重庆市2020年中考数学试题A卷
重庆市a卷2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类

重庆市A卷2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类一.分式的混合运算(共3小题)1.(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.2.(2023•重庆)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).3.(2021•重庆)计算:(1)(x﹣y)2+x(x+2y);(2)(1﹣)÷.二.一元一次方程的应用(共1小题)4.(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.三.二元一次方程组的应用(共1小题)5.(2023•重庆)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?四.一元二次方程的应用(共1小题)6.(2021•重庆)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加a%.求a的值.五.一次函数与一元一次不等式(共1小题)7.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣04 0 …(2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y=﹣x+3的图象如图所示.根据函数图象,直接写出不等式﹣x+3>的解集.(近似值保留一位小数,误差不超过0.2)六.三角形综合题(共1小题)8.(2023•重庆)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.七.作图—复杂作图(共1小题)9.(2021•重庆)如图,在▱ABCD中,AB>AD.(1)用尺规完成以下基本作图:在AB上截取AE,使AE=AD;作∠BCD的平分线交AB 于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP按角分类的类型,并证明你的结论.八.命题与定理(共1小题)10.(2023•重庆)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO= .∵EF垂直平分AC,∴ .又∠EOC= ,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 .九.解直角三角形的应用-方向角问题(共1小题)11.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D 在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)一十.方差(共2小题)12.(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a= ,b= ,m= ;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).13.(2021•重庆)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).重庆市A卷2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类参考答案与试题解析一.分式的混合运算(共3小题)1.(2022•重庆)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.【答案】(1)2x2+4;(2).【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.2.(2023•重庆)计算:(1)a(2﹣a)+(a+1)(a﹣1);(2)÷(x﹣).【答案】(1)2a﹣1;(2).【解答】解:(1)a(2﹣a)+(a+1)(a﹣1)=2a﹣a2+a2﹣1=2a﹣1.(2)÷(x﹣)===.3.(2021•重庆)计算:(1)(x﹣y)2+x(x+2y);(2)(1﹣)÷.【答案】(1)2x2+y2;(2).【解答】解:(1)(x﹣y)2+x(x+2y)=x2﹣2xy+y2+x2+2xy=2x2+y2;(2)(1﹣)÷=()===.二.一元一次方程的应用(共1小题)4.(2022•重庆)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.【答案】(1)24千米/时;(2)18千米/时.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.三.二元一次方程组的应用(共1小题)5.(2023•重庆)某公司不定期为员工购买某预制食品厂生产的杂酱面、牛肉面两种食品.(1)该公司花费3000元一次性购买了杂酱面、牛肉面共170份,此时杂酱面、牛肉面的价格分别为15元、20元,求购买两种食品各多少份?(2)由于公司员工人数和食品价格有所调整,现该公司分别花费1260元、1200元一次性购买杂酱面、牛肉面两种食品,已知购买杂酱面的份数比牛肉面的份数多50%,每份杂酱面比每份牛肉面的价格少6元,求购买牛肉面多少份?【答案】(1)购买炸酱面80份,牛肉面90份;(2)购买牛肉面60份.【解答】解:(1)设购买炸酱面x份,牛肉面y份,根据题意得:,解得:.答:购买炸酱面80份,牛肉面90份;(2)设购买牛肉面m份,则购买炸酱面(1+50%)m份,根据题意得:﹣=6,解得:m=60,经检验,m=60是所列方程的解,且符合题意.答:购买牛肉面60份.四.一元二次方程的应用(共1小题)6.(2021•重庆)某工厂有甲、乙两个车间,甲车间生产A产品,乙车间生产B产品,去年两个车间生产产品的数量相同且全部售出.已知A产品的销售单价比B产品的销售单价高100元,1件A产品与1件B产品售价和为500元.(1)A、B两种产品的销售单价分别是多少元?(2)随着5G时代的到来,工业互联网进入了快速发展时期.今年,该工厂计划依托工业互联网将乙车间改造为专供用户定制B产品的生产车间.预计A产品在售价不变的情况下产量将在去年的基础上增加a%;B产品产量将在去年的基础上减少a%,但B产品的销售单价将提高3a%.则今年A、B两种产品全部售出后总销售额将在去年的基础上增加a%.求a的值.【答案】(1)A产品的销售单价为300元,B产品的销售单价为200元;(2)a=20.【解答】解:(1)设B产品的销售单价为x元,则A产品的销售单价为(x+100)元,依题意得:x+100+x=500,解得:x=200,∴x+100=300.答:A产品的销售单价为300元,B产品的销售单价为200元.(2)设去年每个车间生产产品的数量为t件,依题意得:300(1+a%)t+200(1+3a%)(1﹣a%)t=500t(1+a%),设a%=m,则原方程可化简为5m2﹣m=0,解得:m1=,m2=0(不合题意,舍去),∴a=20.答:a的值为20.五.一次函数与一元一次不等式(共1小题)7.(2021•重庆)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质及其应用的过程.以下是我们研究函数y=的性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在给出的图中补全该函数的大致图象;x…﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣04 0 ﹣ ﹣ ﹣ …(2)请根据这个函数的图象,写出该函数的―条性质;(3)已知函数y=﹣x+3的图象如图所示.根据函数图象,直接写出不等式﹣x+3>的解集.(近似值保留一位小数,误差不超过0.2)【答案】见试题解答内容【解答】解:(1)把下表补充完整如下:x…﹣5﹣4﹣3﹣2﹣1012345…y=…﹣﹣﹣040﹣﹣﹣…函数y=的图象如图所示:(2)①该函数图象是轴对称图形,对称轴是y轴;②该函数在自变量的取值范围内,有最大值,当x=0时,函数取得最大值4;③当x<0时,y随x的增大而增大:当x>0时,y随x的增大而减小(以上三条性质写出一条即可);(3)由图象可知,不等式﹣x+3>的解集为x<﹣0.3或1<x<2.六.三角形综合题(共1小题)8.(2023•重庆)如图,△ABC是边长为4的等边三角形,动点E,F分别以每秒1个单位长度的速度同时从点A出发,点E沿折线A→B→C方向运动,点F沿折线A→C→B方向运动,当两者相遇时停止运动.设运动时间为t秒,点E,F的距离为y.(1)请直接写出y关于t的函数表达式并注明自变量t的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E,F相距3个单位长度时t的值.【答案】(1);(2)图象及函数的性质见解答过程;(3)3或4.5.【解答】解:(1)当点E、F分别在AB、AC上运动时,△AEF为边长等于t的等边三角形,∴点E,F的距离等于AE、AF的长,∴当0≤t≤4时,y关于t的函数表达式为y=t,当点E、F都在BC上运动时,点E,F的距离等于4﹣2(t﹣4),∴当4<t≤6时,y关于t的函数表达式为y=4﹣2(t﹣4)=12﹣2t,∴y关于t的函数表达式为;(2)由(1)中得到的函数表达式可知:当t=0时,y=0;当t=4时,y=4;当t=6时,y=0,分别描出三个点(0,0),(4,4),(6,0),然后顺次连线,如图:该函数的其中一个性质:当0≤t≤4时,y随t的增大而增大.(答案不唯一,正确即可)(3)把y=3分别代入y=t和y=12﹣2t中,得:3=t,3=12﹣2t,解得:t=3或t=4.5,∴点E,F相距3个单位长度时t的值为3或4.5.七.作图—复杂作图(共1小题)9.(2021•重庆)如图,在▱ABCD中,AB>AD.(1)用尺规完成以下基本作图:在AB上截取AE,使AE=AD;作∠BCD的平分线交AB 于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP按角分类的类型,并证明你的结论.【解答】解:(1)如图,AE、CF为所作;(2)△CDP为直角三角形.证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∴∠CDE=∠AED,∠ADC+∠BCD=180°,∵AD=AE,∴∠ADE=∠AED,∴∠ADE=∠CDE,∴∠CDE=∠ADE=∠ADC,∵CF平分∠BCD,∴∠FCD=∠BCD,∴∠CDE+∠FCD=90°,∴∠CPD=90°,∴△CDP为直角三角形.八.命题与定理(共1小题)10.(2023•重庆)学习了平行四边形后,小虹进行了拓展性研究.她发现,如果作平行四边形一条对角线的垂直平分线,那么这个平行四边形的一组对边截垂直平分线所得的线段被垂足平分.她的解决思路是通过证明对应线段所在的两个三角形全等得出结论.请根据她的思路完成以下作图与填空:用直尺和圆规,作AC的垂直平分线交DC于点E,交AB于点F,垂足为点O.(只保留作图痕迹)已知:如图,四边形ABCD是平行四边形,AC是对角线,EF垂直平分AC,垂足为点O.求证:OE=OF.证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO= ∠FAO .∵EF垂直平分AC,∴ OA=OC .又∠EOC= ∠FOA ,∴△COE≌△AOF(ASA).∴OE=OF.小虹再进一步研究发现,过平行四边形对角线AC中点的直线与平行四边形一组对边相交形成的线段均有此特征.