推荐-热水冷却器的设计课程设计 精品

合集下载

煤油冷却器课程设计

煤油冷却器课程设计

煤油冷却器课程设计煤油冷却器课程设计简介煤油冷却器是一种能够将热能转化为机械能的装置,主要用于农业、交通运输、建筑等行业,起到降温、润滑、提高效率的作用。

本文将介绍煤油冷却器的课程设计,主要包括课程设计的目的、内容、教学方法和评估标准。

目的通过本次课程设计,学生将能够:1.了解煤油冷却器的结构和原理,掌握其工作原理和应用场景;2.完成一个小型煤油冷却器的制作,掌握实验操作技能;3.通过分析实验结果,加深对煤油冷却器原理的理解,提高解决实际问题的能力。

内容本次课程设计将分为以下四个部分:1.课程理论讲授首先,将介绍煤油冷却器的结构特点和工作原理,对于煤油冷却器的实际应用场景进行分析和解释。

其中包括:(1)冷却器的原理和种类(2)煤油冷却器的特点和设计原则(3)冷却器的使用和维护2.实验器材准备根据所需器材、器件以及材料进行规划购买,同时并准备实验前的各种开展实验所需的仪器,如多用表、温度计、热枪等,另外仪器准备后还须复核检查是否齐全、检验所准备的器材是否正常,确保器材完整,准备工作得当。

3.实验操作在实验讲解和演示的基础上,学生将根据所提供的样品进行实际操作,测定煤油冷却器的性能参数,调整气口数量或位置、重组插片、筛网等,从而达到最佳性能。

4.结果分析和评价在实验完成后,学生需要进行数据处理和分析,通过整理实验结果,并各自自然地描述各项数据的变化表现。

在综合分析之后,画出实验数据的数据曲线,比较实验结果,识别出具体差异。

教学方法本次课程设计采用以下教学方法:1.小组合作学习会将学生分为小组,每个小组将负责实验器材的准备、实验操作、数据收集和结果分析。

此方法将鼓励学生积极参与和合作,促进团队互助合作。

2.实验操作演示老师将根据规定的操作演示其理当的操作步骤,帮助学生更快速地学习理论和品味实践。

同时还需对关键操作环节进行一些具体分析和口头指导。

3.互动讨论在学生完成了实验操作之后,将进行整个实验过程的讨论,对实际操作和数据误差进行分析和讨论。

工程原理课程设计-换热器

工程原理课程设计-换热器

水换热器的设计学院:化学化工学院专业:制药101班姓名:周延军指导老师:杨胜凯设计任务书一、设计题目:水换热器的设计二、设计原始数据1、处理能力:1.1088×105吨/年热水2、操作条件:①热水:入口温度90o C,出口温度50 o C②冷却介质:循环水,入口温度18o C,出口温度54 o C③允许压强降:不大于105Pa④每年按330天计,每天24小时连续运行三、设备形式:列管式换热器四、设计任务1、设计计算列管式换热器的热负荷、传热面积、换热管、壳体、接管等。

2、绘制列管式换热器的工作图。

3、编写课程设计说明书。

目录1.设计方案简介 (4)1.1 列管式换热器形式选择 (4)1.2 流动空间选择 (4)2.工艺计算及主体设备设计计算 (5)2.1试算并初选换热器规格 (5)2.1.1计算热负荷 (5)2.1.2 计算平均温差,并确定壳程数 (5)2.1.3 初选换热器规格 (6)2.2 核算总传热系数 (6)2.2.1 计算管程对流换热系数 (6)2.2.2 计算壳程对流换热系数 (7)2.2.3 确定污垢热阻 (8)2.2.4 计算总换热系数 (8)2.3计算压力降 (9)2.3.1 计算管程压力降 (9)2.3.2 计算壳程压力降 (9)3.设计一览表 (11)4.附图 (12)5.设计说明与设计评论 (12)5.1设计说明 (12)5.1.1选择换热器的类型 (13)5.1.2管程安排 (13)5.1.3流向的选择 (13)5.2设计评论 (13)6.参考文献 (14)1.设计方案简介1.1 列管式换热器形式选择热水的入口温度为90℃, 出口温度为50℃。

