光纤电流传感器传感头的结构与原理
光纤电流传感器

光纤电流传感器的研究新进展一、流传感器的基本原理根据Far aday磁光效应,在被测电流产生的磁场作用下,光学介质中沿磁场方向传播的线偏振光的偏振方向将发生变化,偏振角的变化,全HdL,式中‘为Verde‘常数,H为磁场强度•‘为光线走过的路径。
当介质中的光路形成围绕载流导线的闭合环路时,根据安培环路定理,0=VKI,k为比例系数,I为电流强度,这是Faraday磁光效应光学电流传感器的理论基础.常用的测量Faraday型光学电流传感器输出线偏光偏转角的方法是正交偏振测量法,即用Wollaston棱镜做检偏器,线偏光经过电流传感元件输出后,被Wollaston梭镜分成两束偏振态互相垂直的线偏光,两束光的强度被分别检测出来并进行如下运算:S}- (11-I2)/(11+I2). Wollaston棱镜起偏器偏振方向的夹角为45’时,1,= Al /4[1-sin24,1.12=Au /4[1+sin24;],所以,5=(I1-12)/(11+12)=sin2 l。
当法拉第偏转角It比较小时,输出信号正比于输出线偏振光的法拉第偏转角。
即X24,。
以上是理想情况下的结论。
如果在传感元件中存在线性双折射d,上述检测系统的输出信号则成为5= (11-12),(11+12)=2,b sin石兀百石了,石万面,.上式可知.线性双折射可明显的降低系统的灵敏度和输入与输出之间的线性关系。
不仅如此,由于线性双折射与温度,压力等诸多因素有关,致使传感头的测量灵敏度易受工作环境的影响,因此显著的降低了系统的稳定性。
所以,对于用光纤做敏感元件的电流传感器而言,如何消除线性双折射的影响,己成为研制开发光学电流传感器中的核心问题。
二、纤电流传感器研究新进展光纤电流传感器是一个集材料科学、维光学、微电子学、电气工程、精密机械和计算机等学科于一体的高新技术产品,这就注定了它的研制是一项技术难度大、协作配套广的知识密集型项目。
故对其理论的深层次研究以及开发并解决产品实用化的问题一直是大家努力的方向。
光纤电流传感器的工作原理

光纤电流传感器的工作原理
光纤电流传感器是目前智能及安全领域应用广泛的一种新型的非接触式电流传感技术。
这种电流传感器使用的是一种传感物料,它可以把电流从信号线传输到光线,把光束作为信号输出,由于光波不存在任何外部干扰,因此能够在高层干扰环境下准确测量电流。
光纤电流传感器的原理很简单,在光纤密封套管内,一端安装有一个光电二极管(LED),另一端安装一个光电探测器(PD),当 LED 发出的光信号在光纤传输过程中传出时,PD 便会受到LED 的探测和发射,探测器会将检测到的信号传送到信号处理器,从而形成相应的信号输出。
由于光信号不容易受到外界的干扰,光纤电流测量信号质量比电磁感应式和触接式电流传感器的信号质量更高,具有更好的信号精度和传输速度,因此,该电流传感器技术可用来探测各种复杂的电力电子网络,以及发电厂和家庭用电等,以满足用电安全监测及工业智能自动化等等。
由此可见,光纤电流传感器可以提供精确可靠的测量数据,能够极具智能化和安全保障,为安全监控和智能自动化带来新的机遇,具有非常重要的作用。
光纤电流传感器的工作原理

光纤电流传感器的工作原理光纤电流传感器的工作原理基于法拉第效应。
法拉第效应是指当导体中有电流通过时,该导体周围将产生磁场。
而当导体受到外部磁场作用时,导体内将产生感应电动势。
光纤电流传感器利用这一效应,通过光纤的纤芯和电流通过的导体形成一个闭合的传感回路来检测电流大小。
首先,通过发光器产生一个光信号,这个光信号会被输入到光纤传输介质中。
光纤传输介质通常由多根光纤呈平行或交叉排列而成,其中一根光纤负责发射光信号,而其他光纤则用于接收传感信号。
当电流通过导体时,产生的磁场作用于光纤传输介质。
这个磁场会导致光纤传输介质中的光信号发生相位移动。
这个相位移动会导致光信号的幅度和相位发生变化。
接下来,通过接收器来检测光信号的变化。
接收器通常由光电二极管或光电转换器构成。
它们可以检测光信号的幅度和相位的变化,并将这些变化转化为电信号输出。
最后,通过对电信号进行信号处理和分析,可以得到电流的大小。
光纤电流传感器的输出信号与电流的大小成正比关系,因此可以通过测量光信号的变化来间接测量电流的大小。
光纤电流传感器的优势之一是具有较高的抗干扰能力。
由于光信号在光纤传输介质中传输,相较于传统的电流传感器,光纤电流传感器对外界电磁干扰的影响较小。
此外,光纤电流传感器还具有较大的测量范围和较高的精度,同样也具有较快的响应速度。
总之,光纤电流传感器的工作原理是基于法拉第效应,通过光纤传感介质和光信号的检测来间接测量电流。
它具有抗干扰能力强、测量范围大、精度高和响应速度快等优点。
在电力系统、工业自动化以及航天航空等领域中有广泛应用。
光纤传感器基本原理