请你依照题意完成下面命题:过平行四边形对角线中点的直线 被一组对边截得的线段被对角线的中点平分 .【答案】∠FAO;OA=OC;∠FOA;被一组对边截得的线段被对角线的中点平分.【解答】证明:∵四边形ABCD是平行四边形,∴DC∥AB.∴∠ECO=∠FAO.∵EF垂直平分AC,∴OA=OC.又∠EOC=∠FOA,∴△COE≌△AOF(ASA).∴OE=OF;过平行四边形对角线中点的直线被一组对边截得的线段被对角线的中点平分,故答案为:∠FAO;OA=OC;∠FOA;被一组对边截得的线段被对角线的中点平分.九.解直角三角形的应用-方向角问题(共1小题)11.(2022•重庆)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D 在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)【答案】(1)DE的长度约为283米;(2)经过点B到达点D较近.【解答】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.一十.方差(共2小题)12.(2022•重庆)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a= 95 ,b= 90 ,m= 20 ;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【答案】(1)95,90,20;(2)估计该月B型扫地机器人“优秀”等级的台数900台;(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)估计该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).13.(2021•重庆)“惜餐为荣,殄物为耻”,为了解落实“光盘行动”的情况,某校数学兴趣小组的同学调研了七、八年级部分班级某一天的餐厨垃圾质量.从七、八年级中各随机抽取10个班的餐厨垃圾质量的数据(单位:kg),进行整理和分析(餐厨垃圾质量用x 表示,共分为四个等级:A.x<1,B.1≤x<1.5,C.1.5≤x<2,D.x≥2),下面给出了部分信息.七年级10个班的餐厨垃圾质量:0.8,0.8,0.8,0.9,1.1,1.1,1.6,1.7,1.9,2.3.八年级10个班的餐厨垃圾质量中B等级包含的所有数据为:1.0,1.0,1.0,1.0,1.2.七、八年级抽取的班级餐厨垃圾质量统计表年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.1a0.2640%八年级 1.3b 1.00.23m%根据以上信息,解答下列问题:(1)直接写出上述表中a,b,m的值;(2)该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数;(3)根据以上数据,你认为该校七、八年级的“光盘行动”,哪个年级落实得更好?请说明理由(写出一条理由即可).【答案】见试题解答内容【解答】解:(1)由题可知:a=0.8,b=1.0,m=20.(2)∵八年级抽测的10个班级中,A等级的百分比是20%.∴估计该校八年级共30个班这一天餐厨垃圾质量符合A等级的班级数为:30×20%=6(个).答:该校八年级共30个班,估计八年级这一天餐厨垃圾质量符合A等级的班级数为6个.(3)七年级各班落实“光盘行动”更好,因为:①七年级各班餐厨垃圾质量众数0.8,低于八年级各班餐厨质量垃圾的众数1.0.②七年级各班餐厨垃圾质量A等级的40%高于八年级各班餐厨质量垃圾质量A等级的20%.八年级各班落实“光盘行动”更好,因为:“①八年级各班餐厨垃圾质量的中位数1.0低于七年级各班餐厨垃圾质量的中位数1.1.②八年级各班餐厨垃圾质量的方差0.23低于七年级各班餐厨垃圾质量的方差0.26,更稳定.”。
2022年重庆市中考数学试题(a卷)

2022年重庆市中考数学试题(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m 5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC =3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣13 12.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z ﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、答案题:(本大题2个小题,每小题8分,共16分)答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④∴S△BCE=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.四、答案题:(本大题7个小题,每小题10分,共70分)答案时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将答案过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,答案下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y =的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC 的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD 的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF 的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC 所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.。
2023年重庆市中考数学试卷A卷(带答案及解析)

重庆市2023年初中学业水平暨高中招生考试数学试题(A 卷)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框黑。
1.8的相反数是()A.-8B.8C.18D.-182.四个大小相同的正方体搭成的几何体如图所示,从正面得到的视图是()A.B. C.D.3.反比例函数y =-4x的图象一定经过的点是()A.1,4B.-1,-4C.-2,2D.2,24.若两个相似三角形周长的比为1:4,则这两个三角形对应边的比是()A.1:2B.1:4C.1:8D.1:165.如图,AB ∥CD ,AD ⊥AC ,若∠1=55°,则∠2的度数为()A.35°B.45°C.50°D.55°6.估计28+10 的值应在()A.7和8之间B.8和9之间C.9和10之间D.10和11之间7.用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,⋯⋯,按此规律排列下去,则第⑧个图案用的木棍根数是()A.39B.44C.49D.548.如图,AC是⊙O的切线,B为切点,连接OA,OC。
若∠A=30°,AB=23,BC=3,则OC的长度是()A.3B.23C.13D.69.如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°。
若∠BAE=α,则∠FEC一定等于()A.2αB.90°-2αC.45°-αD.90°-α10.在多项式x-y-z-m-n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”。
2020年重庆中考数学试题(A卷)

重庆市2018年初中学业水平暨高中招生考试数 学 试 卷(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡...上,不得在试卷上直接作答; 2.作答前认真阅读答题卡...上的注意事项; 3.作图(包括作辅助线)请一律用黑色..签字笔完成; 4.考试结束,由监考人员将试题和答题卡...一并收回。
参考公式:抛物线0)c(a bx ax y 2≠++=的顶点坐标为(4a b 4ac ,2a b 2--),对称轴为2a b x -= 一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A ,B 、C ,D 的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑 1.-2的相反数是A 、-2B 、21-C 、21 D 、2 2、下列图形中一定是轴对称图形的是3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是A 、企业男员工B 、企业年满50岁及以上的员工C 、用企业人员名册,随机抽取1/3的员工D 、企业新进员工4.把三角形按如图所示的规律拼图案,其中第①个图案中有四个三角形,第②个图案中有六个三角形,第③个图案中有八个三角形,…,按此规律排列下去,第⑦个图案中三角形的个数为A 、12B 、14C 、16D 、185.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为A 、3cmB 、4cmC 、4.5cmD 、5cm6.下列命题正确的是A 、平行四边形的对角线互相垂直平分B 、矩形的对角线互相垂直平分C 、菱形的对角线互相平分且相等D 、正方形的对角线互相垂直平7.估计61)24302(•-的值应在 A 、1和2之间 B 、2和3之间 C 、3和4之间 D 、4和5之间8.按如图所示的运算程序,仍使输出的结果为12的是A 、x=3,y=3B 、x=-4,y=-2C 、x=2,y=4D 、x=4,y=29.如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作BD 的垂线,交BD 的延长线于点C ,若⊙O 的半径为四,BC 等于6,则PA 的长尾A 、4B 、2 3C 、3D 、2.510.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED 等于58º,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到剖面CD 的水平距离BC =1米,则旗杆AB 的高度约为 (参考数据:sin58º≈0.85,cos58º≈0.53,tan58º≈1.6)A 、12.6米B 、13.1米C 、14.7米D 、16.3米11.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数)0,0(>>=x k x k y 的图像上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为245,则k 的值为 A 、45 B 、415 C 、4 D 、5 12.若数a 使关于x 的不等式组⎪⎩⎪⎨⎧+≥-+<-ax x x x 253121有且只有四个整数解,且使关于y 的方程y a y a y -+-+121的解为非负数,则符合条件的所有整数a 的积为A 、-3B 、-2C 、1D 、2二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接在答题卡...中对应的横线上。
