钢锭退火工艺技术

合集下载

钢的热处理工艺技术

钢的热处理工艺技术

钢的热处理工艺技术钢的热处理工艺技术是一种通过改变钢材的组织结构和性能来达到预期目标的方法。

不同的热处理工艺可以改善钢材的硬度、韧性、强度、耐磨性等性能,从而满足不同用途的要求。

以下是一些常见的钢的热处理工艺技术。

1. 退火:退火是将钢材加热到一定温度,然后缓慢冷却到室温。

退火能改善钢材的塑性和韧性,减少内部应力,使其易于加工和变形。

2. 淬火:淬火是将钢材加热到临界温度以上,然后迅速冷却到室温。

淬火能提高钢材的硬度和强度,但会降低其韧性。

常见的淬火方法包括水淬、油淬和气体淬火等。

3. 回火:回火是将已经淬火的钢材重新加热到一定温度,然后通过不同的冷却速率进行冷却。

回火能减少淬火时产生的脆性,提高钢材的韧性和抗疲劳性能。

4. 正火:正火是将钢材加热到过冷状态下的温度,然后冷却到室温。

正火能改善钢材的强度和韧性,减少内部应力。

5. 淬火和回火:淬火和回火是一种常用的复合热处理工艺。

先将钢材淬火,然后进行回火,能够在保持一定硬度的同时提高韧性。

6. 软化退火:软化退火是用于消除冷加工或焊接后的钢材内部应力和硬度的一种热处理方法。

通过加热到一定温度,然后进行适当速率的冷却,使钢材恢复到一定的韧性和塑性。

7. 预应力退火:预应力退火是一种用于提高钢材的强度和韧性的热处理方法。

通过在加热阶段施加机械应力,然后进行退火处理,能够在保持较高强度的同时提高韧性和耐疲劳性能。

以上是一些常见的钢的热处理工艺技术,每种方法在实践中都有其适用范围和特定工艺参数。

合理选择和控制热处理工艺,能够使钢材达到所需的性能要求,并满足具体工程应用的需要。

钢的热处理工艺技术是钢材加工和制造过程中非常重要的环节,它能够改善钢材的性能,增加其应用价值。

随着现代工业的发展,钢材的应用领域越来越广泛,对于不同类型的钢材,需要采用适当的热处理工艺来实现所需的性能要求。

首先,退火是最常见的钢材热处理工艺之一。

退火过程中钢材被加热到一定温度,然后缓慢冷却到室温。

浅谈四把火

浅谈四把火

浅谈四把火“四把火”是指冶金工业生产中最重要的四项热处理工艺包括退火,正火,淬火,回火。

一、“第一把火”退火退火是将工件加热到适当温度,保持一定的时间,然后缓慢冷却(一般随炉冷却)的热处理工艺。

退火的主要目的是为了降低钢铁材料的硬度,提高塑性和韧性,改善切削加工性能和锻压加工性能;细化钢铁材料组织,均匀其化学成分;消除钢铁材料的内应力,防止其变形和开裂;为后续加工或热处理做准备。

退火主要用于碳素结构钢、合金结构钢的铸件、锻件、焊件及钢锭等。

根据钢铁材料的化学成分和退火目的的不同,退火通常分为完全退火、等温退火、球化退火、去应力退火、均匀化退火等。

(部分退火的加热温度范围如图 01所示。

部分退火工艺曲线如图 02所示。

)图 01 部分退火工艺加热温度范围示意图图 02 部分退火工艺曲线示意图二、“第二把火”正火正火就是将工件加热到奥氏体化后,保持适当的时间后,在空气中冷却的热处理工艺。