光纤传感器基本原理
光纤传感器基本原理是利用光纤的特殊性质,将光信号转换为电信号。
在光纤传感器中,光源发出的光经过光纤传播,在光纤的某一点与外界的物理量进行相互作用后,光信号发生变化。
传感器的探测部分是光纤的一段,在传感区域内,光信号的幅度、相位、频率等参数会随着被测量的物理量发生变化。
光纤传感器的工作原理基于光的干涉、散射、吸收等现象。
其中,基于光纤干涉原理的传感器是最常见的类型。
这类光纤传感器一般采用法布里-珀罗特(F-P)干涉仪的结构。
当光纤中
的光信号遇到传感器传感区域的物理量变化时,传感区域的折射率发生改变,导致传感区中的干涉光程差发生变化。
这一变化会通过反射回到光纤,进而对干涉光信号产生影响。
通过测量干涉光信号的变化,可以推断出传感区域中物理量的变化情况。
除了光纤干涉原理外,还有其他一些基于光纤散射和吸收的传感器原理。
光纤散射传感器是利用光在光纤中发生散射的特性,通过测量光的散射强度或相位变化来得到物理量的信息。
光纤吸收传感器则是利用光在光纤中被介质吸收的特性,通过测量吸收光信号的强度变化来推断物理量的变化。
光纤传感器具有体积小、响应速度快、抗电磁干扰强等优点,广泛应用于温度、压力、拉力、位移等物理量的测量领域。
随着技术的不断进步,光纤传感器的精度和可靠性也在不断提高,为工业自动化、医疗、环境监测等领域的应用提供了可靠的检测手段。
光纤电流传感器原理

光纤电流传感器原理
1. **光纤:** 光纤是由具有高折射率的芯部和低折射率的包层组成的细长光导管。
光纤具有良好的光学特性,能够将光信号传输到较长的距离而几乎不发生信号衰减。
2. **法拉第效应:** 光纤电流传感器的工作基于法拉第效应,即当电流通过导体时,会在周围产生磁场。
这个磁场会影响通过附近光纤的光信号。
3. **偏振光:** 在光纤传感器中,一束偏振光通常被注入光纤。
偏振光是指在一个方向上振荡的光,通常是线性偏振光或圆偏振光。
4. **磁场影响:** 当电流通过测量电流传感器的导线时,产生的磁场会扭曲光纤中的偏振光。
这种扭曲会导致光纤中的偏振光发生相位偏移或振幅变化。
5. **干涉测量:** 光纤电流传感器通常采用干涉测量原理来检测光信号的变化。
这种变化可以通过比较输入和输出光信号的干涉模式来测量。
6. **信号处理:** 通过将输入和输出光信号进行比较,并测量干涉模式的变化,可以确定电流的强度和方向。
这些数据可以由传感器的接收端进行信号处理和解释,以提供准确的电流测量结果。
光纤传感器基本原理1

实现纵向、径向应变最简便的方法是采用一个空心的 压电陶瓷圆柱筒(PZT),在这个圆柱筒上缠绕一圈或多圈 光纤,并在其径向或轴向施加驱动信号,由于PZT筒的直 径随驱动信号变化,故缠绕在其上的光纤也随之伸缩。光 纤承受到应力,光波相位随之变化。
(2)温度应变效应
若光纤放置在变化的温度场中,并把温度场变化等效 为作用力F时,那么作用力F将同时影响光纤折射率、和 长度L的变化。由F引起光纤中光波相位延迟为
(3)反射系数型
光波在入射界面上的光强分配由菲涅尔公式描述,界面强度 反射系数由菲涅尔反射公式给出
由反射系数的菲涅尔公式知道, 当光波以大于临界面(θc=sin-1n)的θ角 入射到n1、n3介质的界面上时,若n3 介质由于压力或温度的变化引起n3的 微小改变,相应会引起反射系数的变 化,从而导致反射光强的改变,利用 这一原理可以设计出压力或温度传感 器。
二、强度调制机理
强度调制光纤传感器的基本原理是待测物理量引起 光纤中的传输光光强变化。通过检测光强的变化实现对 待测量的测量,其原理如下图所示。
Pi Pi
P0 P0
强度调制方式很多,大致可分为以下几种:反射式强度 调制、透射式强度调制、光模式强度调制以及折射率和吸 收系数强度调制等等。一般透射式、反射式和折射率强度 调制称为外调制式,光模式称为内调制式。
(1)光纤折射率变化型
一般光纤的纤芯和包层的折射率温度系数不同。在温度恒定 时,包层折射率n2与纤芯折射率n1之间的差值是恒定的。当温 度变化时, n2 、 n1之间的差发生变化,从而改变传输损耗。因 此,以某一温度时接收到的光强为基准,根据传输功率的变化可 确定温度的变化。
(2)渐逝波耦合型
通常,渐逝波在光疏媒质中深入距离有几个波长时.能量就 可以忽略不计了。如果采用一种办法使渐逝场能以较大的振幅穿 过光疏媒质,并伸展到附近的折射率高的光密媒质材料中,能量 就能穿过间隙,这一过程称为受抑全反射。
光纤电流传感器

