WORD北京市西城区2015年中考二模数学试题及答案
2015年北京市中考数学试题及答案解析

2015年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106考点:科学记数法—表示较大的数.专题:计算题.分析:将140000用科学记数法表示即可.解答:解:140000=1.4×105,故选B.点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)(2015•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d考点:实数大小比较.分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.解答:解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.3.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.考点:概率公式.专题:计算题.分析:直接根据概率公式求解.解答:解:从中随机摸出一个小球,恰好是黄球的概率==.故选B.点评:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,B.不是轴对称图形,C.不是轴对称图形,D.是轴对称图形,故选:D.点评:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.5.(3分)(2015•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°考点:平行线的性质.分析:如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.解答:解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.点评:该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.6.(3分)(2015•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km考点:直角三角形斜边上的中线.专题:应用题.分析:根据直角三角形斜边上的中线等于斜边的一半,可得MC=AM=1.2km.解答:解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=AM=1.2km.故选D.点评:本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.7.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21 B.21,21.5 C.21,22 D.22,22考点:众数;条形统计图;中位数.专题:数形结合.分析:根据条形统计图得到各数据的权,然后根据众数和中位数的定义求解.解答:解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.点评:本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.8.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)考点:坐标确定位置.分析:根据平面直角坐标系,找出相应的位置,然后写出坐标即可.解答:解:根据表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),可得:原点是中和殿,所以可得景仁宫(2,4),养心殿(﹣2,3),保和殿(0,1),武英殿(﹣3.5,﹣3),故选B点评:此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.9.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡考点:一次函数的应用.分析:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,确定y的范围,进行比较即可解答.解答:解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤50时,1175≤y A≤1300;1100≤y B≤1200;1075≤y C≤1150;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.点评:本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.10.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O考点:动点问题的函数图象.分析:根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.解答:解:A、从A点到O点y随x增大一直减小到0,故A不符合题意;B.从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;C.从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C点距离最大,故C符合题意;D.从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.点评:本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.二、填填空题(本题共18分,每小题3分)11.(3分)(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式5x,再根据完全平方公式进行二次分解.解答:解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.(3分)(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.考点:多边形内角与外角.分析:首先根据图示,可得∠1=180°﹣∠BAE,∠2=180°﹣∠ABC,∠3=180°﹣∠BCD,∠4=180°﹣∠CDE,∠5=180°﹣∠DEA,然后根据三角形的内角和定理,求出五边形ABCDE的内角和是多少,再用180°×5减去五边形ABCDE的内角和,求出∠1+∠2+∠3+∠4+∠5等于多少即可.解答:解:∠1+∠2+∠3+∠4+∠5=(180°﹣∠BAE)+(180°﹣∠ABC)+(180°﹣∠BCD)+(180°﹣∠CDE)+(180°﹣∠DEA)=180°×5﹣(∠BAE+∠ABC+∠BCD+∠CDE+∠DEA)=900°﹣(5﹣2)×180°=900°﹣540°=360°.故答案为:360°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.13.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.考点:由实际问题抽象出二元一次方程组.分析:根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.解答:解:根据题意得:,故答案为:.点评:本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.14.(3分)(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.考点:根的判别式.专题:开放型.分析:由于关于x的一元二次方程ax2+bx+=0有两个相等的实数根,得到a=b2,找一组满足条件的数据即可.解答:关于x的一元二次方程ax2+bx+=0有两个相等的实数根,∴△=b2﹣4×a=b2﹣a=0,∴a=b2,当b=2时,a=4,故b=2,a=4时满足条件.故答案为:4,2.点评:本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.15.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升.考点:用样本估计总体;折线统计图.分析:根据统计图进行用样本估计总体来预估即可.解答:解:预估2015年北京市轨道交通日均客运量约980万人次,根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升,故答案为:980;根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升.点评:此题考查用样本估计总体,关键是根据统计图分析其上升规律.16.(3分)(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上.考点:作图—基本作图.专题:作图题.分析:通过作图得到CA=CB,DA=DB,则可根据线段垂直平分线定理的逆定理判断CD为线段AB的垂直平分线.解答:解:∵CA=CB,DA=DB,∴CD垂直平分AB(到线段两个端点距离相等的点在线段的垂直平分线上)故答案为:到线段两个端点距离相等的点在线段的垂直平分线上.点评:本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.分析:原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=4﹣1+2﹣+4×=5+.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.考点:整式的混合运算—化简求值.专题:计算题.分析:原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.解答:解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.考点:解一元一次不等式组;一元一次不等式组的整数解.专题:计算题.分析:分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.解答:解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.点评:此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.(5分)(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC 于点E.求证:∠CBE=∠BAD.考点:等腰三角形的性质.专题:证明题.分析:根据三角形三线合一的性质可得∠CAD=∠BAD,根据同角的余角相等可得:∠CBE=∠CAD,再根据等量关系得到∠CBE=∠BAD.解答:证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.点评:考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.21.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?考点:分式方程的应用.分析:根据租赁点的公租自行车数量变化表示出2013年和2015年平均每个租赁点的公租自行车数量,进而得出等式求出即可.解答:解:设到2015年底,全市将有租赁点x个,根据题意可得:×1.2=,解得:x=1000,经检验得:x=1000是原方程的根,答:到2015年底,全市将有租赁点1000个.点评:此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.22.(5分)(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.考点:平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.专题:证明题.分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.点评:本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.考点:反比例函数与一次函数的交点问题.分析:(1)将点P的坐标代入反比例函数的解析式即可求得m的值;(2)作PC⊥x轴于点C,设点A的坐标为(a,0),则AO=﹣a,AC=2﹣a,根据PA=2AB 得到AB:AP=AO:AC=1:2,求得a值后代入求得k值即可.解答:解:∵y=经过P(2,m),∴2m=8,解得:m=4;(2)点P(2,4)在y=kx+b上,∴4=2k+b,∴b=4﹣2k,∵直线y=kx+b(k≠0)与x轴、y轴分别交于点A,B,∴A(2﹣,0),B(0,4﹣2k),如图,∵PA=2AB,∴AB=PB,则OA=OC,∴﹣2=2,解得k=1;点评:本题考查了反比例函数与一次函数的交点问题,解题的关键是表示出A的坐标,然后利用线段之间的倍数关系确定k的值,难度不大.24.(5分)(2015•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.考点:切线的性质;等边三角形的判定与性质.分析:(1)由AB是⊙O的直径,BM是⊙O的切线,得到AB⊥BE,由于CD∥BE,得到CD⊥AB,根据垂径定理得到,于是得到,问题即可得证;(2)连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,得到∠DAC=60°又直角三角形的性质得到BE=AE,ON=AO,设⊙O的半径为:r则ON=r,AN=DN=r,由于得到EN=2+,BE=AE=,在R t△DEF与R t△BEO中,由勾股定理列方程即可得到结论.解答:(1)证明:∵AB是⊙O的直径,BM是⊙O的切线,∴AB⊥BE,∵CD∥BE,∴CD⊥AB,∴,∵=,∴,∴AD=AC=CD,∴△ACD是等边三角形;(2)解:连接OE,过O作ON⊥AD于N,由(1)知,△ACD是等边三角形,∴∠DAC=60°∵AD=AC,CD⊥AB,∴∠DAB=30°,∴BE=AE,ON=AO,设⊙O的半径为:r,∴ON=r,AN=DN=r,∴EN=2+,BE=AE=,在R t△DEF与R t△BEO中,OE2=ON2+NE2=OB2+BE2,即=r2+,∴r=2,∴OE2=+25=28,∴OE=2.点评:本题考查了切线的性质,垂径定理,等边三角形的判定,直角三角形的性质,勾股定理,过O作ON⊥AD于N,构造直角三角形是解题的关键.25.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为40万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.考点:条形统计图;统计表.分析:(1)2013年的人数乘以(1+25%)即可求解;(2)求出2014年颐和园的游客接待量,然后利用统计表即可表示.解答:解:(1)2014年,玉渊潭公园的游客接待量是:32×(1+25%)=40(万人).故答案是:40;(2)2013年颐和园的游客接待量是:26.4﹣4.6=21.8(万元).