED: OBJ COEFFICIENT RANGES VARIABLE CURRENT ALLOWABLE ALLOWABLE COEF INCREASE DECREASE X1 13.500000 1.750000 INFINITY X2 8.800000 1.400000 1.800000 X3 10.500000 2.700000 0.700000 RIGHTHAND SIDE RANGES CURRENT ALLOWABLE ALLOWABLE RHS INCREASE DECREASE 350.000000 202.000000 43.333332 460.000000 65.000000 168.333328
运筹学: 线性规划
x1 x2 x3 1 x2 x4 x1 x3 1
运筹学: 线性规划
<习题7> 某校篮球队准备从六名预备队 员中选拔三名为正式队员,并 使平均身高尽可能高。这六名 预备队员情况如表所示,队员 的挑选要满足如下条件: (1)至少补充一名后卫对员; (2)大李和小田之间只能入选 一个 (3)最多补充一名中锋 (4)只要大李或小赵入选,小 周就不能入选
运筹学: 线性规划
某个中型百货商场对售货人员(周工资200元)的 需求经统计如下表; 为了保证销售人员充分休息,销售人员每周连续工作5 天,连续休息2天。问应如何安排销售人员的工作时 间,使得所配售货人员的总费用最小?
星期
人数

12

15

12

课时作业8:3.3.2 简单的线性规划问题

课时作业8:3.3.2 简单的线性规划问题

3.3.2 简单的线性规划问题一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( ) A .-3 B .-2 C .-1D .0 5.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1D .-1,-2 6.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( ) A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________. 10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个. 11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m 3,五合板600 m 2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m 3,五合板2 m 2,生产每个书橱需要方木料0.2 m 3,五合板1 m 2,出售一张方桌可获利润80元,出售一个书橱可获利润120元. (1)如果只安排生产书桌,可获利润多少? (2)如果只安排生产书橱,可获利润多少? (3)怎样安排生产可使所得利润最大?答案精析1.A [画出可行域,如图所示, 解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A.] 2.D [作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4.]3.D [作出可行域,如图所示,y -1x 的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).]4.C [不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C.]5.D [由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.] 6.D [如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.]7.[2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6]. 8.[3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示. 在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.4解析 由线性约束条件⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4. 10.13解析 |x |+|y |≤2可化为 ⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3), B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方,∴x +2y -4>0, 则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5,令P (x ,y )为可行域内一动点,定直线x +2y -4=0, 则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时, z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:方木料(m 3) 五合板(m 2) 利润(元) 书桌(张) 0.1 2 80 书橱(个)0.21120(1)设只生产书桌x 张,可获得利润z 元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎪⎨⎪⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时, z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎪⎨⎪⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450. 所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600, 解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案

《管理运筹学》复习题及参考答案第一章运筹学概念一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过(C)来验证模型最优解。

A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括(A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量B变量 C 约束条件 D 目标函数5.模型中要求变量取值(D )A可正B可负C非正D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

《数据模型与决策》复习题及参考答案

《数据模型与决策》复习题及参考答案

《数据模型与决策》复习题及参考答案第一章绪言一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象。

4、通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能。

运筹学研究和解决问题的效果具有连续性。

6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解。

13用运筹学解决问题时,要分析,定议待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s·t”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

二、单选题1.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量 B.销售价格 C.顾客的需求 D.竞争价格2.我们可以通过( C )来验证模型最优解。

A.观察 B.应用 C.实验 D.调查3.建立运筹学模型的过程不包括( A )阶段。

A.观察环境 B.数据分析 C.模型设计 D.模型实施4.建立模型的一个基本理由是去揭晓那些重要的或有关的( B )A数量 B变量 C 约束条件 D 目标函数5.模型中要求变量取值( D )A可正 B可负 C非正 D非负6.运筹学研究和解决问题的效果具有( A )A 连续性B 整体性C 阶段性D 再生性7.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。

《管理运筹学》(第二版)课后习题答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

【备战】高考数学 高频考点归类分析 应用线性规划求最值(真题为例)

应用线性规划求最值典型例题:例1. (2012年天津市理5分)已知函数2|1|=1x y x --的图象与函数=2y kx -的图象恰有两个交点,则实数k 的取值范围是 ▲ .【答案】(0,1)(1,4)。

【考点】函数的图像及其性质,利用函数图像确定两函数的交点。

【分析】函数1)1)(1(112-+-=--=x x x x x y ,当1>x 时,11112+=+=--=x x x x y ,当1<x 时,⎩⎨⎧-<+<≤---=+-=--=1,111,11112x x x x x x x y , 综上函数⎪⎩⎪⎨⎧-<+<≤---≥+=--=1,111,111112x x x x x x x x y ,。

作出函数的图象,要使函数y 与kx y =有两个不同的交点,则直线kx y =必须在蓝色或黄色区域内,如图,此时当直线经过黄色区域时)2,1(B ,k 满足21<<k ,当经过蓝色区域时,k 满足10<<k ,综上实数k 的取值范围是(0,1)(1,4)。