重庆市a卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类一.规律型:图形的变化类(共2小题)1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )A.39B.44C.49D.54 2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.34.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x ﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3三.分式方程的解(共2小题)5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )A.﹣26B.﹣24C.﹣15D.﹣13 6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )A.5B.8C.12D.15四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )A .B .C .7D .五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y =﹣的图象一定经过的点是( )A .(1,4)B .(﹣1,﹣4)C .(﹣2,2)D .(2,2)六.正方形的性质(共3小题)9.(2023•重庆)如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,连接AE ,AF ,EF ,∠EAF =45°.若∠BAE =α,则∠FEC 一定等于( )A .2αB .90°﹣2αC .45°﹣αD .90°﹣α10.(2022•重庆)如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =AF ,则∠CDF 的度数为( )A .45°B .60°C .67.5°D .77.5°11.(2021•重庆)如图,正方形ABCD 的对角线AC ,BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON ⊥OM ,交CD 于点N .若四边形MOND 的面积是1,则AB 的长为( )A .1B .C .2D .2七.圆内接四边形的性质(共1小题)12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )A.80°B.100°C.110°D.120°八.切线的性质(共1小题)13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )A.3B.4C.3D.4重庆市A卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类参考答案与试题解析一.规律型:图形的变化类(共2小题)1.(2023•重庆)用长度相同的木棍按如图所示的规律拼图案,其中第①个图案用了9根木棍,第②个图案用了14根木棍,第③个图案用了19根木棍,第④个图案用了24根木棍,…,按此规律排列下去,则第⑧个图案用的木棍根数是( )A.39B.44C.49D.54【答案】B【解答】解:由图可得,图案①有:4+5=9根小木棒,图案②有:4+5×2=14根小木棒,图案③有:4+5×3=19根小木棒,…,∴第n个图案有:(4+5n)根小木棒,∴第⑧个图案有:4+5×8=44根小木棒,故选:B.2.(2022•重庆)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为( )A.32B.34C.37D.41【答案】C【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有(4n+1)个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.二.整式的加减(共2小题)3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:①存在“绝对操作”,使其运算结果与原多项式相等;②不存在“绝对操作”,使其运算结果与原多项式之和为0;③所有的“绝对操作”共有7种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【答案】C【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.若使其运算结果与原多项式之和为0,需出现﹣x,显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.故选:C.4.(2022•重庆)在多项式x﹣y﹣z﹣m﹣n中任意加括号(x,y,z,m,n均不为零),加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x ﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是( )A.0B.1C.2D.3【答案】D【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.三.分式方程的解(共2小题)5.(2022•重庆)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是( )A.﹣26B.﹣24C.﹣15D.﹣13【答案】D【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.6.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是( )A.5B.8C.12D.15【答案】B【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.四.反比例函数系数k的几何意义(共1小题)7.(2021•重庆)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥x轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数y=(x>0)的图象经过点E,与边AB交于点F,连接OE,OF,EF.若S△EOF=,则k的值为( )A.B.C.7D.【答案】A【解答】解:延长EA交x轴于点G,过点F作FH⊥x轴于点H,如图,∵AB∥x轴,AE⊥CD,AB∥CD,∴AG⊥x轴.∵AO⊥AD,∴∠DAE+∠OAG=90°.∵AE⊥CD,∴∠DAE+∠D=90°.∴∠D=∠OAG.在△DAE和△AOG中,.∴△DAE≌△AOG(AAS).∴DE=AG,AE=OG.∵四边形ABCD是菱形,DE=4CE,∴AD=CD=DE.设DE=4a,则AD=OA=5a.∴OG=AE=.∴EG=AE+AG=7a.∴E(3a,7a).∵反比例函数y=(x>0)的图象经过点E,∴k=21a2.∵AG⊥GH,FH⊥GH,AF⊥AG,∴四边形AGHF为矩形.∴HF=AG=4a.∵点F在反比例函数y=(x>0)的图象上,∴x=.∴F().∴OH=a,FH=4a.∴GH=OH﹣OG=.∵S△OEF=S△OEG+S梯形EGHF﹣S△OFH,S△EOF=,∴.××﹣=.解得:a2=.∴k=21a2=21×=.故选:A.五.反比例函数图象上点的坐标特征(共1小题)8.(2023•重庆)反比例函数y=﹣的图象一定经过的点是( )A.(1,4)B.(﹣1,﹣4)C.(﹣2,2)D.(2,2)【答案】C【解答】解:∵反比例函数y=﹣,∴k=﹣4,A、∵1×4=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;B、∵﹣1×(﹣4)=4≠﹣4,∴此点不在函数图象上,故本选项不合题意;C、∵﹣2×2=﹣4,∴此点在函数图象上,故本选项符合题意;D、∵2×2=4≠﹣4,∴此点不在函数图象上,故本选项不合题意.故选:C.六.正方形的性质(共3小题)9.(2023•重庆)如图,在正方形ABCD中,点E,F分别在BC,CD上,连接AE,AF,EF,∠EAF=45°.若∠BAE=α,则∠FEC一定等于( )A.2αB.90°﹣2αC.45°﹣αD.90°﹣α【答案】A【解答】解:在正方形ABCD中,AD=AB,∠BAD=∠ABC=∠ADC=90°,将△ADF绕点A顺时针旋转90°,得△ABG,如图所示:则AF=AG,∠DAF=∠BAG,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠GAE=∠FAE=45°,在△GAE和△FAE中,,∴△GAE≌△FAE(SAS),∴∠AEF=∠AEG,∵∠BAE=α,∴∠AEB=90°﹣α,∴∠AEF=∠AEB=90°﹣α,∴∠FEC=180°﹣∠AEF﹣∠AEB=180°﹣2×(90°﹣α)=2α,故选:A.10.(2022•重庆)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB 上一点,连接DF,若BE=AF,则∠CDF的度数为( )A.45°B.60°C.67.5°D.77.5°【答案】C【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.11.(2021•重庆)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1B.C.2D.2【答案】C【解答】解:∵四边形ABCD是正方形,∴∠MDO=∠NCO=45°,OD=OC,∠DOC=90°,∴∠DON+∠CON=90°,∵ON⊥OM,∴∠MON=90°,∴∠DON+∠DOM=90°,∴∠DOM=∠CON,在△DOM和△CON中,,∴△DOM≌△CON(ASA),∵四边形MOND的面积是1,四边形MOND的面积=△DOM的面积+△DON的面积,∴四边形MOND的面积=△CON的面积+△DON的面积=△DOC的面积,∴△DOC的面积是1,∴正方形ABCD的面积是4,∴AB2=4,∴AB=2,故选:C.七.圆内接四边形的性质(共1小题)12.(2021•重庆)如图,四边形ABCD内接于⊙O,若∠A=80°,则∠C的度数是( )A.80°B.100°C.110°D.120°【答案】B【解答】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=80°,∴∠C=100°,故选:B.八.切线的性质(共1小题)13.(2022•重庆)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是( )A.3B.4C.3D.4【答案】C【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.。
精品解析:2022年重庆市中考数学真题(A卷)(解析版)

A B. C. D.
【答案】C
【解析】
【分析】先利用正方形的性质得到 , , ,利用角平分线的定义求得 ,再证得 ,利用全等三角形的性质求得 ,最后利用 即可求解.
【详解】解:∵四边形 是正方形,
∴ , , ,
【答案】
【解析】
【分析】根据题意列出图表得出所有等情况数和抽取的两张卡片上的字母相同的情况数,然后根据概率公式即可得出答案.
【详解】解:根据题意列表如下:
A
B
C
A
AA
BA
CA
B
AB
BB
CB
C
AC
BC
CC
共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,
所以P(抽取的两张卡片上的字母相同)= = .
【答案】C
【解析】
【分析】连接OB,先求出∠A=30°,OB=AC=3,再利用 =tan30°,即可求出AB的长度.