玉渊潭公园颐和园北京动物园2013年32 21.8 14.92014年40 26.2 222015年38 26 18点评:本题考查了数据的分析与整理,正确读懂题意,从所列的数据中整理出2013﹣2015年三年中,三个公园的游客数是关键.26.(5分)(2015•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.1 2 3 …x …﹣3 ﹣2 ﹣1﹣﹣y …m …﹣﹣﹣求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.考点:二次函数的图象;反比例函数的图象;反比例函数的性质;二次函数的性质.分析:(1)由图表可知x≠0;(2)根据图表可知当x=3时的函数值为m,把x=3代入解析式即可求得;(3)根据坐标系中的点,用平滑的直线连接即可;(4)观察图象即可得出该函数的其他性质.解答:解:(1)x≠0,(2)令x=3,∴y=×32+=+=;∴m=;(3)如图(4)该函数的其它性质:①该函数没有最大值;②该函数在x=0处断开;③该函数没有最小值;④该函数图象没有经过第四象限.故答案为该函数没有最大值.点评:本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.27.(7分)(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.考点:二次函数的性质;待定系数法求二次函数解析式.分析:(1)当y=2时,则2=x﹣1,解得x=3,确定A(3,2),根据AB关于x=1对称,所以B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得,求出b,c的值,即可解答;(3)画出函数图象,把A,B代入y=ax2,求出a的值,即可解答.解答:解:(1)当y=2时,则2=x﹣1,解得:x=3,∴A(3,2),∵点A关于直线x=1的对称点为B,∴B(﹣1,2).(2)把(3,2),(﹣2,2)代入抛物线C1:y=x2+bx+c得:解得:∴y=x2﹣2x﹣1.顶点坐标为(1,﹣2).(3)如图,当C2过A点,B点时为临界,代入A(3,2)则9a=2,解得:a=,代入B(﹣1,2),则a(﹣1)2=2,解得:a=2,∴点评:本题考查了二次函数的性质,解集本题的关键是求出二次函数的解析式,并结合图形解决问题.28.(7分)(2015•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)考点:四边形综合题.分析:(1)①根据题意画出图形即可;②连接CH,先根据正方形的性质得出△DHQ是等腰直角三角形,再由SSS定理得出△HDP≌△HQC,故PH=CH,∠HPC=∠HCP,由正方形的性质即可得出结论;(2)根据四边形ABCD是正方形,QH⊥BD可知△DHQ是等腰直角三角形,再由平移的性质得出PD=CQ.作HR⊥PC于点R,由∠AHQ=152°,可得出∠AHB及∠DAH 的度数,设DP=x,则DR=HR=RQ,由锐角三角函数的定义即可得出结论.解答:解:(1)①如图1;②如图1,连接CH,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵DP=CQ,在△HDP与△HQC中.∵,∴△HDP≌△HQC(SSS),∴PH=CH,∠HPC=∠HCP.∵BD是正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴∠AHP=180°﹣∠ADP=90°,∴AH=PH,AH⊥PH.(2)如图2,∵四边形ABCD是正方形,QH⊥BD,∴∠HDQ=45°,∴△DHQ是等腰直角三角形.∵△BCQ由△ADP平移而成,∴PD=CQ.作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°.设DP=x,则DR=HR=RQ=.∵tan17°=,即tan17°=,∴x=.点评:本题考查的是四边形综合题,涉及到正方形的性质、图形平移的性质、全等三角形的判定与性质等知识,难度适中.29.(8分)(2015•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.考点:圆的综合题.分析:(1)①根据反称点的定义,可得当⊙O的半径为1时,点M(2,1)关于⊙O的反称点不存在;N(,0)关于⊙O的反称点存在,反称点N′(,0);T(1,)关于⊙O的反称点存在,反称点T′(0,0);②由OP≤2r=2,得出OP2≤4,设P(x,﹣x+2),由勾股定理得出OP2=x2+(﹣x+2)2=2x2﹣4x+4≤4,解不等式得出0≤x≤2.再分别将x=2与0代入检验即可;(2)先由y=﹣x+2,求出A(6,0),B(0,2),则=,∠OBA=60°,∠OAB=30°.再设C(x,0),分两种情况进行讨论:①C在OA上;②C在A点右侧.解答:解:(1)当⊙O的半径为1时.①点M(2,1)关于⊙O的反称点不存在;N(,0)关于⊙O的反称点存在,反称点N′(,0);T(1,)关于⊙O的反称点存在,反称点T′(0,0);②∵OP≤2r=2,OP2≤4,设P(x,﹣x+2),∴OP2=x2+(﹣x+2)2=2x2﹣4x+4≤4,∴2x2﹣4x≤0,欢迎下载!祝您成绩进步,生活愉快!x (x﹣2)≤0,∴0≤x≤2.当x=2时,P(2,0),P ′(0,0)不符合题意;当x=0时,P(0,2),P′(0,0)不符合题意;∴0<x<2;(2)∵直线y=﹣x+2与x轴、y轴分别交于点A,B,∴A(6,0),B(0,2),∴=,∴∠OBA=60°,∠OAB=30°.设C(x,0).①当C在OA上时,作CH⊥AB于H,则CH≤CP≤2r=2,所以AC≤4,C点横坐标x≥2(当x=2时,C点坐标(2,0),H点的反称点H′(2,0)在圆的内部);②当C在A点右侧时,C到线段AB的距离为AC长,AC最大值为2,所以C点横坐标x≤8.综上所述,圆心C的横坐标的取值范围是2≤x≤8.点评:本题是圆的综合题,其中涉及到一次函数图象上点的坐标特征,特殊角的三角函数值,勾股定理,一元二次不等式的解法,利用数形结合、正确理解反称点的意义是解决本题的关键.。
2015北京中考数学试题与答案

2015 年北京市高级中等学校招生考试数学试卷一、选择题下面各题均有四个选项,其中只有一个..是吻合题意的。
1.截止到 2015年 6 月 1 日,北京市已建成 34个地下调蓄设施,蓄水能力达到140000立方平米。
将 1 40 000用科学记数法表示应为A . 14×104B. 1.4 ×105C.1.4 ×106D. 0.14 ×1062.实数 a, b, c, d 在数轴上的对应点的地址以下列图,这四个数中,绝对值最大的是A . a B. bC. c D. d3.一个不透明的盒子中装有 3 个红球, 2 个黄球和 1 个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A.B.C.D.4.剪纸是我国传统的民间艺术,以下剪纸作品中,是轴对称图形的为5.如图,直线 l 1,l2,l 3交于一点,直线 l4∥ l1,若∠ 1=124°,∠ 2=88°,则∠ 3 的度数为A .26°B. 36°C. 46° D .56°6.如图,公路AC ,BC 互相垂直,公路AB 的中点 M 与点 C 被湖分开,若测得 AM 的长为 1.2km ,则 M , C 两点间的距离为A .0.5km B. 0.6kmC. 0.9km D. 1.2km7.某市 6 月份日平均气温统计以下列图,则在日平均气温这组数据中,众数和中位数分别是A .21, 21B .21, 21.5C. 21, 22 D .22, 228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x 轴、 y 轴的正方向。
表示太和门的点坐标为( 0, -1),表示九龙壁的点的坐标为(4,1),则表示以下宫殿的点的坐标正确的是A .景仁宫( 4, 2)B.养心殿( -2, 3)C.保和殿( 1, 0)D .武英殿( -3.5, -4)9.一家游泳馆的游泳收费标准为30 元/次,若购买会员年卡,可享受以下优惠:会员年卡种类办卡花销(元)每次游泳收费(元)A 类5025B 类20020C 类40015比方,购买 A 类会员卡,一年内游泳20 次,花销50+25×20=550 元,若一年内在该游泳馆游泳的次数介于45~55 次之间,则最省钱的方式为A .购买 A 类会员年卡B .购买 B 类会员年卡C.购买 C 类会员年卡D.不购买会员年卡10.一个寻宝游戏的寻宝通道如图 1 所示,通道由在同一平面内的AB ,BC, CA , OA ,OB ,OC 组成。
2015年北京市中考数学试题及解析

2015年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水2.(3分)(2015•北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )3.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球 C D4.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为 CD5.(3分)(2015•北京)如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )6.(3分)(2015•北京)如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开.若测得AM 的长为1.2km ,则M ,C 两点间的距离为( )7.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()8.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()景仁宫(4,2)9.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受10.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()二、填填空题(本题共18分,每小题3分)11.(3分)(2015•北京)分解因式:5x3﹣10x2+5x=.12.(3分)(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.13.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.14.(3分)(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.15.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.16.(3分)(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.18.(5分)(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.19.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.20.(5分)(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC 于点E.求证:∠CBE=∠BAD.21.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?22.(5分)(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.24.(5分)(2015•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.25.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(5分)(2015•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;﹣﹣﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).27.(7分)(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.28.(7分)(2015•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD 于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)29.(8分)(2015•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.2015年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的1.(3分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水2.(3分)(2015•北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()3.(3分)(2015•北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球C D=4.(3分)(2015•北京)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为C D5.(3分)(2015•北京)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()6.(3分)(2015•北京)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()MC=7.(3分)(2015•北京)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()8.(3分)(2015•北京)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()景仁宫(4,2)9.(3分)(2015•北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受10.(3分)(2015•北京)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()二、填填空题(本题共18分,每小题3分)11.(3分)(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.12.(3分)(2015•北京)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.13.(3分)(2015•北京)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.解:根据题意得:故答案为:.14.