冷却介质为循环水,取入口温度为18℃,出口温度为54℃。

热水的定性温度: T m=25090+=70℃循环冷却水的定性温度:t m=25418+=36℃两流体的温差: T m -t m =70℃-36℃=34℃由于两流体温差小于50℃,故选择固定板式换热器。

课程设计换热器的设计

课程设计换热器的设计

课程设计换热器的设计一、教学目标本课程的设计目标是使学生掌握换热器的基本原理、设计方法和计算技巧。

知识目标要求学生了解换热器的类型、工作原理及其在工程中的应用;技能目标要求学生能够运用传热学的基本原理,进行换热器的设计和计算;情感态度价值观目标则在于培养学生的创新意识和解决实际问题的能力。

二、教学内容本课程的教学内容主要包括换热器的基本原理、类型及其设计方法。

具体内容包括:换热器的基本概念、传热基本方程、对流传热、换热器类型(包括空气冷却器、水冷却器、热交换器等)、换热器的设计方法及计算技巧。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括讲授法、案例分析法、实验法等。

在讲授基本原理和设计方法的同时,通过案例分析让学生了解换热器在实际工程中的应用,通过实验操作让学生亲手实践,加深对换热器原理的理解。

四、教学资源为了支持教学内容的实施,我们将准备丰富的教学资源,包括教材、参考书、多媒体资料、实验设备等。

教材和参考书将用于理论知识的讲解和拓展,多媒体资料将用于形象地展示换热器的工作原理和设计方法,实验设备则用于学生的实践操作。

五、教学评估本课程的评估方式包括平时表现、作业、考试等多个方面,以全面、客观、公正地评价学生的学习成果。

平时表现主要考察学生的课堂参与度、提问回答等情况;作业则是对学生学习进度的实时跟踪,要求学生在规定时间内完成;考试则是检验学生对课程知识的掌握程度,包括期中和期末考试。

通过这些评估方式,教师能够全面了解学生的学习情况,为后续教学提供依据。

六、教学安排本课程的教学安排将根据课程内容和学生的实际情况进行设计。

教学进度将确保在有限的时间内完成所有教学任务,教学时间将合理安排,既不过于紧张,也不过于宽松。

教学地点将选择适合进行课程教学的环境,如教室、实验室等。

同时,教学安排还将考虑学生的作息时间、兴趣爱好等因素,以提高学生的学习效果。

七、差异化教学为了满足不同学生的学习需求,本课程将根据学生的不同学习风格、兴趣和能力水平进行差异化教学。

空气冷却器课程设计

空气冷却器课程设计

空气冷却器课程设计
一、课程背景:
随着工业化进程不断加快,工厂、机房等需要维持温度的场所数量也越来越多,空气冷却器作为一种高效、环保的温度控制方式,应用得越来越广泛。

本课程将介绍空气冷却器的原理、构造及应用,帮助学生掌握空气冷却器的设计与维修。

二、教学目标:
1.了解空气冷却器的基本原理;
2.掌握空气冷却器的构造及其组成部件;
3.学会根据需要设计适合的空气冷却器;
4.了解空气冷却器的维护与保养方法。

三、教学内容:
1.空气冷却器的原理
(1)热传递原理
(2)空气流动原理
2.空气冷却器的构造及其组成部件
(1)外壳
(2)芯片
(3)水箱
(4)风扇
3.空气冷却器的设计要点
(1)热量计算
(2)风量计算
(3)空气流路设计
4.空气冷却器的维护与保养方法
(1)清洗
(2)更换芯片
(3)更换水箱和风扇
四、教学方法:
本课程采用多媒体教学法,结合实物展示、案例分析等方式,让学生
更直观地了解空气冷却器的原理、构造及应用。

同时,通过实际操作,让学生掌握设计与维修技能。

五、教学评价:
1.考核学生对空气冷却器知识的掌握情况;
2.测评学生的实际操作能力;
3.综合评价学生在设计与维修方面的综合能力。

煤油冷却器的课程设计1

煤油冷却器的课程设计1

煤油冷却器的课程设计1板式换热器设计任务书一、设计题目:煤油冷却器的设计二、设计任务1 、处理能力:19.8 X 104 t年煤油2 、设备型号:列管式换热器3 、操作条件:煤油:入口温度140C,出口温度40C冷却介质:循环水,入口温度30C,出口温度38C允许压降:不大于105Pa每年按330 天计建厂地址:广西三、设计要求1 、选择适宜的列管式换热器并进行核算2 、要进行工艺计算3 、要进行主体设备的设计(主要设备尺寸、横算结果等)4 、编写设计任务书5 、进行设备结构图的绘制(用420*594 图纸绘制装置图一张:一主视图,一俯视图。

