Multisim实验报告
Multisim模拟电路实验报告

Multisim模拟电路实验报告
下面通过用Multisim模拟仿真含有运放的微分和积分电路,并用示波器显示相关波形来观察相关波形。
此外,观察改变R、C电路中R、C、ω的值对微分、积分波形的影响。
微分电路:
R2
用Muitisim连接成的电路图如下:
(R2不变,为200Ω)
当R1=1kΩ,C1=0.01μF,ω=1kHz时:
激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
1、当R1=1kΩ,C1=0.3μF,ω=1kHz时:(改变了C的大小)
激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
2、当R1=1kΩ,C1=0.02μF,ω=50kHz时:(改变了频率ω的大小)激励源两端电压的波形(上)和电阻两端的波形(下)图如下:
积分电路:
用Multisim连成的电路图如下:
当R1=2kΩ,C1=1μF,ω=1kHz时,激励源两端电压(上)和电容两端电压(下)的波形图如下:
当R1=2kΩ,C1=0.1μF,ω=1kHz时(改变了R1的大小)
激励源两端电压(上)和电容两端电压(下)的波形图如下:
当R1=2kΩ,C1=1μF,ω=50kHz时(改变了ω的大小)
激励源两端电压(上)和电容两端电压(下)的波形图如下:。
虚拟仿真搭建实验报告(3篇)

第1篇一、实验背景与目的随着现代科技的发展,虚拟仿真技术在各个领域得到了广泛应用。
它能够在计算机上模拟真实环境,降低实验成本,提高实验效率。
本实验旨在通过虚拟仿真软件搭建一个简单的电路系统,验证其基本功能,并探讨虚拟仿真在实验教学中的应用。
二、实验器材与软件1. 实验器材:- 电脑一台- 虚拟仿真软件(如Multisim、LTspice等)2. 实验软件:- 选择Multisim软件进行虚拟仿真实验三、实验步骤1. 软件安装与启动:- 在电脑上安装Multisim软件- 启动Multisim软件2. 搭建电路:- 打开Multisim软件,选择“原理图”模块- 从元件库中选取所需的元件,如电阻、电容、二极管、晶体管等- 使用导线连接元件,搭建所需电路3. 设置参数:- 设置电源电压、元件参数等- 设置仿真时间、步进等参数4. 仿真实验:- 点击仿真按钮,观察电路的仿真结果- 分析仿真结果,与理论计算进行对比5. 结果分析:- 对仿真结果进行详细分析,总结实验现象- 分析实验误差,探讨改进措施6. 实验报告撰写:- 按照实验报告格式,撰写实验报告四、实验结果与分析1. 电路搭建:- 搭建了一个由电阻、电容、二极管组成的简单电路- 电路包括一个整流电路和一个滤波电路2. 仿真结果:- 仿真结果显示,电路能够正常工作- 整流电路将交流电源转换为直流电源- 滤波电路对直流电源进行滤波,输出稳定的电压3. 结果分析:- 仿真结果与理论计算基本一致- 电路搭建过程中,元件选择和参数设置合理- 仿真软件在电路搭建和仿真实验中发挥了重要作用五、实验讨论1. 虚拟仿真在实验教学中的应用:- 虚拟仿真技术能够降低实验成本,提高实验效率- 在虚拟仿真环境中,学生可以自由搭建电路,进行实验操作 - 虚拟仿真有助于提高学生的动手能力和创新意识2. 实验误差分析:- 仿真软件的精度对实验结果有一定影响- 元件参数的误差也可能导致实验误差- 实验过程中,应尽量减少误差,提高实验精度3. 改进措施:- 提高仿真软件的精度,降低实验误差- 优化元件参数选择,提高电路性能- 加强实验操作规范,提高实验效果六、结论本实验通过虚拟仿真搭建了一个简单的电路系统,验证了其基本功能。
基于multisim电子线路实验报告

实验一三极管输出曲线测量1. 实验目的1)熟悉multisim软件平台,掌握其“菜单栏”、“工具栏”、“元件库”和“仪表工具栏”及“电路窗口”的使用方法等。
2)熟悉如何在multisim创建和连接电路,并进行仿真试验。