(3分)(2015•北京)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.=0=0×a=b15.(3分)(2015•北京)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是根据2009﹣2011年呈直线上升,故2013﹣2015年也呈直线上升.16.(3分)(2015•北京)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.×=5+18.(5分)(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.19.(5分)(2015•北京)解不等式组,并写出它的所有非负整数解.,,,20.(5分)(2015•北京)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC 于点E.求证:∠CBE=∠BAD.21.(5分)(2015•北京)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?×,22.(5分)(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.==523.(5分)(2015•北京)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若PA=2AB,求k的值.y=﹣﹣24.(5分)(2015•北京)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.,根据垂径定理得到,于是得到,问题即可得证;BE=AO r AN=DN=EN=2+BE=AE==,,BE=AE AOON=AN=DN=,BE=AE=,r=2,+25=28.25.(5分)(2015•北京)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为40万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(5分)(2015•北京)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;﹣﹣﹣(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.×+=;27.(7分)(2015•北京)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.,求出解得:28.(7分)(2015•北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD 于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果),DR=HR=RQ=,即,.29.(8分)(2015•北京)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P 的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.,,)x+2),则=(,x+2)=。
2015年中考数学试题及答案(word版)

北京市高级中等学校招生考试数学试卷一、选择题下面各题均有四个选项,其中只有一个..是符合题意的。
1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将1 40 000用科学记数法表示应为A.14×104B.1.4×105 C.1.4×106 D.0.14×1062.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.a B.b C.c D.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A.B.C.D.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为5.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为A.26°B.36°C.46°D.56°6.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为A.0.5km B.0.6km C.0.9km D.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A.21,21 B.21,21.5C.21,22 D.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是A.景仁宫(4,2)B.养心殿(-2,3)C.保和殿(1,0)D.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类50 25B类200 20C类400 15例如,购买A类会员卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。
2015北京中考真题数学(含解析)

2015年北京中考真题数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意得.1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米.将140000用科学记数法表示应为( ). A .41410⨯ B .51.410⨯ C .61.410⨯ D .60.1410⨯2.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( ).A .aB .bC .cD .d3.一个不透明的盒子中装有3个红球、2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ).A .16B .13C .12D .234.剪纸是我国传统的民间艺术.下列剪纸作品中,是轴对称图形的为( ).A .B .C .D .5.如图,直线1l ,2l ,3l 交于一点,直线41l l ∥,若1124∠=︒,288∠=︒,则3∠的度数为( ). A .26︒B .36︒C .46︒D .56︒6.如图,公路AC ,BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M ,C 两点间的距离为( ).A .0.5kmB .0.6kmC .0.9kmD .1.2kmd c bl 4l 3l 2l 1321CA7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( ).A .21,21B .21,21.5C .21,22D .22,228.如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示太和门的点的坐标为(0,1)-,表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是( ).A .景仁宫(4,2)B .养心殿(2,3)-C .保和殿(1,0)D .武英殿( 3.5,4)--9例如,购买A 若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为( ). A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡 D .不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB ,BC ,CA ,OA ,OB ,OC 组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为( ).A .A OB →→ B .B AC →→ C .B O C →→D .C B O →→二、填空题(本题共18分,每小题3分) 11.分解因式:325105x x x -+=__________.12.如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,则12345∠+∠+∠+∠+∠=__________.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为__________.14.关于x 的一元二次方程2104ax bx ++=有两个相等的实数根,写出一组满足条件的实数a ,b 的值:a =__________,b =__________.图1MCBA图2x54321ED CB A15.北京市20092014-年轨道交通日均客运量统计如图所示,根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约为__________万人次,你的预估理由是____________________.16.阅读下面材料:请回答:小芸的作图依据是____________________.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,验算步骤或证明过程.17.计算:201()(π24sin602--+︒.18.已知22360a a +-=,求代数式3(21)(21)(21)a a a a +-+-的值.19.解不等式组4(1)710853x x x x ++⎧⎪-⎨-<⎪⎩≤,并写出它的所有非负整数解......20.如图,在ABC △中,AB AC =,AD 是BC 边上的中线,BE AC ⊥于点E .求证:CBE BAD ∠=∠.21.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计2015年底,全市将有租赁点多少个?22.在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接AF ,BF .(1)求证:四边形BFDE 是矩形.(2)若3CF =,4BF =,5DF =,求证:AF 平分DAB ∠.ED CB AFEDCBA23.在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线8y x=的一个交点为(2,)P m ,与x 轴、y 轴分别交于点A ,B . (1)求m 的值.(2)若2PA AB =,求k 的值.24.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,弦CD BM ∥,交AB 于点F ,且DA DC =,连接AC ,AD ,延长AD 交BM 于点E .(1)求证:ACD △是等边三角形.(2)连接OE ,若2DE =,求OE 的长.25.阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次,21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、19.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次.其中,玉渊潭公园游客接待量比2013年情面小长假增长了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为__________万人次.(2)选择统计表或统计图,将20132015-年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.MEBA26.有这样一个问题:探究函数2112y x x=+的图像与性质. 小东根据学习函数的经验,对函数2112y x x=+的图像与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数2112y x x=+的自变量x 的取值范围是__________;y x(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图像;(4)进一步探究发现,该函数图像在第一象限内的最低点的坐标是3(1,)2.结合函数的图像,写出该函数的其它性质(一条即可):__________.x27.在平面标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线21:C y x bx c =++经过点A ,B .(1)求A ,B 的坐标;(2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线22:(0)C y ax a =≠与线段AB 恰有一个公共点,结合函数的图像,求a 的取值范围.28.在正方形ABCD 中,BD 是一条对角线.点P 在射线CD 上(与点C 、D 不重合),连接AP ,平移ADP △,使点D 移动到点C ,得到BCQ △,过点Q 作QH BD ⊥于点H ,连接AH ,PH . (1)若点P 在线段CD 上,如图1, ①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且152AHQ ∠=︒,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)x图1PD CBA备用图D CBA29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙C 的反对称点的定义如下:若在射线..CP 上存在一点P ',满足2CP CP r '+=,则称P '为点P 关于⊙C 的反称点.下图为点P 及其关于⊙C 的反称点P '的示意图.特别地,当点P '与圆心C 重合时,规定0CP '=. (1)当⊙O 的半径为1时,①分别判断点(2,1)M ,3(,0)2N,T 关于⊙O 的反称点是否存在?若存在,求其坐标;②若点P 在直线2y x =-+上,若点P 关于⊙O 的反称点P '存在,且点P '不在x 轴上,求点P 的横坐标的取值范围;(2)⊙C 的圆心在x 轴上,半径为1.直线y =+x 轴、y 轴分别交予点A ,B .若线段..AB 上存在点P ,使得点P 关于⊙C 的反称点P '在⊙C 的内部,求圆心C 的横坐标的取值范围.x2015北京中考真题数学试卷答案二、填空题(本题共18分,每小题3分)11.25(1)x x - 12.360︒13.5210258x y x y +=⎧⎨+=⎩14.1a =,1b =(答案不唯一) 15.104016.到线段两个端点距离相等的点,在这条线段的垂直平分线上三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式4124=-+-412=-+5=+18.解:原式226341a a a =+-+2231a a =++. ∵22360a a +-=, ∴2236a a +=, ∴原式617=+=. 即原代数式的值为7.19.解:解4(1)710x x ++≤得,44710x x ++≤,36x -≥,2x -≥.解853x x --<得,3158x x -<-,27x <,72x <.∴原不等式的解集为722x -<≤,它的所有非负整数解为0,1,2,3.20.证明:∵AD 是BC 边上的中线,∴BD CD =. 又∵AB AC =,∴BAD CAD ∠=∠,AD BC ⊥. 