例2. (2012年陕西省理5分)设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为 ▲ . 【答案】2。

【考点】利用导数研究曲线上某点切线方程,简单线性规划。

【解析】先求出曲线在点(1,0)处的切线,然后画出区域D ,利用线性规划的方法求出目标函数z 的最大值即可:∵1,0()2,0x y f x x x ⎧>⎪'==⎨⎪-≤⎩,(1)1f '=,∴曲线()y f x =及该曲线在点(1,0)处的切线方程为1y x =-。

∴由x 轴和曲线()y f x =及1y x =-围成的封闭区域为三角形。

2z x y =-在点(0,1)-处取得最大值2。

简单的线性规划问题

简单的线性规划问题例1:求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x解:不等式组所表示的平面区域如图所示:例2:若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1x +y ≥0x -y -2≤0,求目标函数z =x -2y 的最大值[解析] 先作出可行域如图.作直线x-2y=0在可行域内平移,当x-2y-z=0在y轴上的截距最小时z值最大.当移至A(1,-1)时,z max=1-2×(-1)=3,1.在平面直角坐标系中,若点(3t-2,t)在直线x-2y+4=0的下方,则t的取值范围是( C)A.(-∞,2) B.(2,+∞) C.(-2,+∞) D.(0,2) [解析]∵点O(0,0)使x-2y+4>0成立,且点O在直线下方,故点(3t -2,t )在直线x -2y +4=0的下方⇔3t -2-2t +4>0,∴t >-2.[点评] 可用B 值判断法来求解,若B>0,令d =B (Ax 0+By 0+C ),则d >0⇔点P (x 0,y 0)在直线Ax +By +C =0的上方;d <0⇔点P (x 0,y 0)在直线Ax +By +C =0的下方.2.设变量x 、y 满足约束条件⎩⎪⎨⎪⎧y ≥0,x -y +1≥0,x +y -3≤0,则z =2x +y的最大值为( C )A .-2B .4C .6D .8 [解析]3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -y +1≥0,y ≥1,则z =2x -y 的最大值为( C )A.-1 B.0 C.3 D.4[解析]作出可行域如图,作直线l0:2x-y=0,平移l0当平移到经过点A(2,1)时,z max=3.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z=3x -y 的最大值为( D )A .-4 B .0 C.43D .4[解析]该线性约束条件所代表的平面区域如图,易解得A (1,3),B (1,53),C (2,2),由z =3x -y 得y =3x -z ,由图可知当x =2,y =2时,z 取得最大值,即z 最大=3×2-2=4.故选D.5.已知x ,y 满足不等式组⎩⎪⎨⎪⎧x +y ≤2,y -x ≥0,x ≥0.目标函数z =ax +y只在点(1,1)处取最小值,则有( D ) A .a >1 B .a >-1 C .a <1D .a <-1[解析] 作出可行域如图阴影部分所示.由z =ax +y ,得y =-ax +z .只在点(1,1)处z 取得最小值,则斜率-a >1,故a <-1,故选D.6.已知约束条件⎩⎪⎨⎪⎧x -3y +4≥0,x +2y -1≥0,3x +y -8≤0,若目标函数z =x +ay (a ≥0)恰好在点(2,2)处取得最大值,则a 的取值范围为( C )A .0<a <13B .a ≥13C .a >13D .0<a <12[解析] 作出可行域如图,∵目标函数z =x +ay 恰好在点A (2,2)处取得最大值,故-1a>-3,∴a >13.★7.若2x +4y <4,则点(x ,y )必在( D )A .直线x +y -2=0的左下方B .直线x +y -2=0的右上方C .直线x +2y -2=0的右上方D .直线x +2y -2=0的左下方 [解析] ∵2x +4y ≥22x +2y ,由条件2x +4y <4知, 22x +2y <4,∴x +2y <2,即x +2y -2<0,故选D. ★8.设O 为坐标原点,点M 的坐标为(2,1),若点N (x ,y )满足不等式组⎩⎪⎨⎪⎧x -4y +3≤0,2x +y -12≤0,x ≥1,则使OM →·ON →取得最大值的点N 的个数是( D )A .1 B .2 C .3D .无数个[分析] 点N (x ,y )在不等式表示的平面区域之内,U =OM →·ON →为x ,y 的一次表达式,则问题即是当点N 在平面区域内变化时,求U 取到最大值时,点N 的个数.[解析] 如图所示,可行域为图中阴影部分,而OM →·ON →=2x +y ,所以目标函数为z =2x +y ,作出直线l :2x +y =0,显然它与直线2x +y -12=0平行,平移直线l 到直线2x +y-12=0的位置时目标函数取得最大值,故2x +y -12=0上每一点都能使目标函数取得最大值,故选D.9.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤3,x +2y -2≥0,所表示的平面区域为S ,若A 、B为区域S 内的两个动点,则|AB |的最大值为(B)A .25 B.13 C .3 D. 5[解析] 在直角坐标平面内画出题中的不等式组表示的平面区域,结合图形观察不难得知,位于该平面区域内的两个动点中,其间的距离最远的两个点是(0,3)与(2,0),因此|AB |的最大值是13,选B.10.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( B )A .-1 B .1 C.32D .2[解析] 本题考查了不等式组所表示的平面区域及数形结合思想解决问题的能力.