一剖面图,两个局部放大图。

设备技术要求、主要参数、接管表、部件明细表、标题栏。

)化工原理课程设计说明书题目:列管式换热器的设计系别:班级:学号:姓名:指导教师:日期:2019 年1 月5 日目录、设计方案............................................ (5)1.换热器的选择..... 5 2.流动空间及流速的确定.................... 5二、物性数据.......... 5三、计算总传热系数: (6)1.热流量......... 6 2.平均传热温差..... 63.冷却水用量..6 4.总传热系数K......... 6四、计算换热面积... 7五、工艺结构尺寸... 71.管径和管内流速..7 2.管程数和传热管数............................. 73.平均传热温差校正及壳程数............. 8 4.传热管排列和分程方法..................... 8 5.壳体内径..... 8 6.折流.................. 8 7.接板管........................... 8六、换热器核算..... (9)1.热量核算.............. 9 2.热量重新核算......... 1 0 3.换热器内流体的流动阻力.............. 1 1 4.换热器主要结构尺寸和计算结果.................................................... 13 七、设计的评述..................... ................................................. 14 八、参考文献 ..................................................... 14 九、主要符号说明 ............................................. 15 十、主体设备条件图及生产工艺流程图........................................... (15)1 换热器类型的选择在本次设计任务中,两流体温度变化情况:热流体进口温度140C,出口温度40C;冷流体(循环水)进口温度30C,出口温度38C。

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计

化工原理课程设计——换热器设计本课题研究的目的要紧是针对给定的固定管板式换热器设计要求,通过查阅资料、分析设计条件,以及换热器的传热运算、壁厚设计和强度校核等设计,差不多确定固定管板式换热器的结构。

通过分析固定管板式换热器的设计条件,确定设计步骤。

对固定管板式换热器筒体、封头、管板等部件的材料选择、壁厚运算和强度校核。

对固定管板式换热器前端管箱、后端管箱、传热管和管板等结构进行设计,对换热器进行开孔补强校核。

绘制符合设计要求的固定管板式换热器的图纸,给出相关的技术要求;在固定管板换热器的结构设计过程中,要参考相关的标准进行设计,比如GB-150、GB151……,使设计能够符合相关标准。

同时要是设计的结构满足生产的需要,达到安全生产的要求。

通过设计过程达到熟悉了解换热器各部分结构特点及工作原理的目的。

关键词:换热器;固定管板;设计;强度名目摘要 ....................................................... 错误!未定义书签。

1绪论 (1)1.2固定管板换热器介绍 (2)1.3本课题的研究目的和意义 (3)1.4换热器的进展历史 (4)2产品冷却器结构设计的总体运算 (6)2.1 产品冷却器设计条件 (6)2.2前端管箱运算 (8)2.2.1前端管箱筒体运算 (8)2.2.2前端管箱封头运算 (10)2.3后端管箱运算 (11)2.3.1后端管箱筒体运算 (11)2.3.2后端管箱封头运算 (12)2.4壳程圆筒运算 (13)3各部分强度校核 (15)3.1开孔补强运算 (15)3.2壳程圆筒校核 (18)3.3管箱圆筒校核 (19)4换热管及法兰的设计 (20)4.1换热管设计 (20)4.2管板设计 (21)4.3管箱法兰设计 (22)4.4壳体法兰设计 (25)4.5各项系数运算 (27)5 产品冷却器制造过程简介 (34)5.1 总则 (34)5.2零部件的制造 (34)结论 (43)参考文献: (44)致谢 (44)1绪论1.1换热器的作用及分类在工业生产中,换热设备的要紧作用是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到工艺过程规定的指标,以满足工艺过程上的需要。

换热器课程设计

目录1.设计任务书-------------------32.概述与设计方案简介-----------43.工艺及设备设计计算-----------94.辅助设备的计算及选型--------115.设计结果汇总表--------------156.设计评述--------------------157.参考资料--------------------168.主要符号说明----------------169.致谢------------------------161.设计任务书2.概述与设计方案简介换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面。