又∵BE AC ⊥,∴90CBE C CAD C ∠+∠=∠+∠=︒, ∴CBE CAD ∠=∠, ∴CBE BAD ∠=∠.21.解:设预计2015年底,全市将有租赁点为x 个,依题可知,列方程为50000250001.2600x =⨯,解得1000x =.经检验:1000x =是原方程的解,且符合题意. 答:预计2015年底,全市将有租赁点为1000个.22.证明:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥. ∵DF BE =,∴四边形DEBF 是平行四边形, ∵DE AB ⊥, ∴90DEB ∠=︒,∴四边形BFDE 是矩形.(2)∵四边形ABCD 是平行四边形, ∴AD BC =.∵四边形BFDE 是矩形,∴DF BE =,90BFD BFC ∠=∠=︒. 在Rt BFC △中,3CF =,4BF =, ∴5BC AD ==. ∵5DF BE ==, ∴AD DF =,∴DAF DFA ∠=∠. ∵AB CD ∥,∴DFA BAF ∠=∠, ∴BAF DAF ∠=∠, ∴AF 平分DAB ∠.23.解:(1)∵双曲线8y x=过点(2,)P m ,∴842m ==.即m 的值为4.(2)当0k <时,PA AB <,与题意矛盾,舍去. 故0k >.当0k >,0b <时,2PA AB =, 2(,0)3A ,(2,4)P , 代入直线(0)y kx b k =+≠中得, 2324k b k b ⎧+=⎪⎨⎪+=⎩,解得32k b =⎧⎨=-⎩, 当0k >,0b >,且B 为AP 的中点. 即(2,0)A -,(0,2)B ,代入直线(0)y kx b k =+≠中得, 220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩, 即k 的值为1或3.24.证明:(1)∵AB 是⊙O 的直径,BM 是⊙O 的切线,∴90ABM ∠=︒,AB BM ⊥, ∵CD BM ∥,∴AB CD ⊥. ∴AD AC =, ∴DA DC =,∴AD AC DC ==, ∴AC CD AD ==,∴ACD △是等边三角形. (2)连接BD ,∵ACD △是等边三角形 ∴30DAB ∠=︒.∵AB 是⊙O 的直径, ∴AD BD ⊥.∵90EBD ABD BAD ABD ∠+∠=∠+∠=︒, ∴30BAD EBD ∠=∠=︒, 在Rt BDE △中,2DE =, ∴BD =23OB =4BE =, 在Rt OBE △中,90OBE ∠=︒,224(23)27OE + 即OE 的长为2725.解:(1)32(125%)40⨯+=(万人),玉渊潭公园游客接待量为40万人次. 游客接待量 玉渊潭公园 颐和园 北京动物园2013 38 26 18 2014 40 26.2 22 2015 3221.6 14.926.解:(1)0x ≠.(2)当3x =时,2119129323236m =⨯+=+=,即m 的值296.(3)如图所示:(4)答案不唯一,如当0x <时,函数值随着x 值得增大而减小.yO1234564321-4-3-2-1-1-2-3-427.解:(1)依题可得,令2y =,12x -=,3x =,A 点坐标为(3,2),点A 关于直线1x =的对称点B 点坐标为(1,2)-. 即A 点坐标为(3,2),B 点坐标为(1,2)-.(2)抛物线21:C y x bx c =++经过点(3,2)A ,(1,2)B -,即抛物线解析式为2(1)(3)221y x x x x =+-+=--, 即抛物线化为顶点式为2(1)2y x =--,顶点坐标为(1,2)-. ∴抛物线解析式为221y x x =--,顶点坐标为(1,2)-. (3)当0a <时,开口向下,与线段AB 没有交点. 当0a >时,抛物线2y ax =恰好过点(3,2)A 时,94a =,49a =; 抛物线2y ax =恰好过点(1,2)B -时,2a =.即a 的取值范围为429a <≤.28.解:(1)如图所示.(2)PH AH =.证明:依题可知ADP △≌BCQ △, ∴DP CQ =, ∴DC PQ =.∵四边形ABCD 为正方形,∴AD CD PQ ==,45ADB CDB ∠==︒. ∵QH BD ⊥,∴45HDQ HQD ∠=∠=︒, ∴DH QH =.在AHD △和PHQ △中, AD PQ ABH PQH HD HQ =⎧⎪∠=∠⎨⎪=⎩, ∴AHD △≌PHQ △(SAS), ∴AH PH =,AHD PHQ ∠=∠,∴90AHD DHP PHQ DHP ∠+∠=∠+∠=︒, ∴AH PH ⊥.(2)如图,易证AHD △≌PHQ △. ∴AHP △为等腰直角三角形, ∵90AHP ADP ∠=∠=︒,HQP D CBAP QHDCBA∴A 、P 、D 、H 四点共圆.∴PAD PHD ∠=∠.∵152AHQ ∠=︒,90AHP ∠=︒, ∴28PHD ∠=︒. ∴28PAD ∠=︒,∵tan DPPAD AD ∠=,∴tan tan28DP AD PAD =⋅∠=︒.即DP 的长为tan28︒. 29.解:(1)①M 关于⊙O 的反称点不存在,N 、T 关于⊙O 的反称点存在,N 关于⊙O 的反称点为1(,0)2N ',T 关于⊙O 的反称点为(0,0)T '.②点P 关于⊙O 的反称点P '若存在,必在以O 为圆心,半径为2的圆内或圆上, 点P 还在直线2y x =-+上,且点P '不在x 轴上, ∴点P 的横坐标的取值范围02x <<.(2)直线y x =+x 轴、y 轴分别交予点A ,B ,(6,0)A,(0,B ,30BAO ∠=︒.∵点P 关于⊙C 的反称点P '在⊙C 的内部,∴点P 在必在以C 为圆心,半径大于1小于等于2圆上,当C 点到线段AB 的距离为2时,4CA =,此时C 点坐标为(2,0), 圆心C 的横坐标的取值范围28C x ≤≤.2015北京中考真题数学试卷部分答案解析一、选择题(本题共30分,每小题3分) 1.【答案】B【解析】140000用科学记数法表示为51.410⨯,故答案为B . 2.【答案】A【解析】a 的绝对值表示该a 到原点距离,所以绝对值最大的即为到原点最远的点,根据数轴可知为a .故答案为A . 3.【答案】B【解析】依题可知,摸出黄球的概率为:21=3+2+13,故答案为B . 4.【答案】D【解析】根据轴对称图形的定义可知选项D 为轴对称图形. 5.【答案】B【解析】∵41l l ∥,∴14180∠+∠=︒,∵1124∠=︒, ∴456∠=︒,∵234180∠+∠+∠=︒,288∠=︒, ∴336∠=︒. 6.【答案】D【解析】由直角三角形斜边中线等于斜边一半可知1=1.2km 2MC AB AM ==.7.【答案】C【解析】根据众数的定义可知这组数据得到众数为21,中间的两个数字均为22,∴中位数为22. 8.【答案】D【解析】由太和门和九龙壁两点的坐标可知中和殿为原点,可得景仁宫(2,4),养心殿(2,3)-,保和殿(0,1),武英殿( 3.5,3)--.故答案为D . 9.【答案】C【解析】设游泳次数为x ,若不办理年卡,费用为30x ; 若办理A 类年卡,费用为50+25x ; 若办理B 类年卡,费用为200+20x ; 若办理C 类年卡,费用为40015x +; ∵4555x <<,3050252002040015x x x x >+>+>+, ∴办理C 类年卡. 10.【答案】C 【解析】由y 与x 的函数关系的图象可知是一个轴对称的函数图象,即寻宝者的行进路线与定位仪器M 也是轴对称的图形,排除A 、D ;又因为BA BM >,排除B .故寻宝者的行进路线可能为B O C →→.二、填空题(本题共18分,每小题3分) 11.【答案】25(1)x x -4l 4l 3l 2l 1321【解析】分解因式:322251055(21)5(1)x x x x x x x x -+=-+=-.故答案为25(1)x x -. 12.【答案】360︒【解析】由多边形外角和公式可知,12345360∠+∠+∠+∠+∠=︒.故答案为360︒.13.【答案】5210258x y x y +=⎧⎨+=⎩ 【解析】依题可知,5210258x y x y +=⎧⎨+=⎩.故答案为5210258x y x y +=⎧⎨+=⎩.14.【答案】1a =,1b =(答案不唯一)【解析】关于x 的一元二次方程2104ax bx ++=有两个相等的实数根, ∴2201404a b a b a ≠⎧⎪⎨∆=-⨯⨯=-=⎪⎩, 1a =,1b =即可,答案不唯一. 故答案为1a =,1b =(答案不唯一). 15.【答案】1040(开放性试题,合理即可)【解析】预估理由是这五年北京市轨道交通日均客运量平均增长108万人次,故2015年北京市轨道交通日均客运量约为1040. 故答案为1040. 16.【答案】到线段两个端点距离相等的点,在这条线段的垂直平分线上.【解析】到线段两个端点距离相等的点,在这条线段的垂直平分线上(菱形的对角线互相垂直平分) 故答案为:到线段两个端点距离相等的点,在这条线段的垂直平分线上.。
2015年北京中考数学试卷解析

2015年市高级中等学校招生考试数学试卷逐题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个符合题意的.1.截止到2015年6月1日,市已建成34个地下调蓄设施,蓄水能力达到140 000立方米,将140 000用科学记数法表示应为A.14×104B.1.4×105C.1.4×106D.0.14×106【答案】B【解析】难度:★本题考查了有理数的基础—科学计数法.难度易.2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.aB.bC.cD.d【答案】A【解析】难度:★本题考查了有理数的基础数轴的认识以及绝对值的几何意义;3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A.61 B. 31C. 21D. 32【答案】B 【解析】难度:★本题考查了概率问题,难度易.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为A. B. C. D.【答案】D 【解析】难度:★本题考查了轴对称图形的判断;难度易.5.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为A.26°B.36°C.46°D.56°【答案】B 【解析】难度:★本题考查了相交线平行线中角度关系的考查,难度易.132l 4l 3l 216.如图,公路AC ,BC 互相垂直,公路AB 的中点M 和点C 被湖隔开,若测得AM 的长为1.2km ,则M,C 两点间的距离为A.0.5kmB.0.6kmC.0.9kmD.1.2km【答案】D 【解析】难度:★本题考查了直角三角形斜边中线等于斜边一半的性质,难度易.7.某市6月份的平均气温统计如图所示,则在日 平均气温这组数据中,众数和中位数分别是A.21,21B.21,21.5C.21,22D.22,22【答案】C 【解析】难度:★本题考查了中位数,众数的求法,难度易; 8. 右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东,正北方向为x 轴,y 轴的正方向,表示太和门的点的坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是 A.景仁宫(4,2) B.养心殿(-2,3) C.保和殿(1,0)CAM20 21 22 23 24气温/°C天数68104O2D.武英殿(-3.5,-4) 【答案】B 【解析】难度:★本题考查了平面直角坐标系点的坐标的确定,难度易;例如,购买A 类会员年卡,一年游泳20次,消费50+25×20=550元,若一年在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A.购买A 类会员年卡 B. 购买B 类会员年卡 C. 购买C 类会员年卡 D.不购买会员年卡【答案】C【解析】难度:★★本题考查了方案讨论问题,难度中.10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面的AB,BC,CA,OA,OB,OC 组成,为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为 A.A→O→BB.B→A→CC.B→O→CD.C→B→Ox图1图2【答案】C【解析】难度:★★本题考查了动点函数图像与路径问题,难度中.二、填空题(本题共18分,每小题3分)11.分解因式:5x3-10x2+5x=_________.【答案】5x(x-1)2【解析】难度:★本题考查了因式分解的计算,难度易12.右图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=________.【答案】360°【解析】难度:★本题考查了多边形的外角和为360°,难度易;13. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,它的代数成就主要包括开放术,正负术和方程术,其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五,羊二,直金十两;牛二,羊五,直金八两.问:牛,羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛,5只羊,值金8两.问:每头牛,每只羊各值多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为______.【答案】5x+2y=10 2x+5y=8ìíî【解析】难度:★★本题考查了简单的二元一次方程组的应用问题,但是阅读量较大,需要学生迅速提取有用信息,难度中14.关于x 的一元二次方程ax 2+bx +14=0有两个相等的实数根,写出一组满足条件的实数a,b 的值:a =________,b =________. 【答案】a=4,b=2(答案不唯一,满足2b a ) 【解析】难度:★本题考查了根据一元二次方程根的情况求参数值的问题,难度易;15.市2009~2014年轨道交通日均客运量统计如图所示,根据统计图中提供的信息,预估2015年市轨道交通日均客运量约为________万人次,你的预估理由是_________________________. 【答案】1038根据2009~2014年平均增长率. 【解析】难度:★本题考查了根据图像求平均增长率问题,难度易.16.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作确.” 请回答:小芸的作图依据是______________________________________. 【答案】三角形的全等判定(SSS )尺规作图:作一条线段的垂直平分线, 已知:线段AB ,求作:线段AB 的垂直平分线.AB如图, (1) 分别以点A 和点B 为圆心,大于12AB 的长为半径 作弧,两弧相交于C ,D 两点; (2) 作直线CD , 所以直线CD 就是所求作的垂直平分线.DC【解析】难度:★本题考查了垂直平分线的画图依据,难度易;三、解答题(本题共72分,第17~26题每小题5分,第27题7分,第28题7分,第29题8分)17. 