由约束条件作出其可行域,如图由图可知当直线x =m 过点P 时,m 取得最大值,由⎩⎪⎨⎪⎧y =2x ,x +y -3=0,得,⎩⎪⎨⎪⎧x =1,y =2,∴P (1,2),此时x =m =1.[点评] 对于可行域中含有参数的情形,不妨先取特殊值来帮助分析思路.★11.设实数x ,y 满足条件⎩⎪⎨⎪⎧4x -y -10≤0,x -2y +8≥0,x ≥0,y ≥0,若目标函数z=ax +by (a >0,b >0)的最大值为12,则2a +3b的最小值为(A) A.256 B.83 C.113D .4[解析] 由可行域可得,当x =4,y =6时,目标函数z =ax +by 取得最大值,∴4a +6b =12,即a 3+b2=1,∴2a +3b =(2a +3b )·(a 3+b 2)=136+b a +a b ≥136+2=256,故选A.12.设不等式组⎩⎪⎨⎪⎧x -y +2≤0,x ≥0,y ≤4.表示的平面区域为D ,若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( D )A .(0,1) B .(1,2) C .[2,4] D .[2,+∞)[解析] 作出可行区域,如图,由题可知点(2,a 2)应在点(2,4)的上方或与其重合,故a 2≥4,∴a ≥2或a ≤-2,又a >0且a ≠1,∴a ≥2.★13.在坐标平面上,不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,所表示的平面区域的面积为( B ) A. 2 B.32 C.322D .2[解析] 不等式组⎩⎪⎨⎪⎧y ≥x -1,y ≤-3|x |+1,的图形如图.解得:A (0,1) D (0,-1) B (-1,-2) C (12,-12)S △ABC =12×|AD |×|x C -x B |=12×2×(12+1)=32,故选B.★14.已知动点P (x ,y )在正六边形的阴影部分(含边界)内运动,如图,正六边形边长为2,若使目标函数z =kx +y (k >0)取得最大值的最优解有无穷多个,则k 值为(A) A. 3 B.32C. 2 D .4[解析]由题可知,当x=0时,z=kx+y=y,因此要使目标函数z=kx+y(k>0)取得最大值,则相应直线经过题中的平面区域内的点时,相应直线在y轴上的截距最大.由目标函数z=kx+y(k>0)取得最大值的最优解有无穷多个,结合图形分析可知,直线kx+y=0的倾斜角为120°,于是有-k=tan120°=-3,k=3,选A.★15.在直角坐标系xOy中,已知△AOB的三边所在直线的方程分别为x=0,y=0,2x+3y=30,则△AOB内部和边上整点(即坐标均为整数的点)的总数为(B )A .95 B .91C .88D .75 [解析]由2x +3y =30知,y =0时,0≤x ≤15,有16个;y =1时,0≤x ≤13;y =2时,0≤x ≤12; y =3时,0≤x ≤10;y =4时,0≤x ≤9; y =5时,0≤x ≤7;y =6时,0≤x ≤6; y =7时,0≤x ≤4;y =8时,0≤x ≤3; y =9时,0≤x ≤1,y =10时,x =0.∴共有16+14+13+11+10+8+7+5+4+2+1=91个.16.已知不等式组⎩⎪⎨⎪⎧y ≤x ,y ≥-x ,x ≤a ,表示的平面区域S 的面积为4,点P (x ,y )∈S ,则z =2x +y 的最大值为___6_____.[解析]由题意知⎩⎪⎨⎪⎧12×2a×a =4,a >0,∴a =2,易得z =2x +y 的最大值为6.★17.若由不等式组⎩⎪⎨⎪⎧x ≤my +n ,x -3y ≥0,y ≥0,(n >0)确定的平面区域的边界为三角形,且它的外接圆的圆心在x 轴上,则实数m =__-33.[解析] 根据题意,三角形的外接圆圆心在x 轴上, ∴OA 为外接圆的直径,∴直线x =my +n 与x -3y =0垂直, ∴1m ×13=-1,即m =-33.18.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则目标函数z =4x+y 的最大值为_11_____[解析]如图,满足条件的可行域为三角形区域(图中阴影部分),故z=4x+y在P(2,3)处取得最大值,最大值为11.19.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:a b(万吨)c(百万元)A 50%1 322(万吨),则购买铁矿石的最少费用为___15_____(百万元).[解析] 设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取得最小值,最小值为:z min =3×1+6×2=15.1百吨需要资金2百万元,需场地2百平方米,可获利润3百万元;投资生产B 产品时,每生产1百米需要资金3百万元,需场地1百平方米,可获利润2百万元.现该单位有可使用资金14百万元,场地9百平方米,如果利用这些资金和场地用来生产A 、B 两种产品,那么分别生产A 、B 两种产品各多少时,可获得最大利润?最大利润是多少?[解析] 设生产A 产品x 百吨,生产B 产品y 百米,共获得利润S 百万元,则⎩⎪⎨⎪⎧2x +3y ≤14,2x +y ≤9,x ≥0,y ≥0,目标函数为S =3x +2y .作出可行域如图,由⎩⎪⎨⎪⎧2x +y =9,2x +3y =14,解得直线2x +y =9和2x +3y =14的交点为A ⎝ ⎛⎭⎪⎫134,52,平移直线y =-32x +S2,当它经过点A ⎝ ⎛⎭⎪⎫134,52时,直线y =-32x +S 2在y 轴上截距S 2最大,S 也最大.此时,S =3×134+2×52=14.75.因此,生产A 产品3.25百吨,生产B 产品2.5百米,可获得最大利润,最大利润为1475万元★21.北京某商厦计划同时出售新款空调和洗衣机,由于这两种产品的市场需求量大,供不应求,因此该商厦要根据实际情况(如成本、工资)确定产品的月供应量,以使得总利润达到最大,通过调查,得到这两种产品的有关数据如下表:试问:怎样确定两种产品的月供应量,才能使总利润达到最大,最大利润刘多少?