正火与退火相比,一般加热温度比退火高;冷却速度比退火快,过冷度较大,因此正火后得到的组织比较细,强度和硬度比退火高。

另外,正火与退火相比具有操作简便、生产周期短、生产效率高、生产成本低的的优点。

正火的目的与退火类同,不过具有更高的力学性能,主要用于对于力学性能要求不高的普通结构零件,正火可作为最终热处理。

对于低中碳结构钢,主要是提高硬度,改善切削加工性能;对于过共析钢,为球化退火、淬火做组织准备。

三、“第三把火”淬火淬火是指将工件加热到奥氏体化后,保持一定时间,然后以适当速度冷却获得马氏体(或贝氏体)组织的热处理工艺。

淬火的主要目的就是为了强化材料,提高材料的强度或硬度,用于要求有较高强韧性的工模具和弹簧及要求高硬度的零件之中。

这里要注意,淬火后的工件是不能直接使用的,必须进行回火后才能投入生产、使用。

不同的钢种其淬火加热温度不同。

非合金钢的淬火加热温度可由铁碳合金相图确定,如图 03所示。

图 03 非合金钢淬火加热的温度范围淬火加热时间包括升温时间和保温时间。

钢的退火和正火

钢的退火和正火

T10钢球化退火组织 ( 化染 )
500 ×
(3)等温退火
T Ac3 Ac1 Ar1 t 等温完全退火 等温球化退火
优点:周期短,组织更均 匀,是完全退火和球 化退火工艺的改进。
炉子要求比较高,最好采用分段控温的连 续加热炉,小批量生产时可采用两台炉子 (加热炉和保温炉)进行操作。
(4)扩散退火
工艺参数的选择必须能造成氢在钢中的 溶解度小而扩散速度比较大的条件。
§7-2 正火的目的、用途和工艺
1 定义:钢加热到Ac3或Acm以上的A区域,保持 一定时间后在空气中冷却,以获得接近平 衡态组织的工艺。 与退火相比:
加热温度较高; 冷却速率较快; 获得组织较细(索氏体)
T Acm 或Ac3+30~50ºC Acm 或Ac3 Ac1
——强硬度与塑韧性较高; 生产效率较高
温度选择:Ac3+30~50℃ 为缩短工件在高温时的停留时间,而 心部又能达到要求得加热温度,采用稍高 于完全退火的温度。 保温时间以工件烧透为准。
碳钢正火与退火后的硬度 (HB)
状态 退火 正火 结构钢 软的 ~125 ~140 中等的 硬的 ~160 ~185 ~190 ~230
Acm 或Ac3 Ac1+20-30ºC Ac1
粒(球)状 珠光体 层片状珠光体 刀具
片状与球状珠光体组织切削性能比较
T12钢完全退火与球化退火后组织与性能比较
状态 完全退火 球化退火
σb(Mpa) 810 620
δ(%) 15 20
ψ(%) 30 40
HB 230 160
T12钢球化退火与完全退火的性能比较: 球化退火的强硬度更低,塑韧性更好,碳化 物对基体的分割更均匀、彻底,更利切削加工