【详解】解:连接OB,
∵OB=OD,
∴△OBD是等腰三角形,
∴∠OBD=∠D,
∵∠AOB是△OBD的一个外角,
∴∠AOB=∠OBD+∠D=2∠D,
∵ 是 切线,
∴OB⊥AB,
∴∠ABO=90°,
2022年重庆市中考数学试卷A卷
一、选择题
1.5的相反数是( )
A. B.﹣ C.5D.﹣5
【答案】D
【解析】
【分析】根据相反数的定义(只有符号不同的两个数互为相反数)即可得.
【详解】解:5的相反数是 ,
故选:D.
【点睛】本题考查了相反数,熟记定义是解题关键.
2022年重庆市中考数学试卷(A卷)及答案解析
2022年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.﹣5B.5C.﹣D.2.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)如图,直线AB,CD被直线CE所截,AB∥CD,∠C=50°,则∠1的度数为()A.40°B.50°C.130°D.150°4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h(m)随飞行时间t(s)的变化情况,则这只蝴蝶飞行的最高高度约为()A.5m B.7m C.10m D.13m5.(4分)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC的周长为4,则△DEF的周长是()A.4B.6C.9D.166.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A.32B.34C.37D.417.(4分)估计×(2+)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x,根据题意,下面所列方程正确的是()A.200(1+x)2=242B.200(1﹣x)2=242C.200(1+2x)=242D.200(1﹣2x)=2429.(4分)如图,在正方形ABCD中,AE平分∠BAC交BC于点E,点F是边AB上一点,连接DF,若BE=AF,则∠CDF的度数为()A.45°B.60°C.67.5°D.77.5°10.(4分)如图,AB是⊙O的切线,B为切点,连接AO交⊙O于点C,延长AO交⊙O 于点D,连接BD.若∠A=∠D,且AC=3,则AB的长度是()A.3B.4C.3D.411.(4分)若关于x的一元一次不等式组的解集为x≤﹣2,且关于y的分式方程=﹣2的解是负整数,则所有满足条件的整数a的值之和是()A.﹣26B.﹣24C.﹣15D.﹣1312.(4分)在多项式x﹣y﹣z﹣m﹣n中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,….下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:|﹣4|+(3﹣π)0=.14.(4分)有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是.15.(4分)如图,菱形ABCD中,分别以点A,C为圆心,AD,CB长为半径画弧,分别交对角线AC于点E,F.若AB=2,∠BAD=60°,则图中阴影部分的面积为.(结果不取近似值)16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)(x+2)2+x(x﹣4);(2)(﹣1)÷.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD中,E是AD边上的一点,试说明△BCE的面积与矩形ABCD的面积之间的关系.他的思路是:首先过点E 作BC的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作BC的垂线EF,垂足为F(只保留作图痕迹).在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴①∵AD∥BC,∴②又③∴△BAE≌△EFB(AAS).同理可得④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD.∴S△BCE四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)公司生产A、B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A、B型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理、描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A、B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)这个月公司可生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).20.(10分)已知一次函数y=kx+b(k≠0)的图象与反比例函数y=的图象相交于点A(1,m),B(n,﹣2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx+b>的解集;(3)若点C是点B关于y轴的对称点,连接AC,BC,求△ABC的面积.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A地沿相同路线骑行去距A地30千米的B地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A地出发,则甲、乙恰好同时到达B地,求甲骑行的速度.22.(10分)如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C 的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:≈1.414,≈1.732)23.(10分)若一个四位数M的个位数字与十位数字的平方和恰好是M去掉个位与十位数字后得到的两位数,则这个四位数M为“勾股和数”.例如:M=2543,∵32+42=25,∴2543是“勾股和数”;又如:M=4325,∵52+22=29,29≠43,∴4325不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M的千位数字为a,百位数字为b,十位数字为c,个位数字为d,记G(M)=,P(M)=.当G(M),P(M)均是整数时,求出所有满足条件的M.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+bx+c与直线AB交于点A(0,﹣4),B(4,0).(1)求该抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一动点,过点P作x轴的平行线交AB于点C,过点P作y轴的平行线交x轴于点D,求PC+PD的最大值及此时点P的坐标;(3)在(2)中PC+PD取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与y轴交于点F,M为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点E,F,M,N为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.25.(10分)如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:5的相反数是﹣5,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.【点评】本题考查了轴对称图形,关键是掌握好轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解:∵AB∥CD,∴∠1+∠C=180°,∴∠1=180°﹣∠C=180°﹣50°=130°.故选:C.【点评】本题考查了平行线的性质,掌握两直线平行,同旁内角互补是解题的关键.4.【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当t=3时,h=13,∴这只蝴蝶飞行的最高高度约为13m,故选:D.【点评】本题考查了函数的图象,掌握函数的图象的最高点对应的函数值即为这只蝴蝶飞行的最高高度是解题的关键.5.【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.:C△DEF=2:3,∴C△ABC∵△ABC的周长为4,∴△DEF的周长是6,故选:B.【点评】本题考查位似变换,解答本题的关键是明确相似三角形的周长比等于相似比.6.【分析】根据图形的变化规律得出第n个图形中有4n+1个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,…,第n个图案中有4n+1个正方形,∴第⑨个图案中正方形的个数为4×9+1=37,故选:C.【点评】本题主要考查图形的变化规律,根据图形的变化得出第n个图形中有4n+1个正方形是解题的关键.7.【分析】先计算出原式得6+,再根据无理数的估算可得答案.【解答】解:原式=+=6+,∵9<15<16,∴3<<4,∴9<6+<10.故选:B.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查了算术平方根.8.【分析】设该快递店揽件日平均增长率为x,关系式为:第三天揽件数=第一天揽件数×(1+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x,根据题意,可列方程:200(1+x)2=242,故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,就能找到等量关系,是解决问题的关键.同时要注意增长率问题的一般规律.9.【分析】根据正方形的性质和全等三角形的判定和性质,可以得到∠ADF的度数,从而可以求得∠CDF的度数.