其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。

若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。

2.1换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。

由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。

按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。

根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。

间壁式换热器又称表面式换热器或间接式换热器。

在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。

课程设计之换热器


△ ◇
U 形端自由伸缩补偿性好;结 构简单,管束抽出容易;管子 排列不紧凑,管长分布不均匀 浮头可伸缩,补偿性好,管束
温差较大; 管内流 体较干净; 管内可 承受高压 适用面广泛; 管内 外均可承受高温
浮头 式
GB/T 28712.1 —2012
325~1900
2,4, 3, 4.5, 6, 6 9
密封条也称旁路挡板,它主要是为了防止流体由壳内和管束之间
旁流。一般固定管板式和U形管式换热器不必使用密封条,因为这些 设备壳体于管束外径间隙不大。在有相变发生的设备中,即使间隙 很大也不安装密封条,因为密封条会影响到汽相和液相的分离。

假管 假管可防止中等或大型换热器壳程中部流体的旁流,其设置于分
程隔板的槽背面两管板之间,一般与换热管规格相同,可用折流板
(1)挡板切口弦线平行于壳体入口接管中心线(0°夹角,垂直切口, 竖缺形); (2)挡板切口弦线垂直于壳体入口接管中心线(90°夹角,水平切口 ,横缺形)。 横缺形折流板适用于无相变的对流传热过程,而在带有悬浮物或结垢 严重的流体所使用的卧式冷凝器、换热器中,一般采用竖缺形折流板, 比较有利于冷凝器内的气液分离。
手算:2天
软件计算:1天 整理说明书及考试:1.5天 交说明书1天
课程设计过程注意问题
草拟进度表,拟定设计的方法和步骤。
计算过程中要随时复核计算结果的正确性,做到有错即改 ,避免大的返工。 要求来教室进行设计,以便于答疑和掌握进度。
成 绩 评 定
设计的正确性,无概念和计算的重大错误。

(a)竖缺形折流板
(b)横缺形折流板
图3-11 折流板缺口方向
管壳式换热器结构参数选择

化工原理课程设计__换热器.

目录一、设计任务 (1)一、设计任务1.空气压缩机后冷却器设计操作参数;(1)空气处理量: 14m3/min;操作压强:1.45MPa(绝对压)。

空气进口温度160℃,终温:50℃(2)冷却剂:常温下的水初温:25°;终温:30℃;温升(3)冷却器压降:压降2.设计项目(1)确定设计方案,确定冷却器型式,流体流向和流速选择,冷却器的安装方式等。

(2)工艺设计:冷却器的工艺设计和强度计算,确定冷却剂用量,传热系数,传热面积,换人管长,管数,管间距,校对压力等。

(3)结构设计:管子在管板上的固定方式,管程分布和管子排列,分程隔板的连接,管板和壳体的连接,折流挡板等。

(4)机械设计:确定壳体,管板壁的厚度尺寸,选择冷却器的封头、法兰、接管法兰、支座等。

(5)附属设备选型3.设计分量(1)设计说明书一份;(2)冷却器装配图;(3)冷却器工艺流程图;(4冷却器的强度及支座等的估算一、设计任务书二、确定设计方案2.1 选择换热器的类型本设计中空气压缩机的后冷却器选用带有折流挡板的固定管板式换热器,这种换热器适用于下列情况:①温差不大;②温差较大但是壳程压力较小;③壳程不易结构或能化学清洗。

本次设计条件满足第②种情况。

另外,固定管板式换热器具有单位体积传热面积大,结构紧凑、坚固,传热效果好,而且能用多种材料制造,适用性较强,操作弹性大,结构简单,造价低廉,且适用于高温、高压的大型装置中。

采用折流挡板,可使作为冷却剂的水容易形成湍流,可以提高对流表面传热系数,提高传热效率。

本设计中的固定管板式换热器采用的材料为钢管(20R钢)。

2.2 流动方向及流速的确定本冷却器的管程走压缩后的热空气,壳程走冷却水。

热空气和冷却水逆向流动换热。

根据的原则有:(1)因为热空气的操作压力达到1.1Mpa,而冷却水的操作压力取0.3Mpa,如果热空气走管内可以避免壳体受压,可节省壳程金属消耗量;(2)对于刚性结构的换热器,若两流体的的温度差较大,对流传热系数较大者宜走管间,因壁面温度与对流表面传热系数大的流体温度相近,可以减少热应力,防止把管子压弯或把管子从管板处拉脱。