3)通过三极管输出特性曲线的测试实验,来观察三极管输出电流i C、和基极电流i B及输出电压v CE的关系。
2. 实验电路及仪器设备1)实验电路三极管输出特性曲线测试电路如图1-1所示。
图1-1(a)逐点测量法电路图1-1(b)三极管输出特性曲线测试电路2)实验仪器设备虚拟数字式万用表XMM等3. 实验内容及步骤1)逐点测量法(根据所得数据绘图)2)利用DC Sweep Analysis 来测量(直接附图)4. 分析实验结果实验二单管共射极放大电路1. 实验目的1)掌握放大电路的静态工作点和电压放大倍数的测量方法。
2)了解电路元件参数改变对静态工作点和电压放大倍数的影响。
2)掌握放大电路输入、输出电阻的测量方法。
2. 实验电路及仪器设备1)实验电路单管共射放大电路如图2-1所示。
2.1 单管放大电路(射极偏置放大电路)2)实验仪器设备虚拟双踪示波器;虚拟直流稳压电源;虚拟信号发生器;虚拟数字式万用表等3. 实验内容及步骤1)测量静态工作点Q测量值计算值U B(V)U C(V)U E(V)R B2(KΩ)U BE(V) U CE(V)I C(mA) 2)观察输入信号的变化对放大电路输出的影响(观察失真)3)测量电压放大倍数A V在图2.1所示电路中,双击示波器图标,从示波器上观测到输入输出电压值,计算电压放大倍数A V=V o/Vi,并和估算值进行比较,分析误差大小及原因。
4)测量输入电阻在输入回路中接入电压表和电流表(都设置为交流AC),如图2.2所示。
运行仿真开关,分别从电压表和电流表中读取数据,则Ri=Ui/Ii,测得频率为1KHZ时的输入电阻,并和估算值进行比较,分析误差大小及原因。
放大电路multisim实验报告

放大电路multisim实验报告1. 实验目的通过实验,熟悉和掌握放大电路的基本原理和放大倍数的计算方法。
2. 实验原理放大电路是指用于增大输入信号的电压、电流或功率的电路。
常用的放大电路有共射放大电路、共集放大电路和共基放大电路等。
本实验以共射放大电路为例进行研究。
共射放大电路是一种常见的放大电路,其特点是输入信号加在基极上,输出信号从集电极取出。
放大电路的放大倍数可通过直流负载线和交流负载线的交点来确定。
3. 实验器材和仪器- Multisim电路仿真软件- 电脑4. 实验步骤4.1 搭建电路在Multisim电路仿真软件中,选择适当的元件并搭建共射放大电路。
4.2 设置输入信号为电路添加一个函数信号发生器,设置输入信号的振幅和频率。
4.3 测量输出信号连接示波器,测量输出信号的波形。
4.4 计算放大倍数根据示波器上的波形,测量输入信号和输出信号的幅值,然后计算放大倍数。
5. 实验结果将示波器上测得的信号波形截图作为实验结果。
6. 实验讨论分析实验结果,讨论放大倍数是否符合预期,有无改进的空间。
7. 实验结论通过实验,我们成功搭建了共射放大电路,并计算出放大倍数。
实验结果和预期的结果相符。
通过这次实验,我们对放大电路的原理和计算方法有了更深入的了解。
8. 实验总结本次实验通过Multisim电路仿真软件,从搭建电路到测量输出信号,并计算出放大倍数。
实验过程中我们掌握了放大电路的基本原理和计算方法。
通过实验,我们发现实际电路中可能存在误差,因此在实际应用中应对放大电路进行优化和调整,以获得理想的放大效果。
电子技术实验报告(Multisim的应用)

实验报告(一)
课程名称:电子技术
实验项目:multisim的基本使用
专业班级:机电
姓名:座号:09
实验地点:仿真室
实验时间:
指导老师:成绩:
一.实验目的:
了解multisim7软件界面各分区的功能;
掌握电路创建方法与基本测试方法;
掌握虚拟仪器万用表、示波器、函数发生器的使用方法。
二.实验内容:
一、电路创建与基本测试
二、常用虚拟仪器的使用
三.实验步骤:一、电路创建与基本测试
1.创建电路1-1,测试开关闭合与断开时电路中发光二极管的状态。
2.创建电路1-2,测试R1和R2及电源的电压。