【解答】解:∵四边形ABCD是正方形,∴AD=BA,∠DAF=∠ABE=90°,在△DAF和△ABE中,,△DAF≌△ABE(SAS),∠ADF=∠BAE,∵AE平分∠BAC,四边形ABCD是正方形,∴∠BAE=∠BAC=22.5°,∠ADC=90°,∴∠ADF=22.5°,∴∠CDF=∠ADC﹣∠ADF=90°﹣22.5°=67.5°,故选:C.【点评】本题考查正方形的性质、全等三角形的判定与性质,解答本题的关键是求出∠ADF的度数.10.【分析】连接OB,则OB⊥AB,由勾股定理可知,AB2=OA2﹣OB2①,由OB和OD是半径,所以∠A=∠D=∠OBD,所以△OBD∽△BAD,AB=BD,可得BD2=OD•AD,所以OA2﹣OB2=OD•AD,设OD=x,则AD=2x+3,OB=x,OA=x+3,所以(x+3)2﹣x2=x(2x+3),求出x的值,即可求出OA和OB的长,进而求得AB的长.【解答】解:如图,连接OB,∵AB是⊙O的切线,B为切点,∴OB⊥AB,∴AB2=OA2﹣OB2,∵OB和OD是半径,∴∠D=∠OBD,∵∠A=∠D,∴∠A=∠D=∠OBD,∴△OBD∽△BAD,AB=BD,∴OD:BD=BD:AD,∴BD2=OD•AD,即OA2﹣OB2=OD•AD,设OD=x,∵AC=3,∴AD=2x+3,OB=x,OA=x+3,∴(x+3)2﹣x2=x(2x+3),解得x=3(负值舍去),∴OA=6,OB=3,∴AB2=OA2﹣OB2=27,∴AB=3,故选:C.【点评】本题主要考查圆的相关计算,涉及切线的定义,等腰三角形的性质与判定,勾股定理,相似三角形的性质与判定,得出△OBD∽△BAD是解题关键.11.【分析】解不等式组得出,结合题意得出a>﹣11,解分式方程得出y=,结合题意得出a=﹣8或﹣5,进而得出所有满足条件的整数a的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x≤﹣2,∴>﹣2,∴a>﹣11,解分式方程=﹣2得:y=,∵y是负整数且y≠﹣1,∴是负整数且≠﹣1,∴a=﹣8或﹣5,∴所有满足条件的整数a的值之和是﹣8﹣5=﹣13,故选:D.【点评】本题考查了分式方程的解,解一元一次不等式组,正确求解分式方程和一元一次不等式组是解决问题的关键.12.【分析】根据“加算操作”的定义可知,当只给x﹣y加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,与原式相等,故①正确;②∵在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x﹣y﹣z﹣m﹣n中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,∴2×2×2=8种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D.【点评】本题属于新定义问题,涉及整式的加减运算,加法原理与乘法原理的知识点和对加法原理的理解能力,利用原式中只有加减两种运算求解是解题关键.二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式=4+1=5.故答案为:5.【点评】本题考查实数的运算,熟练掌握实数的运算法则是解题关键.14.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:AB C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE 可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC ⊥BD ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠BAC =∠ACD =30°,AB =BC =CD =DA =2,在Rt △AOB 中,AB =2,∠BAO =30°,∴BO =AB =1,AO =AB =,∴AC =2OA =2,BD =2BO =2,∴S 菱形ABCD =AC •BD =2,∴S 阴影部分=S 菱形ABCD ﹣2S 扇形ADE=2﹣=,故答案为:.【点评】本题考查扇形面积的计算,菱形的性质,掌握扇形面积的计算方法以及菱形的性质是正确解答的前提.16.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x5y﹣4x5y乙3x6y﹣3x6y丙9x7y﹣9x7y ∵甲、乙两山需红枫数量之比为2:3,∴,∴y=2x,故数量可如下表:香樟数量红枫数量总量甲4x6x10x乙3x9x12x丙9x5x14x 所以香樟的总量是16x,红枫的总量是20x,设香樟的单价为a,红枫的单价为b,由题意得,[16x•(1﹣6.25%)]•[a•(1﹣20%)]+20x•[b•(1+25%)]=16x•a+20x•b,∴12a+25b=16a+20b,∴4a=5b,设a=5k,b=4k,∴==,故答案为:.【点评】本题考查了用字母表示数,根据相等关系列方程进行化简等知识,解决问题的关键是设需要的量,列出关系式,进行数据处理.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式=x2+4x+4+x2﹣4x=2x2+4;(2)原式=(﹣)÷=•=.【点评】本题主要考查分式的混合运算和整式的混合运算,解题的关键是掌握完全平方公式和单项式乘多项式法则及分式的混合运算顺序和运算法则.18.【分析】以C为圆心DE长为半径画弧交BC于F,连接CF,根据已知条件依次写出相应的解答过程即可.【解答】解:根据题意作图如下:由题知,在△BAE和△EFB中,∵EF⊥BC,∴∠EFB=90°.又∠A=90°,∴∠A=∠EFB,①∵AD∥BC,∴∠AEB=∠FBE,②又BE=EB,③∴△BAE≌△EFB(AAS).同理可得△EDC≌△CFE(AAS),④=S△EFB+S△EFC=S矩形ABFE+S矩形EFCD=S矩形ABCD,∴S△BCE故答案为:①∠A=∠EFB,②∠AEB=∠FBE,③BE=EB,④△EDC≌△CFE(AAS).【点评】本题主要考查全等三角形的判定和性质,熟练掌握三角形的判定和性质是解题的关键.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.【分析】(1)根据众数、中位数概念可求出a、b的值,由B型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m的值;(2)用3000乘30%即可得答案;(3)比较A型、B型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数a=95,10台B型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占1﹣50%﹣30%=20%,即m=20,把B型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,∴b=90,故答案为:95,90,20;(2)该月B型扫地机器人“优秀”等级的台数3000×30%=900(台);(3)A型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A型号的扫地机器人除尘量的众数>B型号的扫地机器人除尘量的众数(理由不唯一).【点评】本题考查数据的整理,涉及众数、中位数、平均数、方差等,解题的关键是掌握数据收集与整理的相关概念.20.【分析】(1)根据反比例函数解析式求出A点和B点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C点坐标,根据A点、B点和C点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1)∵反比例函数y=的图象过点A(1,m),B(n,﹣2),∴,n=,解得m=4,n=﹣2,∴A(1,4),B(﹣2,﹣2),∵一次函数y=kx+b(k≠0)的图象过A点和B点,∴,解得,∴一次函数的表达式为y=2x+2,描点作图如下:(2)由(1)中的图象可得,不等式kx+b>的解集为:﹣2<x<0或x>1;(3)由题意作图如下:由图知△ABC中BC边上的高为6,BC=4,==12.∴S△ABC【点评】本题主要考查反比例函数和一次函数交点的问题,熟练掌握反比例函数的图象和性质,一次函数的图象和性质,三角形面积公式等知识是解题的关键.21.【分析】(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,利用路程=速度×时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x中即可求出甲骑行的速度;(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x千米/时,则甲骑行的速度为1.2x千米/时,依题意得:×1.2x=2+x,解得:x=20,∴1.2x=1.2×20=24.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y千米/时,则甲骑行的速度为1.2y千米/时,依题意得:﹣=,解得:y=15,经检验,y=15是原方程的解,且符合题意,∴1.2y=1.2×15=18.答:甲骑行的速度为18千米/时.【点评】本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出分式方程.22.【分析】(1)过D作DF⊥AE于F,由已知可得四边形ACDF是矩形,则DF=AC=200米,根据点D在点E的北偏东45°,即得DE=DF=200≈283(米);(2)由△DEF是等腰直角三角形,DE=283米,可得EF=DF=200米,而∠ABC=30°,即得AB=2AC=400米,BC==200米,又BD=100米,即可得经过点B到达点D路程为AB+BD=500米,CD=BC+BD=(200+100)米,从而可得经过点E到达点D路程为AE+DE=200﹣100+200≈529米,即可得答案.