化工原理课程设计---煤油冷却器的设计

化工原理课程设计---煤油冷却器的设计编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(化工原理课程设计---煤油冷却器的设计)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为化工原理课程设计---煤油冷却器的设计的全部内容。

课程设计化工原理课程设计课程名称煤油冷却器的设计题目名称08级食品科学与工程(2)班专业班级纪平平学生姓名学号50806022006指导教师赵大庆二O一O年十二月三十日目录1《化工原理》课程设计任务书...................................... - 1 -1。

1 设计题目 .................................................. - 1 -1。

2 原始数据及操作条件 ........................................ - 1 -1.3 设计要求 ................................................... - 1 -2《化工原理》课程设计说明书...................................... - 2 -2。

1 前言 ...................................................... - 2 -2.2 工艺流程图及说明 ........................................... - 3 -3生产条件的确定.................................................. - 3 -4换热器的设计计算................................................ - 4 -4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计学院:蚌埠学院班级:11级食品科学与工程3班姓名:xxxxx学号:51106023027指导老师:xxxxxx20XX年6月设计任务书一、设计题目热水冷却器的设计二、设计参数(1)处理能力 6.2×104t/a热水。

(2)设计形式锯齿形板式换热器(3)操作条件①热水:入口温度85℃,出口温度60℃。

②冷却介质:循环水,入口温度32℃,出口温度40℃。

③允许压降:不大于105pa。

④每年按330天计,每天24小时连续运行。

⑤建厂地址:湖南地区。

三、设计内容及要求(1)计算热负荷(2)计算平均温度差(3)初估换热面积及初选板型(4)核算总传热系数K(5)计算传热面积S(6)压降计算(7)板式换热器滚个选型(8)附属设备的选型(9)换热工艺流程图(手绘A2),主体设备工艺条件图(手绘A1)。

目录1概述31.1板式换热器的简介31.2设计方案简介71.3确定设计方案101.3.1工艺流程101.3.2换热器选型111.4符号说明112主要设备工艺计算122.1计算定性温度122.2计算热负荷122.3计算平均温差122.4初估换热面积S及板型122.5核算总传热系数K132.5.1计算热水侧的对流给热系数132.5.2计算冷水侧的对流给热系数142.5.3金属板热阻142.5.4污垢热阻142.5.5总传热系数152.6估算传热面积S152.7计算压力降ΔP 153换热器主要技术参数和计算和结果16 设计评述19参考文献20附录21附录1211 概述换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。

在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。

换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。

在三类换热器中,间壁式换热器应用最多。

1.1锯齿形板式换热器简介板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。

各种板片之间形成薄矩形通道,通过半片进行热量交换。

它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。

板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。

1.板式换热器的基本结构2.板式换热器是以波纹为传热面的新型、高效换热器,它具有如下特点:a、高效节能:板式换热器的传热系数高,比相同平方的列管式换热器提高30%~50%。