计算:(2124sin 602π-⎛⎫-+ ⎪⎝⎭.【答案】5+【解析】难度:★解:原式本题考查了实数,零指数幂,负整数幂,特殊角的三角函数值的运算,二次根式的化简.综合考查了实数的混合运算.解决此类问题的关键是熟练记住三角函数值,掌握实数,零指数幂,负整数幂的运算及二次根式的化简.难度易.18. 已知22360a a +-=,求代数式()()()3212121a a a a +-+-的值. 【答案】7【解析】难度:★★ 解:原式=()226341a a a +--=226341a a a +-+ =2231a a ++∵2a 2+3a -6=02236a a ∴+=∴原式=6+1=7本题考查了整式的混合运算与化简求值,注意先化简,再整体代入求值.难度中.19. 解不等式组()41710853x xxx+≤+⎧⎪⎨--<⎪⎩,并写出它的所有非负整数解.【答案】解集为722x-≤<;非负整数解:x=0,1,2,3【解析】难度:★解:()41710853x xxx+≤+⎧⎪⎨--<⎪⎩①②解①得:2x≥-解②得:72 x<∴原不等式的解集为7 22x-≤<∴它的所有非负整数解为x=0,1,2,3本题考查了一元一次不等式的解法及把解集在数轴上表示出来,解答这类问题学生往往会在解题时不注意移项时”变号“而出现错误.重点掌握不等式的基本性质,难度易.20. 如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,BE ⊥AC 于点E , 求证:CBE BAD ∠=∠【答案】证明见解析 【解析】难度:★★ 证明:∵AB =ACABC ∴∆是等腰三角形 ∵AD 是BC 边上中线BAD CAD ∴∠=∠90ADB ADC ∠=∠=∵BE ^AC90BEA ∴∠=AEB ADB ∴∠=∠∵ÐAOB =ÐAEB +ÐEADAOB EBC ADB ∴∠=∠+∠ CBE BAD ∴∠=∠本题考查了等腰三角形的概念及”三线合一“的性质,八字模型的运用.难度中.B21. 为解决“最后一公里”的交通接驳问题,市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个? 【答案】1000个 【解析】难度:★★解:设2015年底,全市将有租赁点x 个.根据题意得:50000250001.2600x =⨯解得:x =1000经检验:x =1000是原分式方程的解.答:预计到2015年底,全市将有租赁点1000个.本题考查了分式方程的应用,找出题目中蕴含的数量关系,列出方程解出即可.难度中. 22. 在中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分DAB ∠.【答案】证明见解析; 【解析】难度:★★(1)证明:∵四边形ABCD 是平行四边形AC∵DF =BE∴四边形DEBF 是平行四边形∵DE ⊥AB∴90DEB ∠= ∴四边形BFDE 是矩形(2)证明:四边形BFDE 是矩形90BFD ∴∠= 90BFC ∴∠=在Rt △BFC 中,CF =3,BF =45BC ∴=== ∵四边形ABCD 是平行四边形∴BC =AD =5,DFA FAB ∠=∠∵DF =5∴AD =DF∴DAF DFA ∠=∠ ∴DAF FAB ∠=∠ ∴ AF 平分DAB ∠.本题考查了平行四边形的性质,矩形的判定及性质.等腰三角的定义及性质运用,主要考查了平时所讲到的”角平分线+平行必出等腰的模型.难度中.23. 在平面直角坐标系xOy 中,直线(0)y kx b k =+≠与双曲线8y x=的一个交点为(2,)P m ,与x 轴、y 轴分别交于点A ,B . (1)求m 的值;(2)若PA =2AB ,求k 的值. 【答案】 (1)4【解析】难度:★★★解:(1)∵P 是直线与双曲线的交点,∴P 在双曲线8y x=上.∴m =4(2)<方法一 代入法> 由(1)知,P (2,4) 代入直线y =kx +b 得:4=2k +b∴b =4-2k∵直线交x 轴、y 轴于A 、B 两点 42,0k A k -⎛⎫∴- ⎪⎝⎭,()0,42B k -PA ∴=AB = 又∵PA =2AB()2222424224442k k k k k ⎡⎤--⎛⎫⎛⎫∴++=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦∴k =1或k =3 ∴k 的值为1或3(2)<方法二 几何法>此题分情况讨论 ①若k >0且P 、A 分别在点B 的两侧如图①图①∵PA =2AB∴B 为PA 中点 ∴OB 为中位线 ∴B (0,2) ∴2(0)y kx k =+≠ ∴4=2k +2 ∴k =1②若k >0且P 、B 分别在点A 的两侧如图② 【解析】难度:★★本题考察了反比例函数和一次函数的基本性质;两点之间坐标距离公式;分类讨论;相似.难度中. 本题可用两种方法解决:第一种可利用两点之间坐标距离公式计算得出答案,虽然比较好思考,计算量却很大;第二种利用几何法画图求相似的方法,分类讨论一次函数中k 的取值围画出不同情况的图形解决问题.24.如图,AB 是⊙O 的直径,过点B 作⊙O 的切线BM ,弦CD ∥BM ,交AB 于点F ,且弧DA 的长度等于弧DC 的长度,连接AC ,AD ,延长AD 交BM 于点E . (1)求证:△ACD 是等边三角形; (2)延长OE ,若DE =2,求OE 的长.【答案】 (1)证明:∵ =∴AD =CD ∵CD ∥BM∴CD ⊥AB ∵AD=AC∴AD=AC=CD∴△ACD 是等边三角形 (2)解:设AD =x ,则AE =2+ BE =2+x2,半径= ∴AB EB =3 ∴ 解得=6 ∴ DE =27 【解析】难度:★本题考察了圆的性质和判定;勾股定理;难度易.25.阅读下面材料2015年清明小长假,市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次,其中玉渊潭公园的樱花,植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次,20万人次,17.6万人次;动物园游客接待量为18万人次,熊猫馆的游客密集度较高.x x 33x x 33223=+⨯x2014年清明小长假,天气晴好,晴好,市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增加了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、然亭公园、动物园游客接待量分别为32万人次、13万人次、14.9万人次根据以上材料回答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次.(2)选择统计表或统计图,将2013-2015年清明小长假玉渊潭公园、颐和园和动物园的游客接待量表示出来.【答案】(1) 40(2)本题考查了学生的阅读理解及简单的数据分析,本题与往年考题不同之处在于以往是根据统计图进行数据分析计算,今年不仅需要简单的数据分析计算,而且需要学生自己画出统计表.难度中.26.有这样一个问题:探究函数y =12x 2+1x的图象与性质. 小东根据学习函数的经验,对函数y =12x 2+1x的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1) 函数y =12x 2+1x 自变量x 的取值围是_________;(2求m 的值;(3) 如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点.画出该函数的图象;(4) 进一步探究发现,该函数图象在第一象限的最低点的坐标是(1,32),结合函数的图象,写出该函数的其它性质(一条即可):__________.【答案】(1)x≠0(2)29 6(3)(4)该函数与y轴没有交点;该函数与x轴交点坐标为0)该函数在y轴左侧因变量随着自变量的增大而减小;y轴右侧因变量随着自变量的增大先减小再增大(符合图像的性质均可)【解析】难度:★★本题考察了学生阅读材料的能力;函数的基本性质和汇总能力;难度中.本题难点位于描点画图的能力,要注意此题函数图像不可与y轴有交点,但是可以与x轴有交点.27.在平面直角坐标系xOy 中,过点(0,2)且平行于x 轴的直线,与直线y =x -1交于点A ,点A 关于直线x =1的对称点为B ,抛物线C 1: y =x 2+bx +c 经过点A 、B .(1)求点A ,B 的坐标(2)求抛物线C 1的表达式及顶点坐标;(3)若抛物线C 2:y =ax 2(a ¹0)与线段AB 恰有一个公共点,结合函数的图象,求a 的取值围.【答案】(1)A(3,2) B(-1,2) (2)y=x 2-2x-1 顶点(1,-2)(3)292<≤a【解析】难度:★★本题考查了对数形结合的认识和了解,难度适中.备用图首先必须对基本的函数解析式以及图像有清晰的认识,进而快速的画出图像.①根据交点特征写出A 点坐标,然后根据对称的性质直接写出B 点坐标. ②根据待定系数法快速求出解析式.③的重点在于画出图像,分别找出有两个交点的临界条件是过B,有一个交点的临界条件是过点A,进而得出答案在y=ax 2刚好过A 、B 点取值之间.28.在正方形ABCD 中,BD 是一条对角线.点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH ,PH .(1)若点P 在线段CD 上,如图1, ①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且∠AHQ =152°,正方形ABCD 的边长为1,请写出求DP 长的思路(可以不写出计算结果) 【答案】(1)备用图图1DA(2)∵平移△ADP ,使点D 移动到点C 得到△BCQ ∴△ADP ≌△BCQ ∴DP=CQ ∵DC=DP+PC PQ=QC+PC ∴DC=PQ∵正方形ABCD ∴DA=DC=PQ ∵BD∴∠∵QH ∴∠∴在△⎪⎩⎪⎨⎧=∠=PQ AD HDA HD∴△HAD ≌△HPQ∴HA=HP 、∠AHD=∠PHQ ∵∠DHP+∠PHQ=90° ∴∠DHP+∠AHD=90° ∴∠AHP=90° ∴HA ⊥HP (3)∵AHQ=152°, ∠∴∠PHD=360°-∠∵∠HPD=∠HDQ-∠∴∠HPD=17° ∵HA=HP,HA ⊥HP ∴∠HPA=45°∵∠APD=∠APH+∠∴∠APD=62°∵∠APD+∠PAD=90° ∴∠PAD=28°∵ADPDPAD =∠tan ,AD=1 ∴︒=28tan PD【解析】难度:★★本题考查了平移作图、旋转全等和三角形函数,难度适中.今年的几何压轴题实际难度相比去年是有所降低的,但是学生的感知难度并不低,主要难点在于两方面:一、对学生作图能力的考查,尤其第三问需要学生能精确画出题中描述的图形.二、今年出现新颖问法“请写出求DP 长的思路(可以不写出计算结果)”.这给学生解题带来了一定干扰,学生在不知道如何使用152度的情况下,还要思考答案究竟该如何表示等问题,问题较为开放,表示方法并不单一.实际上解出答案并不难,关键是学生求完了答案不确定对不对.难度中.29. 在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙C的反称点的定义如下:若在射线..CP上存在一点'P存在,满足CP+CP'=2r,则称'P为点P关于⊙C的反称点.下图为点P关于⊙C的反称点'P 的示意图.特别地,在点'P与圆心C重合时,规定CP'=0.(1)当⊙O的半径为1时,①分别判断点M(2,1),N(32,0),T(1关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=-x+2上,若点P关于⊙O的反称点'P存在,且点'P不在x轴上,求点P的横坐标的取值围;(2)⊙C的圆心在x轴上,半径为1,直线y=-3x+x轴、y轴分别交于点A,B,若线段..AB上存在点P,使得点P关于⊙C的反称点'P在⊙C的部,求圆心C的横坐标的取值围.【答案】(1)① M 关于⊙O 的反对称点不存在,点N 关于⊙O 的反对称点是1,02⎛⎫⎪⎝⎭,点T 关于⊙O 的反对称点是()0,0②P 点横坐标x 的取值围是02x <<(2)圆心C 横坐标x 的取值围是28x ≤≤【解析】难度:★★(1)①可以算出MO,NO 的长度是32,TO 的长度是2 而⊙O 的半径是1,只需满足点与反对称点分别到原点的距离长度和是2即可 ②点P 的反对称点存在,可知PO 的长度不能超过2,而'P 不在x 轴上,可求出x 的取值围(2)由题意可知C 到已知线段的任一点的距离要大于1且不超过2,也可理解评析:自13年中考最后一题第一次考察新定义的形式以来,近连续三年都是新定义的方式出题,从知识点来说,13年考查的是坐标系下新定义与圆的结合,14年考察的是坐标系下新定义与一次函数,反比例函数,二次函数的综合,而今年考察的仍然是坐标系下新定义与圆的综合并且结合了特殊斜率的直线,对于圆的切线,两点之间的距离公式,相似或解直角三角形也都有涉及.但对于所给新定义的深度挖掘要求较小,计算量也不大,所以今年的题目难度不比前两年.从以上我们可以看出,虽然中考试卷题目由25道变为29道,但是未来几年的压轴题的难度是下降的,考查形式仍然会是新定义,但结合函数或者圆却不一定,也不排除未来会结合其他几何图形或方程与不等式,或者都结合到一起也不是不可能的,考查形式特别灵活,这就要求同学们不能有任何知识盲点,对于每章节的重点要熟练掌握.。
高三二模数学(文)北京市西城区试题Word版带解析
高三二模数学(文)北京市西城区试题Word版带解析第2页共16页北京市西城区2015年高三二模文科数学试卷2015.5第Ⅰ卷(选择题共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合{|10}A x x =-,集合3{|}B x x =≤,则AB =()(A )(1,3)- (B )(1,3] (C )[1,3) (D )[1,3]-集合的运算1B因为{|1}A x x = ,所以{|13}A B x x =≤。
故选B 。
2.已知平面向量,,a b c 满足(1,1)=-a ,(2,3)=b ,(2,)k =-c ,若()//+a b c ,则实数k =()(A )4(B )4- (C )8 (D )8-平面向量的线性运算,平面向量的坐标运算1D由已知条件有(1,4)a b +=,因(2,)k =-c 为()//a b c +所以有214k -= ,故选D 3. 设命题p :函数1()e x f x -=在R 上为增函数;命题q :函数()cos 2f x x =为奇函数. 则下列命题中真命题是()(A )p q ∧ (B )()p q ?∨(C )()()p q ?∧? (D )()p q ∧?简单的逻辑联结词第2页共16页1D因1()x f x e -=在R 上是增函数,故p 命题为真;而()cos(2)cos2()f x x x f x -=-==,所以()f x 为偶函数,故q 命题为假,则q ?为真,从而()p q ∧?为真命题,选D.4.执行如图所示的程序框图,若输入的{1,2,3}n ∈,则输出的s 属于()(A ){1,2} (B ){1,3}(C ){2,3} (D ){1,3,9}算法和程序框图1A当n=1时,经过判断后重新赋值得到n=3,所以输出的s=1;第2页共16页当n=2时经过判断后重新赋值得n=9,此时输出s=2;当n=3时,判断为是,直接输出s=1,所以s 的集合为{1,2}.选A5. 一个几何体的三视图中,正(主)视图和侧(左)视图如图所示,则俯视图不可能为()(A )(B )(C )(D )空间几何体的三视图1C结合正视图和侧视图,且注意到正视图中间为虚线,可知应选C6. 某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与x 满足函数关系2464y x =+,若欲使此设备的年平均花费最低,则此设备的使用年限x为()(A )3 (B )4(C )5 (D )6均值定理的应用1B设年平均花费为t ,则***-*****()32y x t x x x x+===+≥第2页共16页(当且仅当16x x=时,即x=4时,取等号)。