【解答】解:(1)过D作DF⊥AE于F,如图:由已知可得四边形ACDF是矩形,∴DF=AC=200米,∵点D在点E的北偏东45°,即∠DEF=45°,∴△DEF是等腰直角三角形,∴DE=DF=200≈283(米);(2)由(1)知△DEF是等腰直角三角形,DE=283米,∴EF=DF=200米,∵点B在点A的北偏东30°,即∠EAB=30°,∴∠ABC=30°,∵AC=200米,∴AB=2AC=400米,BC==200米,∵BD=100米,∴经过点B到达点D路程为AB+BD=400+100=500米,CD=BC+BD=(200+100)米,∴AF=CD=(200+100)米,∴AE=AF﹣EF=(200+100)﹣200=(200﹣100)米,∴经过点E到达点D路程为AE+DE=200﹣100+200≈529米,∵529>500,∴经过点B到达点D较近.【点评】本题考查解直角三角形﹣方向角问题,解题的关键是掌握含30°、45°角的直角三角形三边的关系.23.【分析】(1)由“勾股和数”的定义可直接判断;(2)由题意可知,10a+b=c2+d2,且0<c2+d2<100,由G(M)为整数,可知c+d=9,再由P(M)为整数,可得c2+d2=81﹣2cd为3的倍数,由此可得出M的值.【解答】解:(1)∵22+22=8,8≠20,∴2022不是“勾股和数”,∵52+52=50,∴5055是“勾股和数”;(2)∵M为“勾股和数”,∴10a+b=c2+d2,∴0<c2+d2<100,∵G(M)为整数,为整数,∴c+d=9,∴P(M)==为整数,∴c2+d2=81﹣2cd为3的倍数,∴cd为3的倍数.∴①c=0,d=9或c=9,d=0,此时M=8109或8190;②c=3,d=6或c=6,d=3,此时M=4536或4563.【点评】本题以新定义为背景考查了因式分解的应用,考查了学生应用知识的能力,解题关键是要理解新定义,表示出“勾股和数”,能根据条件找出合适的“勾股和数”.24.【分析】(1)用待定系数法可得抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入可得直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,可得C(m2﹣m,m2﹣m﹣4),PC=﹣m2+2m,则PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m﹣4=﹣(m﹣)2+,利用二次函数性质可得PC+PD的最大值为,此时点P的坐标是(,﹣);(3)将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=x2+4x+,对称轴是直线x=﹣4,即可得F(0,),E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),分三种情况:①当EF、MN为对角线时,EF、MN的中点重合,可得N(,);②当FM、EN为对角线时,FM、EN的中点重合,可得N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,可得N(﹣,).【解答】解:(1)把A(0,﹣4),B(4,0)代入y=x2+bx+c得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)设直线AB解析式为y=kx+t,把A(0,﹣4),B(4,0)代入得:,解得,∴直线AB解析式为y=x﹣4,设P(m,m2﹣m﹣4),则PD=﹣m2+m+4,在y=x﹣4中,令y=m2﹣m﹣4得x=m2﹣m,∴C(m2﹣m,m2﹣m﹣4),∴PC=m﹣(m2﹣m)=﹣m2+2m,∴PC+PD=﹣m2+2m﹣m2+m+4=﹣m2+3m+4=﹣(m﹣)2+,∵﹣1<0,∴当m=时,PC+PD取最大值,此时m2﹣m﹣4=×()2﹣﹣4=﹣,∴P(,﹣);答:PC+PD的最大值为,此时点P的坐标是(,﹣);(3)∵将抛物线y=x2﹣x﹣4向左平移5个单位得抛物线y=(x+5)2﹣(x+5)﹣4=x2+4x+,∴新抛物线对称轴是直线x=﹣=﹣4,在y=x2+4x+中,令x=0得y=,∴F(0,),将P(,﹣)向左平移5个单位得E(﹣,﹣),设M(﹣4,n),N(r,r2+4r+),①当EF、MN为对角线时,EF、MN的中点重合,∴,解得r=,∴r2+4r+=×()2+4×+=,∴N(,);②当FM、EN为对角线时,FM、EN的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);③当FN、EM为对角线时,FN、EM的中点重合,∴,解得r=﹣,∴r2+4r+=×(﹣)2+4×(﹣)+=,∴N(﹣,);综上所述,N的坐标为:(,)或(﹣,)或(﹣,).【点评】本题考查二次函数的综合应用,涉及待定系数法,二次函数、一次函数图象上点坐标的特征,平行四边形的性质及应用等知识,解题的关键是用含字母的代数式表示相关点的坐标及相关线段的长度.25.【分析】(1)如图1中,在射线CD上取一点K,使得CK=BE,证明△BCE≌△CBK (SAS),推出BK=CE,∠BEC=∠BKD,再证明∠ADF+∠AEF=180°,可得结论;(2)结论:BF+CF=2CN.首先证明∠BFC=120°.如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,证明△CNM≌△QNF(SAS),推出FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,再证明△PFQ≌△PBC(SAS),推出PQ=PC,∠CPB=∠QPF=60°,推出△PCQ是等边三角形,可得结论;(3)由(2)可知∠BFC=120°,推出点F的运动轨迹为红色圆弧(如图3﹣1中),推出P,F,O三点共线时,PF的值最小,此时tan∠APK==,如图3﹣2中,过点H作HL⊥PK于点L,设HL=LK=2,PL=,PH=,KH=2,由等积法求出PQ,可得结论.【解答】解:(1)如图1中,在射线CD上取一点K,使得CK=BE,在△BCE和△CBK中,,∴△BCE≌△CBK(SAS),∴BK=CE,∠BEC=∠BKD,∵CE=BD,∴BD=BK,∴∠BKD=∠BDK=∠ADC=∠CEB,∵∠BEC+∠AEF=180°,∴∠ADF+∠AEF=180°,∴∠A+∠EFD=180°,∵∠A=60°,∴∠EFD=120°,∴∠CFE=180°﹣120°=60°;(2)结论:BF+CF=2CN.理由:如图2中,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴AB=CB,∠A=∠CBD=60°,∵AE=BD,∴△ABE≌△BCD(SAS),∴∠BCF=∠ABE,∴∠FBC+∠BCF=60°,∴∠BFC=120°,如图2﹣1中,延长CN到Q,使得NQ=CN,连接FQ,∵NM=NF,∠CNM=∠FNQ,CN=NQ,∴△CNM≌△QNF(SAS),∴FQ=CM=BC,延长CF到P,使得PF=BF,则△PBF是等边三角形,∴∠PBC+∠PCB=∠PCB+∠FCM=120°,∴∠PFQ=∠FCM=∠PBC,∵PB=PF,∴△PFQ≌△PBC(SAS),∴PQ=PC,∠CPB=∠QPF=60°,∴△PCQ是等边三角形,∴BF+CF=PC=QC=2CN.(3)由(2)可知∠BFC=120°,∴点F的运动轨迹为红色圆弧(如图3﹣1中),∴P,F,O三点共线时,PF的值最小,此时tan∠APK==,∴∠HPK>45°,∵QK⊥PF,∴∠PKH=∠QKH=45°,如图3﹣2中,过点H作HL⊥PK于点L,设PQ交KH题意点J,设HL=LK=2,PL=,PH=,KH=2,=•PK•HL=•KH•PJ,∵S△PHK∴PQ=2PJ=2×=2+∴==.【点评】本题属于几何变换综合题,考查了等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,学会利用面积法解决问题,属于中考压轴题.。
2022年重庆中考数学试题(A卷)(解析版)
重庆市2022年初中学业水平暨高中招生考试数学试题(A 卷)(全卷共四个大题,满分150分,考试时间120分钟)注意事项:1试题的答案书写在答题卡上,不得在试题卷上直接作答;2作答前认真阅读答题卡上的注意事项;3作图(包括作辅助线)请一律用黑色2B 铅笔完成;4考试结束,由监考人员将试题卷和答题卡一并收回.参考公式:拋物线y =ax 2+bx +c (a ≠0)的顶点坐标为-b 2a ,4ac -b 24a,对称轴为x =-b2a .一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.5的相反数是(A )A.-5B.5C.-15D.152.下列图形是轴对称图形的是(D )A.B.C.D.3.如图,直线AB ,CD 被直线CE 所截,AB ⎳CD ,∠C =50°,则∠1的度数为(C )A.40°B.50°C.130°D.150°1ABCD E 4.如图,曲线表示一只蝴蝶在飞行过程中离地面的高度h (m )随飞行时间t (s )的变化情况,则这只蝴蝶飞行的最高高度约为(D )A.5mB.7mC.10mD.13m1235571013Ot/sh/m5.如图,△ABC 与△DEF 位似,点O 为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF 的周长是(B )A.4B.6C.9D.16AB CDEFO6.用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图穼中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为(C )⋯①②③④A.32B.34C.37D.417.估计3×(23+5)的值应在(B )A.10和11之间B.9和10之间C.8和9之间D.7和8之间8.小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是(A )A.200(1+x )2=242B.200(1-x )2=242C.200(1+2x )=242D.200(1-2x )=2429.如图,在正方形ABCD 中,AE 平分∠BAC 交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE =CE ,则∠CDF 的度数为(C )A.45°B.60°C.67.5°D.77.5°A BCDEF10.