退火正火、淬火回火工艺介绍

退火正火、淬火回火工艺介绍

金属热处理是将金属工件放在一定的介质中加热到适宜的温度,并在此温度中保持一定时间后,又以不同速度冷却的一种工艺方法。

金属热处理是机械制造中的重要工艺之一,与其它加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。

其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。

为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。

钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。

另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。

在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。

早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。

白口铸铁的柔化处理就是制造农具的重要工艺。

公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。

中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。

随着淬火技术的发展,人们逐渐发现冷剂对淬火质量的影响。

三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。

这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。

中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。

但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的相。

带钢连续退火工艺技术介绍

带钢连续退火工艺技术介绍
与罩式退火不同,连续退火机组高温均热时间较短,冷却速度较快,因此必须在炼钢时对钢的化学成份作相应调整和控制,为获得满意的再结晶状况和成形特性,须将填隙式溶解元素(碳和氮)以及固溶加强元素(锰,硅和磷)维持在较低含量水平。
带钢在热轧时,就必须满足合适的条件,诸如完全析出以及粗大的碳化物和氮化物的生成。均匀一致大的铁素体晶粒。
连续退火处理的低碳钢深冲性较差是因为在过时效处理期间钢组织内部所形成细微碳化物弥散所至,因此在连续退火里,只有通过采用IF钢,才能获得特深冲级别的高rm和nm值。对IF钢的罩式退火和连续退火来讲,二者的组织结构之间没有显著的区别(见图12.5.2.5B-3)。
从金相的观点来看,采用连续退火生产冷轧高强钢具有潜在的优越性,譬如通过形成精细晶粒结构和精细碳化物析出,可用来提高钢的屈服强度(2)。
连续退火过程中加热期间,带钢中碳化物结构将部分或完全被溶解.这取决于含碳量以及碳化物的大小,如图12.5.2.5B-1所示。该过程还受加热速度快慢、退火温度高低和碳化物粗大程度的反作用影响。
钢被加热到退火温度并均热后,碳的溶解达到了平衡,并且根据退火温度会发生有限的晶粒生长。然而,连续退火机组里较高的冷却速度阻碍了固溶碳的析出,使其在冷却阶段的碳化物析出偏离平衡,只有通过调整冷却和过时效参数,才能控制碳化物的分布和固溶碳含量,从而获得合适的机械性能并消除时效影响。
使用这二种方法的不同退火周期,可以制造各种质量的钢种,包括CQ(商用级),DQ(冲压级),DDQ(深冲级),HSS(高强钢)等品种。
(1) 低碳软钢、商用钢和冲压钢的连续退火原理(3)
冷轧板要求具备如下的可成形性:CQ板延展性、DQ板的延展性和慢速时效性(低屈服点延长)、DDQ板延展性和非时效性(几乎无屈服点延长)和深冲性(Landford值)。

钢锭退火优化新工艺

钢锭退火优化新工艺

钢锭退火优化新工艺任猛;贾铁军;邓拓【摘要】现行的热脱模钢锭退火工艺延续着认识上的误区,比较浪费能源并且效率低下.本文推荐的优化退火新工艺思路,能够最大限度地简化生产操作和提高经济效益.【期刊名称】《大型铸锻件》【年(卷),期】2015(000)001【总页数】5页(P21-25)【关键词】钢锭退火;优化;新工艺【作者】任猛;贾铁军;邓拓【作者单位】亚洲重工集团有限公司,江苏214128;亚洲重工集团有限公司,江苏214128;亚洲重工集团有限公司,江苏214128【正文语种】中文【中图分类】TG316钢锭退火优化新工艺任猛贾铁军邓拓(亚洲重工集团有限公司,江苏214128)摘要:现行的热脱模钢锭退火工艺延续着认识上的误区,比较浪费能源并且效率低下。

本文推荐的优化退火新工艺思路,能够最大限度地简化生产操作和提高经济效益。

关键词:钢锭退火;优化;新工艺中图分类号: TG316文献标志码: B收稿日期:2013—07—01Optimized New Annealing Technology for Steel IngotRen Meng,Jia Tiejun,Deng TuoAbstract: There are some misunderstandings existed in the current annealing process for hot stripping ingot which wastes energy and is low efficient.The optimized new annealing technology recommended by this paper will simplified operation process and enhance economic performance as much as possible.Key words: annealing for steel ingot; optimization; new technology1 现行退火工艺及认识误区大型炼钢厂每年常常会有数万吨外销钢锭需要退火处理,即便是重机厂自用的锻造钢锭,每年也常常有数千吨需要退火贮存或是外销。