[vip专享]2015西城区高三二模数学(文)试题及答案
北京市西城区2015年高三二模试卷数 学(文科) 2015.5第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合,集合,则( ){|10}A x x =->3{|}B x x =≤A B = (A )(1,3)-(B )(1,3](C )[1,3)(D )[1,3]-3. 设命题:函数在上为增函数;命题:函数为奇函数. 则p 1()e x f x -=R q ()cos 2f x x = 下列命题中真命题是() (A ) (B ) (C ) (D )p q ∧()p q ⌝∨()()p q ⌝∧⌝()p q ∧⌝4.执行如图所示的程序框图,若输入的,{1,2,3}n ∈ 则输出的属于( )s (A ){1,2}(B ){1,3}(C ){2,3}(D ){1,3,9}5. 一个几何体的三视图中,正(主)视图和 侧(左)视图如图所示,则俯视图可以为( )2.已知平面向量满足,,,若,则实数( ,,a b c (1,1)=-a (2,3)=b (2,)k =-c ()//+a b c k =)(A )4(B )4- (C )8(D )8-(A ) (B ) (C ) (D )6. 某生产厂商更新设备,已知在未来x 年内,此设备所花费的各种费用总和y (万元)与 x 满足函数关系,若欲使此设备的年平均花费最低,则此设备的使用年限x 为( )2464y x =+(A ) (B ) (C ) (D )34567. “”是“曲线为双曲线”的( )3m >22(2)1mx m y --=(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件8. 在长方体中,,点为对角线上的动点,点为底1111ABCD A B C D-11AB BC AA ===P 1AC Q 面上的动点(点,可以重合),则的最小值为( )ABCD P Q 1B P PQ +第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 复数____.10i 3i=+10. 抛物线的准线的方程是____;以的焦点为圆心,且与直线相切的圆的24C y x =:l C l 方程是____.11.设函数则____;函数的值域是____.,11,1()2,.x x f x x x -⎧>⎪=⎨⎪-⎩≤[(2)]f f =()f x 12.在中, 角,,所对的边分别为, 若,,,ABC ∆A B C ,,a bc a =3b =2c = 则____;的面积为____.A =ABC ∆13. 若满足若的最大值为,则实数____.,x y ,2,1,y x y x x y +⎧⎪⎨⎪⎩≥≤≤z x my =+53m =14. 如图,正方形的边长为2,为的中点,射线从出发,绕着点顺时针方向旋转至ABCD O AD OP OA O (A (B (C )32(D )2,在旋转的过程中,记为,所经过的在正方形内的区域(阴影部分)OD AOP ∠([0,π])x x ∈OP ABCD 的面积,那么对于函数有以下三个结论:()S f x =()f x ○1π()3f = 函数在区间上为减函数;○2()f x π(,π)2 任意,都有.○3π[0,]2x ∈()(π)4f x f x +-= 其中所有正确结论的序号是____.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)已知函数.cos 2(sin cos )()cos sin x x x f x x x +=-(Ⅰ)求函数的定义域;()f x (Ⅱ)求函数的单调增区间.()f x 16.(本小题满分13分)设数列的前n 项和为,且,.{}n a n S 11a =*11()n n a S n +=+∈N (Ⅰ)求数列的通项公式;{}n a (Ⅱ)若数列为等差数列,且,公差为. 当时,比较与的大小.{}n b 11b a =21a a 3n ≥1nb +121n b b b ++++ 17.(本小题满分14分)如图,在四棱锥中,,平面, 平面,E ABCD -AE DE ⊥CD ⊥ADE AB ⊥ADE ,,.6CD DA ==2AB =3DE =(Ⅰ)求棱锥的体积;C ADE -(Ⅱ)求证:平面平面;ACE ⊥CDE (Ⅲ)在线段上是否存在一点,使平面?若存在,求出的值;若不存在,说明理由.DE F //AF BCE EFED18.(本小题满分13分)某厂商调查甲、乙两种不同型号电视机在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(Ⅰ)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(Ⅱ)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a >b 的概率;(Ⅲ)若a =1,记乙型号电视机销售量的方差为,根据茎叶图推断b 为何值时,达到最小s 2s 2值.(只需写出结论) (注:方差,其中为,,…,2222121[()()()]n s x x x x x x n =-+-++- x 1x 2x n x 的平均数)19.(本小题满分14分)设,分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭1F 2F 2222 + 1(0)x y E a b a b =>>:A E B 圆的上顶点,且.E ||2AB =(Ⅰ)若椭圆的方程;E E (Ⅱ)设为椭圆上一点,且在第一象限内,直线与轴相交于点. 若以为直径的圆经P E 2F P y Q PQ 过点,证明:点在直线上.1F P 20x y +-=20.(本小题满分13分)已知函数,其中.21()1xf x ax -=+a ∈R (Ⅰ)当时,求函数的图象在点处的切线方程;14a =-()f x (1,(1))f(Ⅱ)当时,证明:存在实数,使得对任意的,都有成立;0a >0m >x ()m f x m -≤≤(Ⅲ)当时,是否存在实数,使得关于的方程仅有负实数解?当时的2a =k x ()()f x k x a =-12a =-情形又如何?(只需写出结论)北京市西城区2014-2015学年度第二学期综合练习(二)高三数学(文科)试题及答案第11页共11页。
2015年北京市中考数学试卷真题(附答案)
2015年北京市中考数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×1062.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d3.(3分)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.5.(3分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°6.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km7.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,228.(3分)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)9.(3分)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡10.(3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O二、填空题(本题共18分,每小题3分)11.(3分)分解因式:5x3﹣10x2+5x=.12.(3分)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=.13.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.14.(3分)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=,b=.15.(3分)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约万人次,你的预估理由是.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.18.(5分)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.19.(5分)解不等式组,并写出它的所有非负整数解.20.(5分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.21.(5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?22.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.(5分)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若P A=2AB,求k的值.24.(5分)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.25.(5分)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增长了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.(5分)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可).27.(7分)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.28.(7分)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.2015年北京市中考数学试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1.(3分)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.1.4×105C.1.4×106D.14×106【点评】此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【点评】此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围.3.(3分)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.4.(3分)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为()A.B.C.D.【点评】本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.5.(3分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.6.(3分)如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM 的长为1.2km,则M,C两点间的距离为()A.0.5km B.0.6km C.0.9km D.1.2km【点评】本题考查了直角三角形斜边上的中线的性质:在直角三角形中,斜边上的中线等于斜边的一半.理解题意,将实际问题转化为数学问题是解题的关键.7.(3分)某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是()A.21,21B.21,21.5C.21,22D.22,22【点评】本题考查了众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.8.(3分)如图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示太和门的点的坐标为(0,﹣1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是()A.景仁宫(4,2)B.养心殿(﹣2,3)C.保和殿(1,0)D.武英殿(﹣3.5,﹣4)【点评】此题考查坐标确定位置,本题解题的关键就是确定坐标原点和x,y轴的位置及方向.9.(3分)一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A类5025B类20020C类40015例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡B.购买B类会员年卡C.购买C类会员年卡D.不购买会员年卡【点评】本题考查了一次函数的应用,解决本题的关键是根据题意,列出函数关系式,并确定函数值的范围.10.(3分)一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.二、填空题(本题共18分,每小题3分)11.(3分)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.12.(3分)如图是由射线AB,BC,CD,DE,EA组成的平面图形,则∠1+∠2+∠3+∠4+∠5=360°.【点评】此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n边形的内角和=(n﹣2)•180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.13.(3分)《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.14.(3分)关于x的一元二次方程ax2+bx+=0有两个相等的实数根,写出一组满足条件的实数a,b的值:a=4,b=2.【点评】本题主要考查了一元二次方程根的判别式,熟练掌握判别式的意义是解题的关键.15.(3分)北京市2009﹣2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约980万人次,你的预估理由是因为2012﹣2013年发生数据突变,故参照2013﹣2014增长进行估算..【点评】此题考查用样本估计总体,关键是根据统计图分析其上升规律.16.