正解:设空调、洗衣机的月供应量分别为x 、y ,总利润是p ,那么满足条件: .9600,942223023960)2(3)23(31:8226386)22()3()2()23(2220:)2()5(30230:)1()4(86)3(0,0)2(110105)1(3002030元的最大值是时即当此时当且仅当解之得得由得由p y x y x y x p y x y x p n m n m n m yx y n m x n m y x n y x m p y x y x yx p y x y x y x ⎩⎨⎧==⎩⎨⎧=+=+≤≤∴+++=∴⎩⎨⎧==⎩⎨⎧=+=+∴+=++++++=≤+≤≤+≤⎪⎪⎩⎪⎪⎨⎧+=≥≥≤+≤+10.某公司准备进行两种组合投资,稳健型组合投资每份由金融投资20万元,房地产投资30万元组成;进取型组合投资每份由金融投资40万元,房地产投资30万元组成.已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元.若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,那么这两种组合投资各应注入多少份,才能使一年获利总额最多?[解析] 设稳健型投资x 份,进取型投资y 份,利润总额为z (单位:10万元,则目标函数为z =x +1.5y (单位:10万元),线性约束条件为:⎩⎪⎨⎪⎧20x +40y ≤160,30x +30y ≤180,x ≥0,y ≥0x ∈N ,y ∈N,即⎩⎪⎨⎪⎧x +2y ≤8,x +y ≤6,x ≥0,y ≥0x ∈N ,y ∈N,作出可行域如图,解方程组⎩⎪⎨⎪⎧x +2y =8,x +y =6,得交点M (4,2),作直线l 0:x +1.5y =0,平移l 0,当平移后的直线过点M 时,z 取最大值:z max =(4+3)×10万元=70万元.答:稳健型投资4份,进取型投资2份,才能使一年获利总额最多.(理)(2012·辽宁文,9)设变量x ,y 满足⎩⎪⎨⎪⎧ x -y ≤10,0≤x +y ≤20,0≤y ≤15,则2x +3y 的最大值为( )A .20B .35C .45D .55 [答案] D[解析] 本题考查线性规划的知识.作出可行域如图所示:令z =2x +3y ,则y =-23x +13z . 要使z 取得最大值,需直线y =-23x +13z 在y 轴上的截距最大,移动l 0:y =-23x 当l 0过点C (5,15)时,z 取最大值z max =55.解线性规划问题,准确作出可行域是关键,同时还要注意目标函数z =2x +3y 与z =2x -3y 最优解是不同的.13.(文)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3t ,B 原料2t ;生产每吨乙产品要用A 原料1t ,B 原料3t ,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13t,B原料不超过18t.那么该企业可获得最大利润是( )A .12万元B .20万元C .25万元D .27万元[答案] D [解析] 设生产甲、乙两种产品分别为x t ,y t ,由题意得⎩⎪⎨⎪⎧ 3x +y ≤13,2x +3y ≤18,x ≥0,y ≥0,获利润ω=5x +3y ,画出可行域如图,由⎩⎪⎨⎪⎧ 3x +y =13,2x +3y =18,解得A (3,4).∵-3<-53<-23, ∴当直线5x +3y =ω经过A 点时,ωmax =27.(理)(2011·四川文,10)某运输公司有12名驾驶员和19名工人,有8辆载重量为10t 的甲型卡车和7辆载重量为6t 的乙型卡车,某天需送往A 地至少72t 的货物,派用的每辆车需载满且只运送一次,派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人;运送一次可得利润350元,该公司合理计划当天派用甲乙卡车的车辆数,可得最大利润z=( ) A.4650元B.4700元C .4900元D .5000元[答案] C [解析] 设该公司派甲型卡车x 辆,乙型卡车y 辆,由题意得⎩⎪⎨⎪⎧10x +6y ≥72,2x +y ≤19,x +y ≤12,0≤x ≤8,x ∈N 0≤y ≤7,y ∈N 利润z =450x +350y ,可行域如图所示.解⎩⎪⎨⎪⎧ 2x +y =19,x +y =12,得A (7,5).当直线350y +450x =z 过A (7,5)时z 取最大值,∴z max =450×7+350×5=4900(元).故选C..(理)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05.(1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x,y分别表示生产甲、乙产品的数量,在(1)的条件下,求x,y为何值时,z=xP甲+yP乙最大,最大值是多少?[解析] (1)依题意得⎩⎪⎨⎪⎧ P 甲-P 乙=0.251-P 甲=P 乙-0.05, 解得⎩⎪⎨⎪⎧ P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4.(2)依题意得x 、y 应满足的约束条件为⎩⎪⎨⎪⎧ 4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出以上不等式组所表示的平面区域(如图阴影部分),即可行域.作直线l :0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,且l 1与原点的距离最大,此时z 取最大值.解方程组⎩⎪⎨⎪⎧ x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.16.某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5min ,生产一个骑兵需7min ,生产一个伞兵需4min ,已知总生产时间不超过10h.