改变R1或R2的值为2K,再次观察结果。
电路创建的步骤为:
1、调用元器件
2、电路连接
3、电路文件存盘
4、电路功能测试
二、常用虚拟仪器的使用
1.万用表
(1)创建电路2-3
电路2-3
(2)分别测试电路2-3中三个小电路中的电流、电压和电阻
2.函数发生器与示波器
(1)创建电路2-4
电路2-4
(2)将XFG1设置成500Hz,10V的方波,XFG2设置成1KHz,10V 的方波,观察示波器的波形。
四.实验总结:
1.说明电路创建的步骤有那些?
答:调用元器件、电路连接、电路文件存储、电路功能测试
2.说明如何放置电路所需的元器件(以12V直流电压源为例)。
答:先找出12V直流电压源放置,再找出所需元件隔一些距离放置,然后从电压源引出电线与所需元件连接起来,组成一个闭合回路,其次检查电路的接线是否正确,最后调整电路元件位置使其电路更直观。
学生签名:
年月日。
模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图V110mVrms 1kHz0°R1100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V4521R75.1kΩ9XMM16E级对地电压25.静态数据仿真记录数据,填入下表仿真数据(对地数据)单位;V计算数据单位;V基级集电极发射级Vbe Vce RP10k 26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
V110mVrms 1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52R75.1kΩXSC1A BExt Trig++__+_6192.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R6V110mVrms1kHz0°100kΩKey=A10 %R251kΩR320kΩR45.1kΩQ12N2222AR5100ΩR61.8kΩC110µFC210µFC347µF37V212 V52XSC1A BExt Trig++__+_6192.重启仿真。
记录数据.仿真数据(注意填写单位)计算Vi有效值Vo有效值Av3.分别加上,300欧的电阻,并填表填表.4.其他不变,增大和减少滑动变阻器的值,观察VO的变化,并记录波形28.仿真动态三1.测量输入端电阻。
multisim使用及电路仿真实验报告_范文模板及概述
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
multisim 实验报告
multisim 实验报告Multisim 实验报告引言:Multisim 是一款电子电路仿真软件,可用于设计、分析和验证各种电子电路。
本实验旨在使用 Multisim 软件对不同类型的电路进行仿真,并通过实验结果和分析,深入了解电子电路的工作原理和性能。
一、直流电路实验1.1 电压分压器电路仿真电压分压器是一种常见的电路,能将输入电压分为不同比例的输出电压。
通过Multisim 软件,我们可以模拟不同电阻值下的电压分压情况,并观察输出电压与输入电压的关系。
1.2 电流分流器电路仿真电流分流器是一种能将输入电流分为不同比例的输出电流的电路。
通过Multisim 软件,我们可以模拟不同电阻值下的电流分流情况,并观察输出电流与输入电流的关系。
二、交流电路实验2.1 RC 电路仿真RC 电路是由电阻和电容组成的简单交流电路。
通过 Multisim 软件,我们可以模拟不同电阻和电容值下的交流电路响应情况,并观察电压和电流的变化。
2.2 RLC 电路仿真RLC 电路是由电阻、电感和电容组成的复杂交流电路。
通过 Multisim 软件,我们可以模拟不同电阻、电感和电容值下的交流电路响应情况,并观察电压和电流的变化。
三、数字电路实验3.1 逻辑门电路仿真逻辑门是数字电路中常见的基本组件,用于实现逻辑运算。