(3分)阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是到线段两个端点距离相等的点在线段的垂直平分线上,两点确定一条直线..【点评】本题考查了基本作图:基本作图有:作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.(5分)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(5分)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.(5分)解不等式组,并写出它的所有非负整数解.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.20.(5分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.21.(5分)为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25 000辆,租赁点600个.预计到2015年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?【点评】此题主要考查了分式的方程的应用,根据题意得出正确等量关系是解题关键.22.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.23.(5分)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=的一个交点为P(2,m),与x轴、y轴分别交于点A,B.(1)求m的值;(2)若P A=2AB,求k的值.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是表示出A的坐标,然后利用线段之间的倍数关系确定k的值,难度不大.24.(5分)如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD∥BM,交AB于点F,且=,连接AC,AD,延长AD交BM于点E.(1)求证:△ACD是等边三角形;(2)连接OE,若DE=2,求OE的长.【点评】本题考查了切线的性质,垂径定理,等边三角形的判定,直角三角形的性质,勾股定理,过O作ON⊥AD于N,构造直角三角形是解题的关键.25.(5分)阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增长了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为40万人次;(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.【点评】本题考查了数据的分析与整理,正确读懂题意,从所列的数据中整理出2013﹣2015年三年中,三个公园的游客数是关键.26.(5分)有这样一个问题:探究函数y=x2+的图象与性质.小东根据学习函数的经验,对函数y=x2+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数y=x2+的自变量x的取值范围是x≠0;(2)下表是y与x的几组对应值.x…﹣3﹣2﹣1﹣﹣123…y…﹣﹣﹣m…求m的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1,),结合函数的图象,写出该函数的其它性质(一条即可)该函数没有最大值.【点评】本题考查了二次函数的图象和性质,反比例函数的图象和性质,根据图表画出函数的图象是解题的关键.27.(7分)在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a 的取值范围.【点评】本题考查了二次函数的性质,解集本题的关键是求出二次函数的解析式,并结合图形解决问题.28.(7分)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH.(1)若点P在线段CD上,如图1.①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【点评】本题考查的是四边形综合题,涉及到正方形的性质、图形平移的性质、全等三角形的判定与性质等知识,难度适中.29.(8分)在平面直角坐标系xOy中,⊙C的半径为r,P是与圆心C不重合的点,点P 关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.①分别判断点M(2,1),N(,0),T(1,)关于⊙O的反称点是否存在?若存在,求其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=﹣x+2与x轴、y轴分别交于点A,B,若线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.【点评】本题是圆的综合题,其中涉及到一次函数图象上点的坐标特征,特殊角的三角函数值,勾股定理,一元二次不等式的解法,利用数形结合、正确理解反称点的意义是解决本题的关键.。
2015年北京中考数学试题及答案(高清版)
2015年北京市高级中等学校招生考试数 学 试 卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的. 1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为 A .41410⨯ B .51.410⨯ C .61.410⨯ D .60.1410⨯2.实数a b c d ,,,在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A .aB .bC .cD .d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A. 16B. 13`C.12D.234.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为5.如图,直线123l l l ,,交于一点,直线41l l ∥,若1124288∠=︒∠=︒,,则3∠的度数为A. 26°B. 36°C. 46°D. 56°6.如图,公路AC BC ,互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2km ,则M C ,两点间的距离为A . 0.5 kmB . 0.6 kmC . 0.9 kmD .1.2 km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是A .21,21B .21, 21.5C .21,22D .22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图,若这个坐标系分别以正东、正北方向为x 轴、y 轴的正方向,表示太和门的点的坐标为()01-,,表示九龙壁的点的坐标为()41,,则表示下列宫殿的点的坐标正确的是A .景仁宫()42,B .养心殿()23-,C .保和殿()10,D .武英殿()3.54--,9会员年卡类型 办卡费用(元)每次游泳收费(元)A 类 50 25B 类 200 20C 类40015泳馆游泳的次数介于45~55次之间,则最省钱的方式为 A .购买A 类会员年卡 B .购买B 类会员年卡 C .购买C 类会员年卡D .不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB BC CA OA OB OC ,,,,,组成.为记录寻宝者的行进路线,在BC 的中点M 处放置了一台定位仪器.设寻宝者行进的时间为x ,寻宝者与定位仪器之间的距离为y ,若寻宝者匀速行进,且表示y 与x 的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为 A .A O B →→ B .B A C →→ C .B O C →→ D .C B O →→二、填空题(本题共 18 分,每小题 3 分)11.分解因式:325105x x x -+=_____________________.12.右图是由射线AB BC CD DE EA ,,,,组成的平面图形,则12345∠+∠+∠+∠+∠=____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?” 译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为__________________________.14.关于x的一元二次方程210 4ax bx++=有两个相等的实数根,写出一组满足条件的实数a b,的值:a=________,b=__________.15.北京市2009-2014年轨道交通日均客运量统计如图所示.根据统计图中提供的信息,预估2015年北京市轨道交通日均客运量约__________万人次,你的预估理由是________________________________________________________.16.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17.计算:()2017324sin 602π-⎛⎫--+-+︒ ⎪⎝⎭18.已知22360a a +-=.求代数式()()()3212121a a a a +-+-的值.19.解不等式组()41710853x x x x ⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数....解.20.如图,在ABC △ 中,AB AC AD =,是BC 边上的中线,BE AC ⊥ 于点E . 求证:CBE BAD ∠=∠.21.为解决“最后一公里”的交通接驳问题,北京市投放了大量公租自行车供市民使用.到2013年底,全市已有公租自行车25000辆,租赁点600个.预计到2015年底,全市将 有公租自行车50000辆,并且平均每个租赁点的公租自行车数量是2013年底平均每个租赁点的公租自行车数量的1.2倍.预计到2015年底,全市将有租赁点多少个?22.在ABCD 中,过点D 作DE AB ⊥于点E ,点F 在边CD 上,DF BE =,连接AF BF ,.(1)求证:四边形 BFDE 是矩形;(2)若345CF BF DF ===,,,求证:AF 平分DAB ∠.23.在平面直角坐标系xOy 中,直线()0y kx b k =+≠与双曲线8y x=的一个交点为()2P m ,,与x 轴、y 轴分别交于点A B ,. (1)求m 的值;(2)若2PA AB =,求k 的值.24.如图,AB 是O ⊙的直径,过点B 作O ⊙的切线BM ,弦CD BM ∥,交AB 于点F ,且DA DC =,连接AC AD ,,延长AD 交BM 于点E . (1)求证:ACD △是等边三角形;(2)连接OE ,若2DE =,求OE 的长.25.阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动, 虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013年清明小长假增长了25%;颐和园游客接待量为26.2万人次,比2013年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人 次、13万人次、14.9万人次. 根据以上材料解答下列问题: (1)2014年清明小长假,玉渊潭公园游客接待量为万人次;(2)选择统计表或统计图,将2013-2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.26.有这样一个问题:探究函数2112y x x=+的图象与性质. 小东根据学习函数的经验,对函数2112y x x =+的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数2112y x x=+的自变量x 的取值范围是 ;y x(3)如下图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是312⎛⎫⎪⎝⎭,,结合函数的图象,写出该函数的其它性质(一条即可):__________________________________.27.在平面直角坐标系xOy 中,过点()02,且平行于x 轴的直线,与直线1y x =-交于点A ,点A 关于直线1x =的对称点为B ,抛物线2:C y x bx c =++经过点A B ,. (1)求点A B ,的坐标; (2)求抛物线1C 的表达式及顶点坐标;(3)若抛物线()22:0C y ax a =≠ 与线段AB 恰有一个公共点,结合函数的图象,求a 的取值范围.28.在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C D ,不重合),连接AP ,平移ADP △,使点D 移动到点C ,得到BCQ △,过点Q 作QH BD ⊥于H ,连接AH PH ,. (1)若点P 在线段CD 上,如图1.①依题意补全图1;②判断AH 与PH 的数量关系与位置关系并加以证明;(2)若点P 在线段CD 的延长线上,且152AHQ ∠=︒,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)29.在平面直角坐标系xOy 中,C ⊙的半径为r ,P 是与圆心C 不重合的点,点P 关于O ⊙的反称点的定义如下:若在射线..CP 上存在一点'P ,满足'2CP CP r +=,则称'P 为点P 关于C ⊙的反称点,下图为点P 及其关于C ⊙的反称点'P 的示意图.特别地,当点'P 与圆心C 重合时,规定'0CP =.(1)当O ⊙的半径为1时.①分别判断点()(321012M N T ⎛⎫⎪⎝⎭,,,,关于O ⊙的反称点是否存在,若存在?求其坐标;②点P 在直线2y x =-+上,若点P 关于O ⊙的反称点'P 存在,且点'P 不在x 轴上,求点P 的横坐标的取值范围;(2)C ⊙的圆心在x 轴上,半径为1,直线y =+x 轴,y 轴分别交于点A B ,,若线段..AB 上存在点P ,使得点P 关于C ⊙的反称点'P 在C ⊙的内部,求圆心C 的横坐标的取值范围.2015 年北京市高级中等学校招生考试一、选择题数学考参考答案题号12345678910答案B A B D B D C B C C 二、填空题题号11121314答案5x x123605x 2 y102x 5 y8a 1b 1(满足b2 a ,a 0 即可,答案不唯一)15参考答案①:1038,按每年平均增长人数近似相等进行估算参考答案②:980,因为2012-2013 年发生数据突变,故按照2013-2014 增长进行估算(因为题目问法比较灵活,只要理由合理均可给分估计学生答出980 至1140 之间均可给分)16到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线17.解:原式 4 1 2 3 4 325 3 2 35 318.解:原式 3a(2a 1) (2a 1)(2a 1) 6a2 3a 4a2 12a2 3a 1∵2a2 3a 6 0∴2a2 3a 6∴原式74( x 1) ≤7 x 10①19.