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x 与骑兵个数y 表示每天的利润W (元);(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?[解析] (1)依题意每天生产的伞兵个数为100-x -y ,所以利润W =5x +6y +3(100-x -y )=2x +3y +300.(2)约束条件为:⎩⎪⎨⎪⎧ 5x +7y +4100-x -y ≤600,100-x -y ≥0,x ≥0,y ≥0,x ∈Z ,y ∈Z .整理得⎩⎪⎨⎪⎧ x +3y ≤200,x +y ≤100,x ≥0,y ≥0,x ∈Z ,y ∈Z .目标函数为W =2x +3y +300,如图所示,作出可行域.初始直线l 0:2x +3y =0,平移初始直线经过点A 时,W 有最大值,由⎩⎪⎨⎪⎧x +3y =200,x +y =100,得⎩⎪⎨⎪⎧x =50,y =50.最优解为A (50,50),所以W max =550(元).答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.2.已知a ,b ∈R +,a +b =1,M =2a +2b ,则M 的整数部分是( ) A .1 B .2 C .3 D .4[答案] B[解析] ∵a ,b ∈R +,a +b =1,∴0<a <1,设t =2a ,则t ∈(1,2),M =2a +2b =2a +21-a =t +2t≥22,等号在t =2时成立,又t =1或2时,M =3,∴22≤M <3,故选B.3.(2011·湖北高考)直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20,表示的平面区域的公共点有( )A .0个B .1个C .2个D .无数个[答案] B[解析] 直线2x +y -10=0与不等式组表示的平面区域的位置关系如图所示,故直线与此区域的公共点只有1个,选B.4.(2011·黄山期末)设二元一次不等式组⎩⎪⎨⎪⎧x +2y -19≥0,x -y +8≥0,2x +y -14≤0,所表示的平面区域为M ,使函数y =a x (a >0,a ≠1)的图象过区域M 的a 的取值范围是( )A .[1,3]B .[2,10] C .[2,9] D .[10,9][答案] C[解析] 作出不等式表示的平面区域如图,由⎩⎪⎨⎪⎧x +2y -19=0,x -y +8=0,得A (1,9),由⎩⎪⎨⎪⎧x +2y -19=0,2x +y -14=0,得B (3,8),当函数y =a x 过点A 时,a =9,过点B 时,a =2,∴要使y =a x 的图象经过区域M ,应有2≤a ≤9.5.(2012·河南洛阳市模拟)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥3x ,x +ay ≤7,其中a >1,若目标函数z =x +y 的最大值为4,则a的值为________.[答案] 2 [解析]作出不等式组表示的平面区域如图中阴影部分所示.∵y =-x +z ,∴欲使z 最大,只需使直线y =-x +z 的纵截距最大,∵a >1,∴直线x +ay =7的斜率大于-1,故当直线y =-x +z 经过直线y =3x 与直线x +ay =7的交点(71+3a ,211+3a )时,目标函数z 取得最大值,最大值为281+3a .由题意得281+3a=4,解得a =2.6.(2012·太原部分重点中学联考)设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y -1≥0,2x -y -6≤0,x +y -k -2≥0,且x 2+y 2的最小值为m ,当9≤m ≤25时,实数k 的取值范围是( )A .(17-2,5)B .[17-2,5]C .(17-2,5]D .(0,5][答案] B [解析]不等式组表示的可行域如图中的阴影部分,x 2+y 2的最小值m 即为|OA |2,联立⎩⎪⎨⎪⎧x -y -1=0x +y -k -2=0,得A (k +32,k +12).由题知9≤(k +32)2+(k +12)2≤25,解得17-2≤k ≤5.作出不等式组表示的平面区域如图中阴影部分.作出直线2x +y =0,平移该直线,当平移到经过平面区域内的点(3,0)时,相应的直线在x 轴上的截距最大,此时z =2x +y 取得最大值,最大值是6,故选C.8.某人有楼房一幢,室内面积共计180m 2,拟分隔成两类房间作为旅游客房.大房间每间面积18m 2,可住游客5名,每名游客每天住宿费40元;小房间每间面积15m 2,可住游客3名,每名游客每天住宿费为50元;装修大房间每间需要1000元,装修小房间每间需要600元.如果他只能筹款8000元用于装修,且游客能住满客房,他隔出大房间和小房间各多少间,能获得最大收益?[解析] 设隔出大房间x 间,小房间y 间时收益为z 元, 则x ,y 满足⎩⎪⎨⎪⎧18x +15y ≤180,1000x +600y ≤8000,x ≥0,y ≥0,x ,y ∈Z ,且z =200x +150y .约束条件可化简为: ⎩⎪⎨⎪⎧6x +5y ≤60,5x +3y ≤40,x ≥0,y ≥0,x ,y ∈Z .可行域为如图所示的阴影部分(含边界)作直线l :200x +150y =0,即直线l :4x +3y =0把直线l 向右上方平移至l 1的位置时,直线经过点B ,且与原点的距离最大,此时z =200x +150y 取得最大值.解方程组⎩⎪⎨⎪⎧6x +5y =60,5x +3y =40,得到B (207,607).由于点B 的坐标不是整数,而最优解(x ,y )中的x ,y 必须都是整数,所以,可行域内的点B (207,607)不是最优解,通过检验,当经过的整点是(0,12)和(3,8)时,z取最大值1800元.于是,隔出小房间12间,或大房间3间、小房间8间,可以获得最大收益.[点评] 当所求解问题的结果是整数,而最优解不是整数时,可取最优解附近的整点检验,找出符合题意的整数最优解.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