通过Multisim 软件,我们可以模拟不同逻辑门的输入和输出情况,并观察逻辑门的工作原理。
3.2 计数器电路仿真计数器是一种能够进行计数操作的电路。
通过 Multisim 软件,我们可以模拟不同计数器的计数过程,并观察计数器的工作状态和输出结果。
结论:通过 Multisim 软件的实验仿真,我们深入了解了不同类型的电子电路的工作原理和性能。
通过观察和分析实验结果,我们可以更好地理解电路中的各种参数和元件的作用,为电子电路设计和分析提供了有力的工具和支持。
通过不断实践和探索,我们可以进一步提高对电子电路的理解和应用能力,为实际电路设计和故障排除提供更加准确和可靠的解决方案。
模电仿真报告
模拟电子技术基础Multisim 仿真实验报告课题:交流负反馈对放大倍数稳定性的影响班级:自1203班姓名:张凯(41251083)张晨光(41251084)李顶立(41251085)一、题目负反馈对电压串联负反馈放大电路电压放大倍数稳定性的影响。
二、仿真电路仿真电路采用虚拟集成运放,运放U1、U2分别引入了局部电压并联负反馈,其闭环电压放大倍数分别为RR A11f 1uf -≈,RR A22f 2uf ≈,可以认为该负反馈放大电路中基本放大电路的放大倍数AA Au u 2f 1f ≈整个电路引入了急件电压串联负反馈,闭环电压放大倍数FA A A A Au u u u u 2f 1f 2f 1f f1+≈,RRR Ff+=,三、仿真内容分别测量 Ω=k R f 1002和 Ωk 10 时的 A u f 。
从示波器可读出输出电压的幅值,得到放大倍数电压的变化。
四、仿真结果1、张凯的结果(1)实验截图图1 负反馈放大倍数(张凯)(2)实验数据表图2 实验数据表(张凯)(1)实验截图图3 负反馈放大倍数(张晨光)(2)实验数据表图4 实验数据表(张晨光)(1)实验截图图5 负反馈放大倍数(李顶立)(2)实验数据表图6 实验数据表(李顶立)五、实验数据分析1、比较第1组数据与第2组数据可知,当反馈电阻减小时,运放的闭环电压放大倍数减小。
2、不接反馈电阻时的开环电压放大倍数与接上反馈电阻时的闭环电压放大倍数具有明显的差异,表明负反馈具有提高放大倍数稳定性的作用。
六、实验结论1、由 图4 可知,当R 2f 从100k Ω 变为10k Ω时,电路的开环电压放大倍数变化量Δ9.0101010443)(=-=A A ,闭环电压放大倍数变化量Δ()148.01.1.95-0.811ff-≈=AA u u ,AA AA uf∆<<∆uf。
由此说明负反馈放大倍数的稳定性。
2、根据 图四 可知R 2f 从100k Ω 变为10k Ω时,开环电压放大倍数A 从104变为103,闭环电压放大倍数A uf 分别为99和90.9,与仿真结果近似。
multisim仿真实验报告
实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
二、虚拟实验仪器及器材双踪示波器信号发生器交流毫伏表数字万用表三、实验步骤1.仿真电路图E级对地电压25.静态数据仿真26.动态仿真一1.单击仪表工具栏的第四个,放置如图,并连接电路。
2.双击示波器,得到如下波形5.他们的相位相差180度。
27.动态仿真二1.删除负载电阻R62.重启仿真。
3.分别加上5.1k,300欧的电阻,并填表填表.28.仿真动态三1.测量输入端电阻。
在输入端串联一个5.1k的电阻,并连接一个万用表,启动仿真,记录数据,填入表格。
2.测量输出电阻RO数据为VL测量数据为VO填表1.画出如下电路图。
2.元件的翻转4.去掉r7电阻后,波形幅值变大。
实验二 射级跟随器一、实验目的1、熟悉multisim 软件的使用方法2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。
3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了解共射级电路的特性。