b、结构紧凑:板式换热器体积小,占地面积小,散热损失小,重量轻,每立方米体积内约布置250平方米左右的传热面积,占地面积仅为列管式换热器的1/4-1/8。

c、拆装清洗方便:板式换热器靠夹紧螺栓将夹固板和板片夹紧,因此拆装方便,随时可以打开清洗。

有时甚至可以不必完全拆开仅把压紧螺栓松开就可抽出板片清洗,更换胶垫,以至更换板片,同时由于板面光洁,湍流程度高,不易结垢。

d、使用寿命长:板式换热器的板片采用不锈钢或钛合金板片压制,可耐各种腐蚀介质。

e、适用性强:板式换热器板片为独立元件,可按要求随意增减流程,形式多样:可适用于各种不同工艺的要求。

f、不串液:板式换热器密封槽设置泄液液道,各种介质不会串通,即使出现泄漏,介质总是向外排出。

g、制作方便板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。

h、容易清洗框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。

I、热损失小板式换热器只有传热板的外壳板暴露在大气中,因此散热损失可以忽略不计,也不需要保温措施。

而管壳式换热器热损失大,需要隔热层。

3.板式换热器的应用场合a. 制冷:用作冷凝器和蒸发器。

b. 暖通空调:配合锅炉使用的中间换热器、高层建筑中间换热器等。

c. 化学工业:纯碱工业,合成氨,酒精发酵,树脂合成冷却等。

d. 冶金工业:铝酸盐母液加热或冷却,炼钢工艺冷却等。

e. 机械工业:各种淬火液冷却,减速器润滑油冷却等。

f. 电力工业:高压变压器油冷却,发电机轴承油冷却等。

g. 造纸工业:漂白工艺热回收,加热洗浆液等。

h. 纺织工业:粘胶丝碱水溶液冷却,沸腾硝化纤维冷却等。

i. 食品工业:果汁灭菌冷却,动植物油加热冷却等。

j. 油脂工艺:皂基常压干燥,加热或冷却各种工艺用液。

k. 集中供热:热电厂废热区域供暖,加热洗澡用水。

l. 其他:石油、医药、船舶、海水淡化、地热利用。

3.压降校核在板式换热器的设计选型使,一般对压降有一定的要求,所以应对其进行校核。

如果校核压降超过允许压降,需重新进行设计选型计算,直到满足工艺要求为止。

(1)结构原理可拆卸板式换热器是由许多冲压有波纹薄板按一定间隔,四周通过垫片密封,并用框架和压紧螺旋重叠压紧而成,板片和垫片的四个角孔形成了流体的分配管和汇集管,同时又合理地将冷热流体分开,使其分别在每块板片两侧的流道中流动,通过板片进行热交换。

(2)板式换热器的设计特点1、高效节能:其换热系数在3000~4500kcal/m2•°C•h,比管壳式换热器的热效率高3~5倍。

2、结构紧凑:板式换热器板片紧密排列,与其他换热器类型相比,板式换热器的占地面积和占用空间较少,面积相同换热量的板式换热器仅为管壳式换热器的1/5。

3、容易清洗拆装方便:板式换热器靠夹紧螺栓将夹固板板片夹紧,因此拆装方便,随时可以打开清洗,同时由于板面光洁,湍流程度高,不易结垢。

4、使用寿命长:板式换热器采用不锈钢或钛合金板片压制,可耐各种腐蚀介质,胶垫可随意更换,并可方便在、拆装检修。

5、适应性强:板式换热器板片为独立元件,可按要求随意增减流程,形式多样;可适用于各种不同的、工艺的要求。

6、不串液,板式换热器密封槽设置泄液液道,各种介质不会串通,即使出现泄露,介质总是向外排出。

(3)板式换热器的应用范围板式换热器已广泛应用于冶金、矿山、石油、化工、电力、医药、食品、化纤、造纸、轻纺、船舶、供热等部门,可用于加热、冷却、蒸发、冷凝、杀菌消毒、余热回收等各种情况i.化学工业制造氧化钛、酒精发酵、合成氨、树脂合成、制造橡胶、冷却磷酸、冷却甲醛水、碱炭工业、电解制碱。

ii.钢铁工业冷却淬火油,冷却电镀用液、冷却减速器润滑油、冷却轧制机、拉丝机冷却液。

iii.冶金行业铝酸盐母液的加热和冷却,冷却铝酸钠,炼铝轧机润滑油冷却。

iv.机械制造业各种淬火液冷却,冷却压力机、工业母机润滑油,加热发动机用油。

v.食品工业制盐,乳品,酱油,醋的杀菌、冷却,动植物油加热、冷却,啤酒生产中啤酒、麦芽汁的加热冷却,制糖,明胶浓缩,杀菌、冷却,制造谷氨酸钠。

vi.纺织工业各种废液热回收,沸腾磷化纤维的冷却,冷却粘胶液,醋酸和酸醋酐的冷却,冷却碱水溶液,粘胶丝的加热和冷却。

vii.造纸工业冷却黑水,漂白用盐、碱液的加热、冷却,玻璃纸废液的热回收,加热蒸煮酸,冷却氢氧化钠水溶液,回收漂白张纸的废液,排气的凝缩,预热浓缩纸浆似的废液。

viii.集中供暖热电厂废热区域供暖,加热生活用水,锅炉区域供暖ix.油脂工业加热、冷却合成洗涤剂,加热鲸油,冷却植物油,冷却氢氧化钠,冷却甘油、乳化油。

x.电力工业发电机轴泵冷却,变压器油冷却。

xi.船舶柴油机,中央冷却器,卸套水冷却器,活塞冷却器,润滑油冷却器,预热器,海水淡化系统(包括多级及单级)xii.其他医药、石油、建陶、玻璃、水泥、地热利用等。