如图,AB 是⊙O 的切线,B 为切点,连接AO 交⊙O 于点C ,延长AO 交⊙O 于点D ,连接BD .若∠A =∠D ,且AC =3,则AB 的长度是(C )A.3B.4C.33D.42ABCDO11.若关于x 的一元一次不等式组x -1≥4x -13,5x -1<a的解集为x ≤-2,且关于y 的分式方程y -1y +1=a y +1-2的解是负整数,则所有满足条件的整数a 的值之和是(D )A.-26B.-24C.-15D.-1312.在多项式x -y -z -m -n 中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:(x -y )-(z -m -n )=x -y -z +m +n ,x -y -(z -m )-n =x -y -z +m -n ,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是(D )A.0B.1C.2D.3【解析】我们将括号(称为左括号,)称为右括号,左括号加在最左侧则不改变结果①正确;②不管如何加括号,x 的系数始终为1,y 的系数为-1,故②正确;③我们发现加括号或者不加括号只会影响z 、m 、n 的符号,故最多有23=8种结果x -(y -z )-m -n ,x -y -(z -m )-n ,x -y -z -(m -n ),x -(y -z -m )-n ,x -y -(z -m -n ),x -(y -z )-(m -n ),x -(y -z -m -n ),(x -y )-z -m -n二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:|-4|+(3-π)0=5.14.有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是13∙15.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若AB=2,∠BAD =60°,则图中阴影部分的面积为23-23π.(结果不取近似值)ABCDE F16.为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为35.【解析】设三座山各需香樟数量分别为4、3、9.甲、乙两山需红枫数量2a 、3a .∴4+2a3+3a=56,∴a =3,故丙山需要香樟9,红枫5,设香樟和红枫价格分别为m 、n .∴16m +20n =161-6.25% ×0.8m +20n ×1.25,∴m :n =5:4,∴实际购买香樟的总费用与实际购买红枫的总费用之比为16×1-6.25% ×0.8×520×1.25×4=0.6三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.计算:(1)(x +2)2+x (x -4);(2)ab-1 ÷a 2-b 22b .【解析】1 原式=x 2+4x +4+x 2-4x =2x 2+42 原式=a -b b ×2b a +b a -b=2a +b18.在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明△BCE 的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图㾗迹).在△BAE 和△EFB 中,∵EF ⊥BC ,∴∠EFB =90°.又∠A =90°,∴∠A =∠EFB ①∵AD ⎳BC ,∴∠AEB =∠FBE②又BE =EB③∴△BAE ≌△EFB (AAS ).同理可得△EDC ≌△CFE AAS ④∴S △BCE =S △EFB +S △EFC =12S 矩形ABFE +12S 矩形EFCD =12S 矩形ABCD四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包拈辅助线),请将解答过程书写在对应的位置上.19.公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:g ),并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格80≤x <85,良好85≤x <95,优秀x ≥95),下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B90b903030%抽取的A 、B 型扫地机器人除尘量统计表抽取的B 型扫地机器人除尘量扇形统计图优秀合格良好m%根据以上信息,解答下列问题:(1)填空:a =95,b =90,m =20;(2)这个月公可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【解析】2 3000×30%=900台3 A 型号更好,在平均数均为90的情况下,A 型号的平均除尘量众数95>B 型号的平均除尘量众数90ABCDE20.已知一次函数y =kx +b (k ≠0)的图象与反比例函数y =4x的图象相交于点A (1,m ).B (n ,-2).(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式kx +b >4x的解集:(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求△ABC 的面积.654321654321654321654321Oxy20题图【解析】(1)解:A (1,4),B (-2,-2),AB 解析式为y =2x +2(2)-2<x <0或x >1(3)S △ABC =12×4×6=1221.在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从 A 地沿相同路线骑行去距 A 地30 千米的 B 地,已知甲前行的速度是乙的1.2 倍.(1)若乙先骑行2 千米,甲才开始从 A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行 20 分钟,甲才开始从 A 地出发,则甲、乙恰好同时到达 B 地,求甲骑行的速度.【解析】解 (1)设乙的速度为 x km /h ,则甲的速度为 1.2x km /h ,由题意可列式 0.5 × 1.2x = 0.5x + 2, 解得 x = 20答:甲骑行的速度为 24km/h(2)20分钟=13小时由题意可列式30x-13=301.2x 解得x =15,检验成立答:甲骑行的速度为18km /h22.如图,三角形花园ABC紧邻湖泊,四边形ABDE是沿湖泊修建的人行步道.经测量,点C在点A的正东方向,AC=200米.点E在点A的正北方向.点B,D在点C的正北方向,BD=100米.点B在点A的北偏东30°,点D在点E的北偏东45°.(1)求步道DE的长度(精确到个位);(2)点D处有直饮水,小红从A出发沿人行步道去取水,可以经过点B到达点D,也可以经过点E到达点D.请计算说明他走哪一条路较近?(参考数据:2≈1.414,3≈1.732)【解析】1 过E作BC的垂线,垂足为H,∴EH=AC=200,DE=2002≈283米;2 AB=400,∴经过点B到达点D,总路程为500,∵BC=2003,AE=BC+BD-DH=2003+100-200=2003-100经过点E到达点D,总路程为2002+2003-100≈529>500故经过点B到达点D较近。
2022年重庆市中考数学试卷(a卷)(解析版)
2022年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)5的相反数是()A.5-B.5C.15-D.1 5【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:5的相反数是5-,故选:A.2.(4分)下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A.不是轴对称图形,故此选项不合题意;B.不是轴对称图形,故此选项不合题意;C.不是轴对称图形,故此选项不合题意;D.是轴对称图形,故此选项符合题意.故选:D.3.(4分)如图,直线AB,CD被直线CE所截,//AB CD,50C∠=︒,则1∠的度数为()A.40︒B.50︒C.130︒D.150︒【分析】根据两直线平行,同旁内角互补即可得出答案.【解答】解://AB CD,1180C ∴∠+∠=︒,118018050130C ∴∠=︒-∠=︒-︒=︒.故选:C .4.(4分)如图,曲线表示一只蝴蝶在飞行过程中离地面的高度()h m 随飞行时间()t s 的变化情况,则这只蝴蝶飞行的最高高度约为()A .5mB .7mC .10mD .13m【分析】根据函数的图象的最高点对应的函数值即可得出答案.【解答】解:观察图象,当3t =时,13h =,∴这只蝴蝶飞行的最高高度约为13m ,故选:D .5.(4分)如图,ABC ∆与DEF ∆位似,点O 为位似中心,相似比为2:3.若ABC ∆的周长为4,则DEF ∆的周长是()A .4B .6C .9D .16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得DEF ∆的周长.【解答】解:ABC ∆ 与DEF ∆位似,相似比为2:3.:2:3ABC DEF C C ∆∆∴=,ABC ∆ 的周长为4,DEF ∴∆的周长是6,故选:B .6.(4分)用正方形按如图所示的规律拼图案,其中第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,此规律排列下去,则第⑨个图案中正方形的个数为()A .32B .34C .37D .41【分析】根据图形的变化规律得出第n 个图形中有41n +个正方形即可.【解答】解:由题知,第①个图案中有5个正方形,第②个图案中有9个正方形,第③个图案中有13个正方形,第④个图案中有17个正方形,⋯,第n 个图案中有41n +个正方形,∴第⑨个图案中正方形的个数为49137⨯+=,故选:C .7.(4的值应在()A .10和11之间B .9和10之间C .8和9之间D .7和8之间【分析】先计算出原式得6,再根据无理数的估算可得答案.【解答】解:原式6==91516<< ,34∴<<,9610∴<+<.