4、学习mutisim参数扫描方法 5、学会开关元件的使用二、虚拟实验仪器及器材双踪示波器 信号发生器交流毫伏表数字万用表 三、实验步骤1实验电路图如图所示;2.直流工作点的调整。
如上图所示,通过扫描R1的阻值,在输入端输入稳定的正弦波,功过观察输出5端的波形,使其为最大不失真的波形,此时可以确定Q1的静态工作点。
7.出现如图的图形。
10.单击工具栏,使出现如下数据。
11.更改电路图如下、17思考与练习。
1.创建整流电路,并仿真,观察波形。
XSC12.由以上仿真实验知道,射级跟随器的放大倍数很大,且输入输出电压相位相反,输入和输出电阻也很大,多用于信号的放大。
实验三:负反馈放大电路一、实验目的:1、熟悉Multisim软件的使用方法2、掌握负反馈放大电路对放大器性能的影响3、学习负反馈放大器静态工作点、电压放大倍数、输入电阻、输出电阻的开环和闭环仿真方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一单级放大电路一、实验目的1、熟悉multisim软件的使用方法2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响3、学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻的仿真方法,了解共射极电路的特性二、虚拟实验仪器及器材双踪示波器、信号发生器、交流毫伏表、数字万用表三、实验步骤4、静态数据仿真电路图如下:当滑动变阻器阻值为最大值的10%时,万用表示数为2.204V。
仿真得到三处节点电压如下:5、 动态仿真一(1)单击仪器表工具栏中的第四个〔即示波器Oscilloscope 〕,放置如下图,并且连接电路。
〔注意:示波器分为两个通道,每个通道有+和-,连接时只需要连接+即可,示波器默认的地已经接好。
观察波形图时会出现不知道哪个波形是哪个通道的,解决方法是更改连接的导线颜色,即:右键单击导线,弹出,单击wire color ,可以更改颜色,同时示波器中波形颜色也随之改变〕(2)右键V1,出现properties ,单击,出现R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 10 %V110mVrms 1000 Hz 0°V212 VC110µFC210µFC347µF2Q12N2222A 3R7100Ω81XSC1ABExt Trig++__+_746R61.5kΩ5对话框,把voltage的数据改为10mV,Frequency的数据改为1KHz,确定。
(3)单击工具栏中运行按钮,便可以进展数据仿真。
(4)双击XSC1A BExt Trig++__+_图标,得到如下波形:电路图如下:示波器波形如下:由图形可知:输入与输出相位相反。
6、动态仿真二(1)删除负载电阻R6,重新连接示波器如下图(2)重新启动仿真,波形如下:记录数据如下表:〔注:此表RL为无穷〕仿真数据〔注意填写单位〕计算Vi有效值 Vo有效值 Av9.9914mV 89.80256mV 8.988(3)加上RL,分别将RL换为5.1千欧和300欧,记录数据填表:仿真数据〔注意填写单位〕计算RL Vi Vo Av5.1KΩ 9.994mV 193.536mV 19.3536 330Ω 9.994mV 24.314mV 2.433 (4)其他不变,增大和减小滑动变阻器的值,观察Vo的变化,并记录波形:综上可得到以下表格:Vb Vc Ve 波形变化Rp 增大 减小 增大 减小 先向上平移再恢复原处〔a1、b1图〕Rp 减小增大减小增大先向下平移再恢复原处〔a2、b2图〕动态仿真三 1、 测输入电阻Ri ,电路图如下在输入端串联一个5.1千欧的电阻,如下图,并且连接一个万用表,如图连接。
启动仿真,记录数据,并填表。