带钢连续退火工艺技术介绍

低碳钢在延伸性和时效性之间的平衡可以通过调节第一次冷却速度来确定,当要求较好延伸性时,则冷却速度必须降低,但带钢会再次出现时效现象,如果要求钢材具有较少时效,则冷却速度必须提高。但伴随而来的是韧性降低(3)。
以上所述机理适用于低碳钢。对无间隙(IF)钢,即那些含有钛或铌的理想配比或者略微超过理想配比的合金钢,则毋需过时效处理。由于IF钢中碳和氮元素主要在热轧期间以Ti—C-N或Nb-C2析出,因此由于连续退火中将不会发生时效作用。
目前全世界已经建成和投产近六十多条连续退火机组,随着各种新工艺和新技术的不断开发和完善,连续退火技术正在广泛地取代了罩式退火技术,实现冷轧带纲快速、经济和大规模的生产。在镀锡原板品种上,连续退火机组已经能够生产从T1–T5,DR8–DR10全部调质度;在冷轧板品种上,连续退火机组不仅能够生产DDQ、EDDQ等深冲和超深冲软材,还能够生产各类高强钢(HSS),不仅有CQ级HSS,DQ级HSS,而且还出现了DDQ深冲级HSS、烘烤硬化性DQ级HSS,以及低屈服点超高强钢(LOW YR/SUPER-HSS)和TRIP等高强钢新品种。
成品率高:工艺过程紧凑,避免了罩式退火工艺中钢卷多次搬运擦伤、粘结、折边等缺陷。
当然,在具备上述优点的同时,连续退火机组也ห้องสมุดไป่ตู้在着不足,主要表面在以下方面:
极限规格带钢(厚度大于2.5mm或0.15mm以下的超薄规格)用立式连续退火生产比较困难。
设备和技术复杂,要求技术人员、机组操作和维护人员的素质要求较高。
对热轧条件的分析,热轧的轧制温度必须达到Ar3相变点以上,否则不仅得不到好的金相组织,而且在高温卷取时,晶粒变得粗大,这样rm值和延伸性下降。采用高温卷取的目有:1)碳化物的聚集;2)AIN析出物的聚集。碳化物粗大化后使碳化物的平均间隔变成再结晶晶粒直径数倍以上,晶界移动的阻力因碳化物而大幅度减少。再结晶晶粒直径继续长大,引起屈服应力下降。同样由于快速加热,在再结晶时,碳溶解速度变缓,固溶碳量少,对深冲有利的(111)成份增加,rm值得到了提高。但温度过高,则会产生粗大晶粒,导致材料特性恶化,表面质量也变坏。

退火的工艺

退火的工艺退火的一个最主要工艺参数是最高加热温度(退火温度),大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础。

各种钢(包括碳素钢及合金钢)的退火温度,视具体退火目的的不同而在各该钢种的Ac3以上、Ac1以上或以下的某一温度。

各种非铁合金的退火温度则在各该合金的固相线温度以下、固溶度线温度以上或以下的某一温度。

退火的方法:1、重结晶退火——完全退火应用于平衡加热和冷却时有固态相变(重结晶)发生的合金。

其退火温度为各该合金的相变温度区间以上或以内的某一温度。

加热和冷却都是缓慢的。

合金于加热和冷却过程中各发生一次相变重结晶,故称为重结晶退火,常被简称为退火。

这种退火方法,相当普遍地应用于钢。

钢的重结晶退火工艺是:缓慢加热到Ac3(亚共析钢)或Ac1(共析钢或过共析钢)以上30~50℃,保持适当时间,然后缓慢冷却下来。

通过加热过程中发生的珠光体(或者还有先共析的铁素体或渗碳体)转变为奥氏体(第一回相变重结晶)以及冷却过程中发生的与此相反的第二回相变重结晶,形成晶粒较细、片层较厚、组织均匀的珠光体(或者还有先共析铁素体或渗碳体)。

退火温度在Ac3以上(亚共析钢)使钢发生完全的重结晶者,称为完全退火,退火温度在Ac1与Ac3之间 (亚共析钢)或Ac1与Acm 之间(过共析钢),使钢发生部分的重结晶者,称为不完全退火。

前者主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷(如魏氏组织、带状组织等),使组织变细和变均匀,以提高钢件的塑性和韧性。