几何模型之二图形中的最短距离定值及不等式问题

学生: 科目: 数 学 教师: 谭 前 富知识框架在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。

最值问题的解决方法通常有两种: (1) 应用几何性质:① 三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ② 两点间线段最短;③ 连结直线外一点和直线上各点的所有线段中,垂线段最短; ④ 定圆中的所有弦中,直径最长。

⑵运用代数证法:① 运用配方法求二次三项式的最值; ② 运用一元二次方程根的判别式。

【例题精讲】一. 最短路径和几何不等式问题: 考查知识点----:“两点之间线段最短”,“两边之和大于第三边”,“斜边大于直角边”,“垂线段最短”,“点关于线对称”,“线段的平移”。

原型----“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

最短路径和几何不等式问题的两种基本模型----:Ⅰ、归于函数模型:即利用一次函数的增减性和二次函数的对称性及增减性,确定某范围内函数的最大或最小值Ⅱ、归于几何模型,这类模型又分为两种情况:(1)归于“两点之间的连线中,线段最短”。

凡属于求“变动的两线段之和的最小值”时,大都应用这一模型。

(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型。

解题总思路----找点关于线的对称点实现“折”转“直”,较难的会出现“三折线”转“直”等变式问题考查。

二.最短距离中的数形结合:例:求代数式9)12(422+-++x x 的最小值.课 题几何模型之二:图形中的最短距离、定值及不等式问题教学内容三.立体几何中的最短路径问题:(1)台阶问题 如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?(2)圆柱问题 有一圆形油罐底面圆的周长为24m ,高为6m ,一只老鼠从距底面1m 的A 处爬行到对角B 处吃食物,它爬行的最短路线长为多少?变式1:有一圆柱形油罐,已知油罐周长是12m ,高AB 是5m ,要从点A 处开始绕油罐一周建造梯子,正好到达A 点的正上方B 处,问梯子最短有多长?变式2: 桌上有一个圆柱形玻璃杯(无盖),高为12厘米,底面周长18厘米,在杯口内壁离杯口3厘米的A 处有一滴蜜糖,一只小虫从桌上爬至杯子外壁,当它正好爬至蜜糖相对方向离桌面3厘米的B 处时,突然发现了蜜糖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

杭州电子工业学院学报 第24卷第4期JOURNALOFHANGZHOUINSTITUTEOFVol.24,No.4  2004年8月ELECTRONICENGINEERINGAug.2004 

带禁区约束的直线上选址问题陈光亭,丁 巍,张 固(杭州电子科技大学理学院,浙江杭州310018)

收稿日期:2004-02-24

基金项目:国家自然科学基金(10371028),浙江省教育厅重点项目(20030622)作者简介:陈光亭(1965-),男,浙江磐安人,教授,博士,组合优化及其应用.