R151kΩR25.1kΩR320kΩR41.8kΩR5100kΩKey=A 25 %V110mVrms 1kHz 0°V212 VC110µFC247µFC310µFQ12N2222A 3R7100ΩR65.1kΩ167R85.1kΩ5XMM189104万用表的示数如下:则填表如下:仿真数据〔注意填写单位〕计算 信号发生器有效电压值万用表的有效数据 Ri 10mV6.315mV8.740K Ω2、 测量输出电阻Ro如下图:*万用表要打在交流档才能测试数据,其数据为VL 。
电路图及万用表示数如下: 如下图:*万用表要打在交流档才能测试数据,其数据为V0 则可得下表:仿真数据计算VL VO RO 117.633mV 233.339mV5.016K Ω思考题:1、 画出电路如下:2、 第一个单击, 第二个单击。
3、 双击该原件,进展参数修改。
4、波形如下:实验心得:通过本次实验学会了Multisim 根本操作,学到如何翻转元件、连线以及一些测试工具如示波器、万用表等。
借助于这个软件,以后很多现象可以不用通过实际实验进展验证,直接在计算机上就可以完成,较为方便。
实验二射极跟随器画出电路图如下:射极输出波形如下:选取一个区域放大如下:设备扫描参数如下:则ma* y和min y差距最小时rr1=138667Ω,则将R1阻值更改为138KΩ。
改后图如下:直流仿真得如以下图:接下来测量放大倍数,如以下图:下一步,测输入电阻,如以下图:下一步,测输出电阻,如以下图:〔开关断开时,测Vo〕〔开关闭合时,测VL〕记录到下表:思考题:1、电路图如下:输入与输出的波形如下:2、分析射极跟随器的性能和特点:射极跟随器件可以将输入电压近似保存的输出,即电压增益Av为1,输出电阻很小大概几十欧,输入电阻很大大概几十千欧。
实验心得:本次实验模拟了射极跟随器,更好地理解了射极跟随器的性能和特点,了解了如何估算集电极静态工作点的电阻,并得到了电压增益,输入、输出电阻等值同时对Multisim 软件的操作更加熟练了。
实验三负反应放大电路画出电路图如下:V15mVrms 1kHz 0°V212 VR151kΩR224kΩR33kΩR41.8kΩR5100ΩR620kΩR747kΩR81kΩR93kΩR105.1kΩR111.5kΩR123kΩR13100ΩC110uF2J1Key = A C210uF7C310uFC410uF11C510uFC610uF12J2Key = A135Q12N2222A Q22N2222A 8103461490151静态直流仿真结果如以下图: 则记录到下表:三极管Q1三极管Q2Vb Vc Ve Vb Vc Ve 3.71629V7.16460V3.07682V3.41389V4.50264V2.76222V下一步进展交流测试:开环RL=∞电路图和万用表示数如下: 开环RL=1.5k 电路图和万用表示数如下: 闭环RL=无穷电路图和万用表示数如下: 闭环RL=1.5k 电路图和万用表示数如下: 则记录下表:RL 图中R11 Vi Vo Av 开环 RL=无穷〔S2开〕 3.294mV 1.443V 438.1 RL=1.5K 〔S2闭〕 3.293mV 548.442mV 166.5 闭环RL=无穷〔S2开〕 3.745mV 102.548mV 27.4 RL=1.5K 〔S2闭〕3.694mV91.534mV24.8下一步检查负反应对失真的改善,将记录到的波形填入下表: 在开环情况下适当加大Vi 的大小,使其输出失真,记录波形 闭合开关S1,并记录波形波形可见负反应使输出增益减小,但是可以提高不失真度。
下一步测试放大频率特性,得到输出端的幅频特性如下:开环时:闭环时:则填入下表:开环闭环图形图形fL fH fL fH 212.5248Hz 357.0302kHz 222.1684Hz 1.3244MHz思考题:分析如下的幅频特性和输出波形。
开关接电阻时,输出波形与幅频特性如下:开关接三极管时,波形和幅频特性如下:实验心得:学会了用Multisim进展幅频特性分析,并且更好地理解了负反应的作用,即牺牲增益来换取更大的频带,使输出尽量不失真。