后者主要用于中碳和高碳钢及低合金结构钢的锻轧件。

此种锻、轧件若锻、轧后的冷却速度较大时,形成的珠光体较细、硬度较高;若停锻、停轧温度过低,钢件中还有大的内应力。

此时可用不完全退火代替完全退火,使珠光体发生重结晶,晶粒变细,同时也降低硬度,降低内应力,改善被切削性。

此外,退火温度在Ac1与Acm之间的过共析钢球化退火,也是不完全退火。

钢的退火工艺

钢的退火工艺退火是将钢材或各种金属机械零件加热到适当温度,保温一段时间,然后缓慢冷却,可以获得接近平衡状态组织的热处理工艺。

在机械制造行业,退火通常作为工件制造加工过程中的预备热处理工序。

一. 完全退火完全退火是将钢件或各种机械零件加热到临界点Ac3以上的适当温度、在炉内保温缓慢逐渐冷却的工艺方法。

其目的是为了细化组织、降低硬度、改善机械切削加工性能及去除内应力。

完全退火适用于中碳钢和中碳合金钢的铸钢件、焊接件、轧制件等。

完全退火工艺曲线见图1.1。

3. 工件装炉:一般中、小件均可直接装入退火温度的炉内,亦可低温装炉,随炉升温。

4. 保温时间:保温时间是指从炉子仪表到达规定退火加热温度开始计算至工件在炉内停止加热开始降温时的全部时间。

工件堆装时,主要根据装炉情况估定,一般取2~3h。

5. 工件冷却:保温完成后,一般停电(火),停止加热,关闭炉门逐渐缓冷至500℃即可出炉空冷。

对某些合金元素含量较高、按上述方式冷却后硬度仍然偏高的工件,可采用等温冷却方法,即在650℃附近保温2~4h后再炉冷至500℃。

二. 去应力退火去应力退火是将工件加热到Ac1以下的适当温度,保温一定时间后逐渐缓慢冷却的工艺方法。

其目的是为了去除由于机械加工、变形加工、铸造、锻造、热处理以及焊接后等产生的残余应力。

1. 去应力退火工艺曲线见图1-3。

2. 不同的工件去应力退火工艺参数见表C。

3. 去应力退火的温度,一般应比最后一次回火温度低20~30℃,以免降低硬度及力学性能。

4. 对薄壁工件、易变形的焊接件,退火温度应低于下限。

5. 低温时效用于工件的半加工之后(如粗加工或第一次精加工之后),一般采用较低的温度。

表C 去应力退火工艺及低温时效工艺钢的淬火一. 目的及应用正火是将钢材或各种金属机械零件加热到临界点Ac3或Accm以上的适当温度,保温一定时间后在空气中冷却,得到珠光体基体组织的热处理工艺。

二. 工艺规范(1)常用钢号的正火加热温度及硬度值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢锭退火工艺技术
钢锭退火工艺技术是钢材生产过程中非常重要的一环,它通过调整钢锭的组织结构和性能,提升钢材的机械性能和加工性能,以满足不同领域的使用需求。

本文将从工艺步骤、工艺参数和影响因素等方面,对钢锭退火工艺技术进行介绍。

钢锭退火的基本步骤包括加热、保温和冷却。

首先,将钢锭放入加热炉中,使其温度逐渐升高,通常采用缓慢升温的方式,以避免温度过快引起内部应力和裂纹。

当钢锭达到退火温度后,需要保温一段时间,让温度均匀分布,并使晶粒长大。

最后,通过控制冷却速度,使钢锭迅速冷却至室温,得到所需的组织结构和性能。

钢锭退火的工艺参数主要包括退火温度、保温时间和冷却速度等。

退火温度是根据钢锭的材质和需求来确定的,通常在材料的再结晶温度以上。

保温时间则决定了晶粒的长大程度,过长的保温时间会导致晶粒长大过大,降低钢材的强度和韧性。

冷却速度的选择需要考虑到钢锭的尺寸和材质等因素,过快的冷却速度会引起钢锭的变形和裂纹,过慢的冷却速度则可能导致晶粒再次细化。

钢锭退火的影响因素较多,主要包括材料成分、起始组织和退火过程中的环境因素。

材料成分对退火工艺有着直接的影响,不同的合金元素会影响钢材的热处理效果。

起始组织决定了退火后的组织结构和性能,晶粒细小的初始组织有利于得到细小的晶粒。

环境因素包括退火温度的控制、保温时间的控制和冷却介质的选择等,这些因素的合理确定直接影响着退火工艺的
效果。

综上所述,钢锭退火工艺技术是钢材生产中一项重要的技术,通过调整工艺步骤和工艺参数,可以得到符合要求的钢材组织和性能。

在实际应用中,需要根据具体的材料和需求进行合理的选择和调整,以保证钢材的质量和性能。

同时,也需要注意环境因素对退火工艺的影响,通过合理的控制,保证退火工艺的稳定性和可靠性。

相关文档
最新文档