摘要:设欧氏平面上直线L的一侧有n个点的点集N,L上则有一个禁区集合F,现要在L上禁区集合以外找一点p,使得联结N∪{p}的最小网络之长达到最短。文章对这一问题提出了一个O

(n2)的近似算法,其性能比为32。

关键词:选址问题;最小生成树;分治法;性能比中图分类号:O157.5 文献标识码:A 文章编号:1001-9146(2004)04-0006-04

0 引 言在欧氏平面上有一条直线L,直线一侧有n个点:A

1,A2,…,An,在直线L上有若干个禁区区间:

(a1,b1),…,(am,bm),

问题是要在

L上禁区以外找一个点P,以及一个连接方式,使联结点集{P,A1,

A2,…,An}中各点的网络总长达到最短。把这一问题称为带禁区约束的直线上选址问题。这一问题在网络设计中有广泛应用。显然,当P选定后,{P,A

1,A2,…,An}

中各点间的连接问题实际上是个Steiner

最小树问题,这是一个NPC问题。因此上述选址问题也是一个NPC问题,由此,考虑用点集{P,A

1,A2,

…,A

n}的最小生成树来近似代替Steiner最小树。寻找P使{P,A1,A2,…,An}

的最小生成树之长达到

最短的问题称为带禁区约束的最小生成树(MST)问题。本文首先考虑带禁区约束的最小生成树问题的计算复杂性,然后用分治法确定直线L的一种划分,在此基础上给出了一个求解带禁区约束的最小生成树问题的O(n

2

)的算法。

1 带禁区约束的MST的若干结论设N={A

1,A2,…,An}为平面上直线L一侧的n个点,L上有若干个开区间构成的禁区集合,

直线

上禁区以外的点集称为可行集。设P为可行集中的一个点,易知在N∪{p}的最小生成树中,与P关联的边数至多为3条。设Ai,Aj,Ak是N中任取3点,现要在L上可行集内找一点P,使P到A

i,Aj,Ak3

点距离之和达到最小,这项工作的进行可由引理1得以保证。引理1 设L上到A

i,Aj,Ak3点距离之和最小的点x落在某个禁区区间(ai,bi)中,则只要比较ai

与bi到3点距离之和,和值小的一个即为P。

由此引理,为求L上可行集内到A

i,Aj,Ak3

点距离之和最小的点,可以不管禁区集合而求得L上到

Ai,Aj,Ak3点距离之和最小的点x,若x不在可行集内,则按引理1处理即可。在给定的精度要求下,这一工作可在常数时间内完成[1],由此即可推得一个穷举型的求解带禁区约束的最小生成树问题的方法:

N中任取s(s≤3)个点,求出L上F以外一点P,使P到s个点距离之和最小,然后求N∪{p}的最小生成树,当遍历N中所有s个点的不同取法,即可得到一个最优解。由于求平面上最小生成树算法的计算复杂性为O(nlogn),而N中任取s个点的取法有O(n

3),则此方法的复杂性为O(n4

logn)。

以上算法中,对每一个点P,都要求一次N∪{p}的最小生成树,而利用文献4中的引理3.1和引理3.2即可以简化这一工作,使得总的计算量可降到O(n3)。本文则进一步把计算量降到O(n

2

)。

2 L的一个划分以L作为X轴,N中所有点均在L上方,其中最左边及最右边的点的坐标分别为0与t。以θ1,θ2

表示与X轴正向成角度θ1,θ2的两个方向,x是L上某一点(其坐标也记为x),记k(x,

θ

1,θ2)为顶点在

x且以θ1,θ2的两个方向为界的一个锥,如图1所示。

对A∈N,定义A的邻近集如下:R

N(A,θ1,θ2)={x|x∈[0,t],且A是N∩k(x,θ1,θ2)中距

x最近

的点},可以说明R

N(A,θ1,θ2)由若干区间组成,这些区间称之为邻近区间。注意这里邻近集或邻近区

间都不考虑是否在可行集中的问题。

图1 θ1,θ2所确定的锥引理2 设A1,A2∈N,A1≠A2,I1与I2分别为A1,A2的一个邻近区间,则I1与I2至多有一个公共点,若y∈I1∩I2,则y是A1,A2的中垂线与L的交点。引理证明此处从略。由引理结果可以说明邻近区间的总数至多为C2n+2n≤n2。下面用分治法(Divide-and-Conquer)来找出N中各点的邻近集:

第一步 把N分成左右两个部分N1与N2,N1与N2中点数相差不超过1;

第二步 确定N1与N2中各点的邻近集,它们分别记为S1与S

2;

第三步 把S1与S2交叠,得到一个新的区间集S。所谓交叠,即是把S1与S2中所有区间端点重新由小到大排序,然后以这些端点依次构成区间,得到区间集S;