实验四差动放大电路调节放大器零点。
电路图以及万用表示数如下:万用表示数较接近于0当开关S3在左端时,静态电压仿真如下:当开关S3在第二时,静态电压仿真如下: 将所测数据填入下表: 测量值Q1 Q2 R9 CB EC B E U S3在左端 6.36V -26.11mV -637.66mV 6.36V -26.11mV -637.66mV 11.33VS3在第二4.71V-34.16mV-652.87mV4.71V-34.16mV-652.87mV下一步,测量差模电压放大倍数。
更改后电路如下:(1) 典型差动放大电路单端输入: 万用表示数如下: 〔2〕、恒流源差动放大电路单端输入: 万用表示数如下: 〔3〕、典型差动放大电路共模输入:万用表示数如下: 〔4〕、恒流源差动放大电路共模输入: 万用表示数如下:综上,可得到以下表格:典型差动放大电路 恒流源差动放大电路 单端输入 共模输入 单端输入 共模输入 Ui 100mV 1V 100mV 1V Uc1 3.196V 493.483mV 3.487V 1.673mV Uc2 3.147V 493.486mV3.487V 1.673mV Ad1=Uc1/Ui 31.96 无 34.87 无 Ad=Uo/Ui 63.43 无 69.74 无 Ac1=Uc1/Ui 无 0.493486无 0.001673Ac=Uo/Ui 无无CMRR=|Ad1/Ac1|64.7620842.80V112 VV212 VR110kΩR610kΩQ12N2222A 2R210kΩQ22N2222A R8100ΩKey=A 50%67J3Key = Space 8R35.1kΩR910kΩQ32N2222A91011R710kΩ13J2Key = AR436kΩ012R568kΩ415V31 Vrms 1kHz 0° 0XMM13XMM2514思考题:1、由上表可知,当差动放大电路接入恒流源时,CMRR将有明显的提高。
2、电路图及幅频特性如下:如图可知,通频带约为4.7829MHz。
实验心得:通过本次实验,了解了差分放大器的相关性能,并且了解到接入恒流源对差分放大器有提高CMRR的作用。
进一步加深画图及频率分析的方法。
实验五 OTL功率放大器首先调整静态工作点,电路图如下,调整R1和R2的值,使万用表的示数分别为5——10mV 和2.5V,然后测试各级静态工作点,电路图和万用表示数如下:可得Ic1=Ic3=9.438mA,U4=2.506V进展直流仿真,可得以以下图表:测试负载实际功率:最大不失真的理想输入电压约为20mV,此时测量负载两端交流电压约为686.871mV则Pom=Uo²/RL=0.686871²/8=0.059〔W〕测试效率η=Pom/PE*100%=Pom/〔Ucc*Idc〕*100%=0.059/〔0.043079*5〕*100%=27.4% 输入灵敏度为20mV左右;频率响应测试:Ui=20mV;1、根据本实验的结果,实际输出功率并不大,假设要获得较大的实际功率,应该允许适当失真。
2、特点:在波形振幅最大不失真的情况下,输出功率到达最大。
测量方法:详见上述测量过程,先将输入电源置零,调节静态工作点,之后再调节输入信号,使输出最大且波形不失真,再测负载两端的电压,得出实际功率。
实验心得:通过本次实验加深了对功率放大器的特点和测试方法的了解,并且对Multisim的使用方法更加熟练了。
实验六根底运算放大器的测量电路图如下:静态工作点测试如下:下一步进展最大功率测试,在输出端接一8Ω的负载电阻,经调整,电压振幅最大且不失真时,输入电压Us约为12mV,电路图如下:用万用表交流当测得输出负载两端的交流电压如下:则最大功率为Pom=0.128071²/8=1.323〔mV〕下一步进展频率响应测试:交流仿真得到的输出端幅频特性如下:可知fH=15.7510kHz,通频带为15.7510kHz下一步,进展输出波形观察,输出端波形如下:显然,输出端波形为最大不失真。