1.2设计方案简介图2分别显示了平直形翅片和锯齿形翅片换热器中距冷流体入口7MM处截面的速度场分布。

将流体速度达到入口处速度的99%处定义为边界层与主流区的分界处,本次计算中,冷热流体的入口速度分别为6.5M/S和1.64M/S。

可以清楚地看到流体在锯齿形翅片中的速度边界层比在平直形翅片中的速度边界层薄,说明了与平直形翅片相比,锯齿形翅片对增加流体扰动、破坏边界层具有明显的作用。

锯齿形翅片的温度场和速度场分布图3A显示了锯齿形翅片中热通道中间截面处的温度场分布,可以看到交错排列的翅片使流体在流动方向上产生的热边界层总是不断被破坏,使得锯齿形翅片比平直形翅片拥有更好的换热效果。

图3B显示了的中间截面处的速度矢量分布,从图中可以看到流体接近翅片时出现的分流,和流体离开翅片时在翅片尾部产生的微小旋涡。

局部换热系数和压力的变化趋势从图4A中可以看出冷热流体的换热系数都是随着温度的增加而增加(热流体沿Z轴正方向流动,冷流体相反),这说明流体的局部换热系数受温度的影响;冷热流体在入口附近的局部换热系数都相对较大,这是因为从入口到层流充分发展段之间的区域内,流体的热边界层比较薄,因而有较高的局部换热系数。

热流体的局部换热系数大约是冷流体局部换热系数的两倍,这是因为热流体的RE数大约为冷流体RE的两倍。

从图4B中可以看出流体的局部换热系数在相邻两排锯齿的交错面上出现突跃,这是因为流体受到翅片的扰动后边界层突然变薄,使流体在那里的换热突然增强。

比较图4A和图4B可以看到,相同情况下,锯齿形翅片的换热系数要大于平直形翅片的换热系数。

从图5A中可以看到冷热流体的压力变化基本是线性的,在入口处变化较大,冷热流体的总压损大约在250PA和75PA。

从图5B中可以看到冷热流体的压力变化也呈现出锯齿状,在锯齿的交错面上流体的压力出现突降,这是因为翅片对流体的阻挡造成的,冷热流体的压损大约为25PA和10PA。

1.3 确定设计方案将CFD技术运用到板翅式换热器的设计领域,通过合理简化,建立了平直形和锯齿形两种翅片类型的换热器通道模型,对微小通道中流体的流动与传热进行了数值分析,并对计算结果进行了分析,比较了两种翅片中流体的边界层、局部换热系数和压力损失,从微观角度得出了锯齿形翅片高换热效率的根本原因。

1.3.1工艺流程工艺流程设计涉及面很广,它最先开始,最后完成,是由浅入深、由定性到定量逐步分段进行的。

逐步得到工艺流程草图、工艺物料流程图、带控制点工艺流程图、管道仪表流程图。

1.3.2 换热器选型 锯齿形板式换热器1.4 符号说明W H 热液体质量流量 /kg h W C 冷流体质量流量 /kg h C PH 热水定压比热 K J(㎏·℃) C PC 冷水定压比热 K J(㎏·℃)m t '∆ 平均温差 ℃ mt ∆ 校正后的平均温差 ℃K 总传热系数 W ·㎡·℃-1 S 换热面积 ㎡ R E 雷洛准数 无因次 P R 普兰特准数 无因次1α 热流体对流传热系数 W ·㎡·℃-12α 冷流体对流给热系数 W ·㎡·℃-1wλ 材料导热系数 W/M ·℃B 板材厚度 ㎜2 热水冷却器的设计工艺计算2.1计算定性温度,并查取定性温度下的物性数据将60⨯103t/Y 的热水从80℃冷却至50℃,冷却介质采用循环水,循环水入口温度30℃,出口温度为40℃,设计一台锯齿形板式热水冷却器,完成该生产任务。

相关文档
最新文档