第四步 检查S中的区间。设[a,b]既是R

N1(A,θ1,θ2)中区间也是RN2

(B,θ1,θ2)的区间,A,B

的中垂线LAB与L的交点为c,不妨设A在LAB的左侧,B在LAB的右侧。当aR

N(

A,

θ1,θ2)而[c,b]∈RN(B,θ1,θ2);当a≥c,则[a,b]∈RN(B,θ1,θ2);当b≤c,则[a,b]∈RN(A,θ1,θ2)。

若[a,b]只是R

N1(A,θ1,θ2)(或RN2(B,θ1,θ2))中的区间,则[a,b]∈RN(A,θ1,θ2)(或[a,b]∈RN(

B,

θ1,θ2))。

7第4期 陈光亭等:带禁区约束的直线上选址问题 设T(n)是用分治法计算N的邻近集的计算量,T(n)由两部分组成,其一为计算N1与N2的邻近集的计算量2T(n/2),其二是对N1与N2的邻近集的交叠与检查。因为邻近区间总数不超过n

2

,故第

二部分计算量至多为n2次。则T(n)≤2T(n2)+n2,由此容易推得T(n)≤n2+n22+…+n22logn≤2n2。分别取(

θ

1,θ2)为(0°,60°),(60°,120°)(120°,180°),得到3个邻近集族,交叠这3族邻近集得到[0,

t]的一个划分,划分中每个区间I对应于N中至多3个点A,B,C,而I正是A,B,C3个点分别对应于上述3个方向角度区间的邻近区间,记C(I)={A,B,C}。设I是上面所得到的一个邻近区间,x∈I,C(I)={A,B,C},则有如下结论。定理3 存在N∪(x)的一个最小生成树,使得x只与C(I)中的点邻接。

证明:设Q是N∪(x)的最小生成树中与x邻接的一个点,且Q|C(I)。不妨设Q与A同属K(X,

0°,60°)。(1)x不在最小生成树中从A到Q的路上,则因为x∈RN(A,0°,60°),则|xA|≤|xQ|,若以xA

代替

xQ,只会使得生成树长度减少。(2)x在最小生成树中从A到Q的路上但x与A不邻接。考虑△QAx,则∠AxQ<60°,因此AQ

之长

必定小于△QAx最长边之长。而xQ在最小生成树中且x∈R

N(A,0°,60°)

,则|xA|≤|xQ|,|xQ|≤|AQ

|。这是一个矛盾。若Q与A同属k(x,120°,180°),则与前面情形完全对称。若Q与A同属于k(x,60°,120°),这时只要考虑∠AxQ=60°即Q与A分别在k(x,60°,120°)的两边边界上,而此时可把Q看成是在k(x,0°,60°)

或k(x,120°,180°)上,则又可一样加以证明。因此,必可有Q∈C(I)。

推论4 若关于N的带禁区约束的最小生成树已找到,且在L上的点为P,则当P在[0,t]内时,生成树中与P邻接的点集S必是某个C(I)的子集,且P是可行集中到S中各点距离之和最小的点。

3 算法及其性能比设L的划分已找到,且每个区间I相应地有C(I)。若关于点集N的带禁区约束的最小生成树问题的解已找到,且在L上的点为P。则由推论4可得,至于P是否在相应的I中则是次要的,因此前面所给划分中区间本身并不是最重要的,重要的是给出了C(I),C(I)的个数不会超过邻近区间的个数,

因此至多为n2。S为C(I)的一个子集,x为L上可行集中到S中各点距离之和最短的点。T为N的最小生成树,则根据文献[4],可按下法修正生成树:(1)当S为单点集{A},则N∪{x}的MST为{xA}∪T;(2)S为两个

点的集合{A,B},则N∪{x}的MST为{xA,xB}∪T\{E(A,B)},这里E(A,B)为T上A到B的路上的最长边;(3)S={A,B,C},则N∪{x}的MST为{xA,xB,xC}∪T\{e1,e2},这里e1,e2为E(A,B)

,

E(B,C)与E(A,C)中互不相同的两条边。E(A,B),E(B,C)与E(A,C)定义同上。对每个C(I),比较C(I)的各个子集S相对应的N∪{x}的MST,即可得到最短者作为C(I)相对

应的N∪{x}的MST。对所有C(I),重复以上工作,则可找到问题的解,这正是以下算法的思想。算法:

第一步 求出N的最小生成树T,记l(T)为T的长度。对每个C(I)中之点对(i,j),求出T中从i

到j的路上的最长边E(i,j)以及T中的最长边。若N中最低点到可行域的最短距离大于T中最长边的长度,则带禁区约束的最小生成树为T并上B中最低点到可行域的最短距离。否则,转入下一步;

第二步 对方向角度[0°,60°],[60°,120°],[120°,180°]分别求出N的邻近区间集;

第三步 对3个邻近区间集进行交叠,得到L的一个划分,划分中每个区间I对应于一个集合;

第四步 对于每个C(I),按前面所说修正方法,找到可行集中一个点x以及相应于N∪{x}的最小生成树;

第五步 比较上一步中所得的所有最小生成树,其中最短者即为所求的解,相应的x即为L上所求

8 杭州电子工业学院学报 2004年

相关文档
最新文档