解:x 8x 5 ②3由①4x 4 ≤7x 103x ≤6x ≥2由②3x 15 x 82x 7x 72∴ 2 ≤x 72∴非零整数解为0,1,2,3.20.证:∵AB AC∴ABC C又∵AD 是B C 边上的中线∴AD BC∴BAD ABC 90.∵BE AC .∴CBE C 90∴CBE BAD .21.解:设2015 年底全市租赁点有x个.50000 1.2 25000x600x1000经检验:x 1000 是原方程的解,且符合实际情况.答:预计到2015 年底,全市将有租赁点1000 个.22.解⑴∵四边形A BCD 为平行四边形.∴DC ∥AB即D F ∥BE又∵DF BE .∴四边形D EBF 为平行四边形.又∵DE AB ,即DEB 90.∴四边形D EBF 为矩形.⑵∵四边形D EBF 为矩形.∴BFC 90∵CF 3 ,B F 4 .∴BC 32 42 5∴AD BC 5∴AD DF 5∴DAF DFA∵DFA FAB∴DAF FAB即A F 平分DAB23.解:(1)点P(2 ,m) 在y 8 上.x ∴m 8 42m 4(2)P(2,4)在y kx b∴4 2k bb 4 2k∵y kx b 与x、y轴交于A、B两点∴A(2 4 ,0) ,B(0 ,42k)k∵PA 2AB如图①PB AB ,则O D OA 2 .∴4 2 2 .k∴k 1如图②PA 2AB ,P D 2OB 4∴OB 2 ,2k 4 2k 3∴k 1或k324.证:(1)∵BM 是⊙O 切线,A B 为⊙O 直径∴AB BM∵BM ∥CD∴AB CD∴DA ︵ ==A C ︵∴AD AC∵ D A ︵ ==D C ︵∴ DC AD ∴AD CDAC∴△ACD 为等边三角形. 证:(2)△ACD 为等边三角形, A B CD∴ DAB 30连结 B D ,∴ BDAD .EBD DAB 30∵ DE2∴ BE4 , B D2 3AB 4 3 , OB 2 3在R t △OBE 中OEOB 2 BE 2 12 16 2 725.(1)40(2)2013-2015 清明小长假公园游客接待量统计表公园人数(万)年份玉渊潭颐和园动物园2013 32 21.6 14.9 2014 40 26.2 22 201538261826.(1)x0(2)令x3∴y 1 32 12 39 1 292 3 6∴m 296y6543(3)如图-4 -3-2-1 O 1 2 3 4 x-1-2-3-4(4)①该函数没有最大值②该函数在x 0 处断开③该函数没有最小值④该函数图像没有经过第四象限27.解:①当y 2 ,则2x 1,x3∴ A (3,2) ∵ AB 关于 x 1 对称∴ B (1,2)②把(3,2)( 1 ,2)代入得:2 93 b c 2 1 b c,解得 b 2 c 1∴ y x 22x 1③如图,当 C 2 过 A 点, B 点时为临界代入 A (3,2) 则 9 a 2 , a29-12代入 B (1,2) 则a 2∴ 2 ≤ a 2928.(1)①ABH②法一:轴对称作法 判断: A H PH , A H PH证:连接C H 得:△DHQ 等腰R t △ D P C Q又∵ DPCQ ,∴△HDP ≌△HQC∴ PH CH , HPCHCPBD 为正方形 A BCD 对称轴 ∴AH CH , DAHHCP ∴ AH PH , DAHHPC∴ AHP 180 ADP 90∴ AHPH 且 A H PH法二:四点共圆作法. 同上得: HPC DAH ∴ A 、 D 、 P 、 H 共同 ∴ AHP 90 , APHADH 45∴△APH 等腰 R t △ ABP D R Q C(2)法一:轴对称作法考虑△DHQ 等腰R t△PD CQ作H R PC 于R∵AHQ 152∴AHB 62∴DAH 17∴DCH 17设D P x ,则D R HR RQ 1x .2由t an17HR 得:CR∴x 1 tan171tan171x21x2tan17法二:四点共同作法A 、H 、D 、P 共同∴APD AHB 62∴PD ADtan621tan62tan 2829.②∵CP ≤2r2 CP2 ≤4P x,x2CP2 x2 x 222x 2 4x 4 ≤42x2 4x ≤0x x 2≤0∴0 ≤x ≤2当x 2 时,P2,0,P0,0不符合题意当x 0 时,P0,2,P0,0不符合题意∴0 x 2请浏览后下载,资料供参考,期待您的好评与关注!(2)解:由题意得:A6,0,B0,2 3∴OA 3OB yHO C A x 请浏览后下载,资料供参考,期待您的好评与关注!∴OAB 30设C x ,0① 当C在O A 上时,作C H AB 于H则C H ≤CP ≤2r 2∴AC ≤4C 点横坐标x≥2(当x 2 时,C点坐标2,0,H点的反称点H 2,0在圆的内部)② 当C在A点右侧时,C 到线段A B 的距离为A C 长yAC 最大值为2∴C 点横坐标x≤8 BA C x综上所述:圆心C的横坐标的取值范围2≤x ≤8O请浏览后下载,资料供参考,期待您的好评与关注!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2015年初三二模试卷 一、选择题(本题共30分,每小题3分) 1.2015年羊年除夕夜的10点半,在央视春晚送红包的活动中,微信“摇一摇”峰值的摇动次数达到8.1亿次/分钟,送出微信红包120 000 000个.将120 000 000用科学记数法表示应为 A. 90.1210 B. 71.210 C. 81.210 D. 71210
2.如图,BD∥AC,AD与BC交于点E,如果∠BCA=50°,∠D=30°, 那么∠DEC等于 A. 75° B. 80° C. 100° D. 120° 3.64的立方根是 A. 8 B. 4 C. 8 D. 4
4.函数2yx中,自变量x的取值范围是 A.2x B. x≥2 C. x>2 D. x≥2
5.如图,△ABC中,D,E两点分别在AB,AC边上,且DE∥BC, 如果23ADAB,AC=6,那么AE的长为 A. 3 B. 4 C. 9 D. 12 6.某居民小区开展节约用电活动,该小区100户家庭4月份的节电情况如下表所示. 节电量(千瓦时) 20 30 40 50
户数(户) 20 30 30 20 那么4月份这100户家庭的节电量(单位:千瓦时)的平均数是 A. 35 B. 26 C. 25 D. 20 7. 若一个正六边形的半径为2,则它的边心距等于 A. 2 B. 1 C. 3 D. 23
8.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O, 边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于 A.28° B.33° C.34° D.56° 9.如图,将正方形OABC放在平面直角坐标系xOy中,O是原点,
若点A的坐标为(1,3),则点C的坐标为
A.(3,1) B.(1,3) C.(3,1) D.(3,1) 10.在平面直角坐标系xOy中,点M的坐标为(,1)m.如果以原点为圆心,半径为1的⊙O上存在点N,使得45OMN,那么m的取值范围是 A.1≤m≤1 B. 1<m<1 C. 0≤m≤1 D. 0<m<1
二、填空题(本题共18分,每小题3分) 11.若2(2)10mn 则mn . 12.若一个凸n边形的内角和为1080,则边数n = . 13.两千多年前,我国的学者墨子和他的学生做了小孔成像的实验.他的做法是,在一间黑暗的屋子里,一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小华在学习了小孔成像的原理后,利用如下装置来验证小孔成像的现象.已知一根点燃的蜡烛距小孔20cm,光屏在距小孔30cm处,小华测量了蜡烛的火焰高度为2cm,则光屏上火焰所成像的高度为______cm.
14.请写出一个图象的对称轴是直线1x,且经过(0,1)点的二次函数的表达式: ______.
15.如图,在平面直角坐标系xOy中,直线3yx与双曲线nyx (n≠0)在第一象限的公共点是(1,)Pm.小明说:“从图象上可以看出,满足3nxx的x的取值范围是1x.”你同意他的观点吗?答: .理由是 .
16.如图,在平面直角坐标系xOy中,点D为直线2yx上且在第一象限内的任意一点,1DA⊥x轴于点1A,以1DA为边在1DA的右侧作正方形111ABCD;直线1OC与边1DA交于点
2A,以2DA为边在2DA的右侧作正方形222ABCD;直线2OC与边1DA交于点3A,以3DA为边在3DA的右侧作正方形333ABCD,„„,按这种方式进行下去,则直线1OC对应的函数表达式为 ,直线3OC对应的函数表达式为 .
三、解答题(本题共30分,每小题5分) 17.如图,△ABC是等边三角形,D,E两点分别在AB,BC的延长线上,BD=CE,连接AE,CD.求证:∠E=∠D.
18.计算:1012cos30()13(3)3. 19.已知2540xx,求代数式(2)(2)(21)(2)xxxx的值.
20.解方程:231233xxxx. 21.列方程(组)解应用题: 某超市的部分商品账目记录显示内容如下: 商品 时间 第一天 第二天 第三天 牙膏(盒) 7 14 ? 牙刷(支) 13 15 12 营业额(元) 121 187 124 求第三天卖出牙膏多少盒.
22.已知关于x的函数 2(3)3ymxmx. (1)求证:无论m取何实数,此函数的图象与x轴总有公共点; (2)当m>0时,如果此函数的图象与x轴公共点的横坐标为整数,求正整数m的值.
四、解答题(本题共20分,每小题5分) 23.如图,将平行四边形纸片ABCD按如图方式折叠,使点C 与点A重合,点D的落点记为点D′ ,折痕为EF,连接CF. (1)求证:四边形AFCE是菱形;
(2)若∠B=45°,∠FCE=60°,AB=62,求线段D′F的长. 24.1949年以来,北京市人口结构变迁经历了5个阶段,从2001年至今已进入第五个阶段 ——人口膨胀增长阶段.以下是根据北京市统计局2015年1月的相关数据制作的统计图.
根据以上信息解决下列问题: (1)以下说法中,正确的是 (请填写所有正确说法的序号) ① 从2011年至2014年,全市常住人口数在逐年下降; ② 2010年末全市常住人口数达到近年来的最高值; ③ 2014年末全市常住人口比2013年末增加36.8万人; ④ 从2011年到2014年全市常住人口的年增长率连续递减. (2)补全“2014年末北京市常住人口分布图”,并回答:2014年末朝阳、丰台、石景山、海淀四区的常住人口总数已经达到多少万人? (3)水资源缺乏制约着北京市的人口承载能力,为控制人口过快增长,到2015年底,北京市要将全市常住人口数控制在2180万以内(即不超过2180万).为实现这一目标,2015年的全市常住人口的年增长率应不超过 .(精确到0.1%) 25.如图1,AB为⊙O的直径,弦CD⊥AB于点E,点F在线段ED上.连接AF并延长交 ⊙O于点G,在CD的延长线上取一点P,使PF=PG. (1)依题意补全图形,判断PG与⊙O的位置关系,并证明你的结论;
(2)如图2,当E为半径OA的中点,DG∥AB,且=23OA时,求PG的长. 26.(1)小明遇到下面一道题: 如图1,在四边形ABCD中,AD∥BC,∠ABC=90º,∠ACB=30º,BE⊥AC于点E,且=CDEACB.如果AB=1,求CD边的长. 小明在解题过程中发现,图1中,△CDE与△ 相似,CD的长度等于 ,线段CD与线段 的长度相等;
他进一步思考:如果ACB(是锐角),其他条件不变,那么CD的长度可以表示为CD= ;(用含的式子表示) (2)受以上解答过程的启发,小明设计了如下的画图题: 在Rt△OMN中,∠MON=90º,OM<ON,OQ⊥MN于点Q,直线l经过点M,且l∥ON.请在直线l上找出点P的位置,使得NPQONM.请写出你的画图步骤,并在答题卡上完成相应的画图过程.(画出一个即可,保留画图痕迹,不要求证明)
五、解答题(本题共22分,第27题7分,第28题7分,第29题8分) 27.已知一次函数1ykxb(k≠0)的图象经过(2,0),(4,1)两点,二次函数
2224yxax
(其中a>2).
(1)求一次函数的表达式及二次函数图象的顶点坐标(用含a的代数式表示); (2)利用函数图象解决下列问题:
①若25a,求当10y且2y≤0时,自变量x的取值范围;
②如果满足10y且2y≤0时的自变量x的取值范围内恰有一个整数,直接写出a的取值范围. 28.正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH. (1)如图1,若点E是DC的中点,CH与AB之间的数量关系是 ; (2)如图2,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立 给出证明;若不成立,说明理由; (3)如图3,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.
29.对于平面直角坐标系xOy中的点P和图形G,给出如下定义:在图形G上若存在两点M,N,使△PMN为正三角形,则称图形G为点P的τ型线,点P为图形G的τ型点, △PMN为图形G关于点P的τ型三角形.
(1)如图1,已知点(0,3)A,(3,0)B,以原点O为圆心的⊙O的半径为1.在A,B两点中,⊙O的τ型点是____,画出并回答⊙O关于该τ型点的τ型三角形;(画出一个即可) (2)如图2,已知点(0,2)E,点(,0)Fm(其中m>0).若线段EF为原点O的τ型线,
且线段EF关于原点O的τ型三角形的面积为439,求m的值;
(3)若(0,2)H是抛物线2yxn的τ型点,直接写出n的取值范围. 北京市西城区2015年初三二模 数学试卷参考答案及评分标准 2015. 6
一、选择题(本题共30分,每小题3分) 题号 1 2 3 4 5 6 7 8 9 10
答案 C B D B B A C A C A 二、填空题(本题共18分,每小题3分) 11 12 13 14 15 16
3 8 3 221yxx
(答案不唯一)
不同
意 x的取值范围是10x
或1x(或其他正确结论) 23yx 14
15yx
三、解答题(本题共30分,每小题5分) 17.证明:如图1. ∵ △ABC是等边三角形, ∴ AC=BC,∠ACB=∠ABC=60°.„„„„„„„„„„„„„„„„„„ 1分 ∵ D,E两点分别在AB,BC的延长线上, ∴ ∠ACE=∠CBD=120°. „„„„„„„2分 在△ACE和△CBD中,
,,ACCBACECBDCEBD,= „„„„„„„„„ 3分
∴ △ACE≌△CBD.„„„„„„„„„ 4分 ∴ ∠E=∠D.„„„„„„„„„„„„„„„„„„„„„„„„„„ 5分
18.解: 1012cos30()13(3)3
3233112 „„„„„„„„„„„„„„„„„„„„„„„„4分
231. „„„„„„„„„„„„„„„„„„„„„„„„„„„„ 5分
19.解: (2)(2)(21)(2)xxxx =224(252)xxx„„„„„„„„„„„„„„„„„„„„„„„„2分 =224252xxx =256xx.„„„„„„„„„„„„„„„„„„„„„„„„„„„3分 ∵ 2540xx, ∴ 254xx.„„„„„„„„„„„„„„„„„„„„„„„„„„ 4分