引言近年来,传感器在朝着灵敏、精确、适应性强、小巧和智能化的方向发展。
在这一过程中,光纤传感器这个传感器家族的新成员倍受青睐。
光纤具有很多优异的性能,例如:抗电磁干扰和原子辐射的性能,径细、质软、重量轻的机械性能;绝缘、无感应的电气性能;耐水、耐高温、耐腐蚀的化学性能等,它能够在人达不到的地方(如高温区),或者对人有害的地区(如核辐射区),起到人的耳目的作用,而且还能超越人的生理界限,接收人的感官所感受不到的外界信息。
1 光纤电流传感器1.1 光纤电流传感器概述光纤电流传感器是一种新型的电流传感器,与电磁式电流互感器相比,基于光学、微电子、微机技术的光纤式电流传感器(OFCT),具有无铁心、绝缘结构简单可靠,体积小、重量轻、线性度好、动态范围大、无饱和现象,输出信号可直接与微机化计量及保护设备接口等优点。
这些优点既满足、推动了电力系统的发展,而且应用前景十分广阔。
当线偏振光(见光的偏振)在介质中传播时,若在平行于光的传播方向上加一强磁场,则光振动方向将发生偏转,偏转角度ψ与磁感应强度B和光穿越介质的长度l的乘积成正比,即ψ=VBl,比例系数V 称为费尔德常数,与介质性质及光波频率有关。
偏转方向取决于介质性质和磁场方向。
上述现象称为法拉第效应。
1845年由M.法拉第发现。
由于光在光纤中,一边反射,一边行进,偏振波相应于曲线的形状会出现旋转。
针对此现象,在光纤的一端设置一块镜面导致光纤中光线的往返,借助光的来回往返,成功补偿和解决了偏振波的旋转问题。
将铅玻璃光纤用于传感器元件,并结合利用镜面的方法,只需把光纤卷绕在载流导体上,用于电流计测的反射型传感器就基本完成。
其次,开发了调制程度的平均处理与信号处理方式,这有利于特性的稳定及噪音的抑制。
此外,对光源、受光元件、信号传输光纤等种类与传感器特性的关系进行了研究,而且,慎重选择了旨在降低成本和实现小型化的传感器制作技术。
目前,光纤传感器技术正朝实用化的方向进展,以适应电力系统的广泛需求。
全光纤电流互感器的原理

全光纤电流互感器的原理
全光纤电流互感器(FOCT,Fiber Optic Current Transformer)是一种利用光纤传输信号来测量和监测电流的装置。
其原理基于电流通过导体产生的磁场对光纤的影响。
具体原理如下:
1. 光纤传感器:光纤传感器由一对光纤组成,其中一条光纤作为发送光纤,用来发送光信号;另一条光纤作为接收光纤,用来接收光信号。
2. 光调制器:发送光纤连接到光调制器,光调制器一般采用光电二极管。
当电流通过光调制器产生的电路时,它会产生电流的变化。
这种变化会导致光调制器中的光发生调制,即光的强度发生变化。
3. 磁场感应:将电流通过被测导体上,即可产生一个与电流成正比的磁场。
当电流通过导体时,磁场会穿过光纤传感器的某一部分。
这个磁场的变化会导致光纤产生剪切应力。
4. 剪切应力的传递:剪切应力会传递给接收光纤,导致接收光纤中的光发生相应的调制。
通过测量接收光纤中光的强度变化,可以得到电流大小,实现电流的测量和监测。
全光纤电流互感器具有抗电磁干扰、高精度、宽带宽等特点,适用于高压、大电流等复杂环境中对电流的测量和监测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。