故选:B .8.(4分)小区新增了一家快递店,第一天揽件200件,第三天揽件242件,设该快递店揽件日平均增长率为x ,根据题意,下面所列方程正确的是()A .2200(1)242x +=B .2200(1)242x -=C .200(12)242x +=D .200(12)242x -=【分析】设该快递店揽件日平均增长率为x ,关系式为:第三天揽件数=第一天揽件数(1⨯+揽件日平均增长率)2,把相关数值代入即可.【解答】解:设该快递店揽件日平均增长率为x ,根据题意,可列方程:2200(1)242x +=,故选:A .9.(4分)如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为()A .45︒B .60︒C .67.5︒D .77.5︒【分析】根据正方形的性质和全等三角形的判定和性质,可以得到ADF ∠的度数,从而可以求得CDF ∠的度数.【解答】解: 四边形ABCD 是正方形,AD BA ∴=,90DAF ABE ∠=∠=︒,在DAF ∆和ABE ∆中,AD BA DAF ABE AF BE =⎧⎪∠=∠⎨⎪=⎩,()DAF ABE SAS ∆≅∆,ADF BAE ∠=∠,AE 平分BAC ∠,四边形ABCD 是正方形,122.52BAE BAC ∴∠=∠=︒,90ADC ∠=︒,22.5ADF ∴∠=︒,9022.567.5CDF ADC ADF ∴∠=∠-∠=︒-︒=︒,故选:C .10.(4分)如图,AB 是O 的切线,B 为切点,连接AO 交O 于点C ,延长AO 交O 于点D ,连接BD .若A D ∠=∠,且3AC =,则AB 的长度是()A .3B .4C .D .【分析】连接OB ,则OB AB ⊥,由勾股定理可知,222AB OA OB =-①,由OB 和OD 是半径,所以A D OBD ∠=∠=∠,所以OBD BAD ∆∆∽,AB BD =,可得2BD OD AD =⋅,所以22OA OB OD AD -=⋅,设OD x =,则23AD x =+,OB x =,3OA x =+,所以22(3)(23)x x x x +-=+,求出x 的值,即可求出OA 和OB 的长,进而求得AB 的长.【解答】解:如图,连接OB ,AB 是O 的切线,B 为切点,OB AB ∴⊥,222AB OA OB ∴=-,OB 和OD 是半径,D OBD ∴∠=∠,A D ∠=∠ ,A D OBD ∴∠=∠=∠,OBD BAD ∴∆∆∽,AB BD =,::OD BD BD AD ∴=,2BD OD AD ∴=⋅,即22OA OB OD AD -=⋅,设OD x =,3AC = ,23AD x ∴=+,OB x =,3OA x =+,22(3)(23)x x x x ∴+-=+,解得3x =(负值舍去),6OA ∴=,3OB =,22227AB OA OB ∴=-=,AB ∴=故选:C.11.(4分)若关于x 的一元一次不等式组411,351x x x a-⎧-⎪⎨⎪-<⎩的解集为2x -,且关于y 的分式方程1211y a y y -=-++的解是负整数,则所有满足条件的整数a 的值之和是()A .26-B .24-C .15-D .13-【分析】解不等式组得出215x a x -⎧⎪+⎨<⎪⎩,结合题意得出11a >-,解分式方程得出13a y -=,结合题意得出8a =-或5-,进而得出所有满足条件的整数a 的值之和是8513--=-,即可得出答案.【解答】解:解不等式组411351x x x a -⎧-⎪⎨⎪-<⎩得:215x a x -⎧⎪+⎨<⎪⎩,不等式组411351x x x a-⎧-⎪⎨⎪-<⎩的解集为2x -,∴12 5a+>-,11a∴>-,解分式方程1211y ay y-=-++得:13ay-=,y是负整数且1y≠-,∴13a-是负整数且113a-≠-,8a∴=-或5-,∴所有满足条件的整数a的值之和是8513--=-,故选:D.12.(4分)在多项式x y z m n----中任意加括号,加括号后仍只有减法运算,然后按给出的运算顺序重新运算,称此为“加算操作”.例如:()()x y z m n x y z m n----=--++,()x y z m n x y z m n----=--+-,⋯.下列说法:①至少存在一种“加算操作”,使其运算结果与原多项式相等;②不存在任何“加算操作”,使其运算结果与原多项式之和为0;③所有可能的“加算操作”共有8种不同运算结果.其中正确的个数是()A.0B.1C.2D.3【分析】根据“加算操作”的定义可知,当只给x y-加括号时,和原式相等;因为不改变x,y的运算符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0在多项式x y z m n----中,可通过加括号改变z,m,n的符号,因为z,m,n中只有加减两种运算,求出即可.【解答】解:①()x y z m n x y z m n----=----,与原式相等,故①正确;② 在多项式x y z m n----中,可通过加括号改变z,m,n的符号,无法改变x,y的符号,故不存在任何“加算操作”,使其运算结果与原多项式之和为0;故②正确;③在多项式x y z m n----中,可通过加括号改变z,m,n的符号,加括号后只有加减两种运算,2228∴⨯⨯=种,所有可能的加括号的方法最多能得到8种不同的结果.故选:D .二、填空题(本大题四个小题,每小题4分,共16分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:0|4|(3)π-+-=5.【分析】根据绝对值的性质和零指数幂的性质计算即可.【解答】解:原式415=+=.故答案为:5.14.(4分)有三张完全一样正面分别写有字母A ,B ,C 的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是13.【分析】根据题意列出图表得出所有等情况数和两次抽出的卡片上的字母相同的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意列表如下:AB C A AA BA CA B AB BB CB CACBCCC共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的有3种情况,所以抽取的两张卡片上的字母相同的概率为3193=,故答案为:13.15.(4分)如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒,则图中阴影部分的面积为6323π-.(结果不取近似值)【分析】根据菱形的性质求出对角线的长,进而求出菱形的面积,再根据扇形面积的计算方法求出扇形ADE 的面积,由2ADE ABCD S S S =-阴影部分扇形菱形可得答案.【解答】解:如图,连接BD 交AC 于点O ,则AC BD ⊥, 四边形ABCD 是菱形,60BAD ∠=︒,30BAC ACD ∴∠=∠=︒,2AB BC CD DA ====,在Rt AOB ∆中,2AB =,30BAO ∠=︒,112BO AB ∴==,32AO AB ==,2AC OA ∴==,22BD BO ==,12ABCD S AC BD ∴=⋅=菱形,2ADE ABCD S S S ∴=-阴影部分扇形菱形2602360π⨯=-6323π-=,故答案为:6323π-.16.(4分)为进一步改善生态环境,村委会决定在甲、乙、丙三座山上种植香樟和红枫.初步预算,这三座山各需两种树木数量和之比为5:6:7,需香樟数量之比为4:3:9,并且甲、乙两山需红枫数量之比为2:3.在实际购买时,香樟的价格比预算低20%,红枫的价格比预算高25%,香樟购买数量减少了6.25%,结果发现所花费用恰好与预算费用相等,则实际购买香樟的总费用与实际购买红枫的总费用之比为35.【分析】分别设出甲乙丙三山的香樟数量、红枫数量及总量,根据甲乙两山红枫数量关系,得出甲乙丙三山香樟和红枫的数量(只含一个字母),进而根据“所花费用和预算费用相等”列出等式,从而求得香樟和红枫的单价之间关系,进一步求得结果.【解答】解:根据题意,如表格所设:香樟数量红枫数量总量甲4x 54y x -5y 乙3x 63y x -6y 丙9x79y x-7y甲、乙两山需红枫数量之比为2:3,∴542633y x y x -=-,2y x ∴=,故数量可如下表:香樟数量红枫数量总量甲4x 6x 10x 乙3x 9x 12x 丙9x5x14x所以香樟的总量是16x ,红枫的总量是20x ,设香樟的单价为a ,红枫的单价为b ,由题意得,[16(1 6.25%)][(120%)]20[(125%)]1620x a x b x a x b ⋅-⋅⋅-+⋅⋅+=⋅+⋅,12251620a b a b ∴+=+,45a b ∴=,设5a k =,4b k =,∴121253252545a kb k ⨯==⨯,故答案为:35.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.17.(8分)计算:(1)2(2)(4)x x x ++-;(2)22(1)2a a b b b--÷.【分析】(1)先利用完全平方公式和单项式乘多项式法则计算,再合并同类项即可;(2)先计算括号内分式的减法,再将除法转化为乘法,继而约分即可.【解答】解:(1)原式22444x x x x=+++-224x =+;(2)原式()()()2a b a b a b b b b+-=-÷2()()a b b b a b a b -=⋅+-2a b=+.18.(8分)在学习矩形的过程中,小明遇到了一个问题:在矩形ABCD 中,E 是AD 边上的一点,试说明BCE ∆的面积与矩形ABCD 的面积之间的关系.他的思路是:首先过点E 作BC 的垂线,将其转化为证明三角形全等,然后根据全等三角形的面积相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E 作BC 的垂线EF ,垂足为F (只保留作图痕迹).在BAE ∆和EFB ∆中,EF BC ⊥ ,90EFB ∴∠=︒.又90A ∠=︒,∴A EFB ∠=∠,①//AD BC ,∴②又③()BAE EFB AAS ∴∆≅∆.同理可得④111222BCE EFB EFC ABFE EFCD ABCD S S S S S S ∆∆∆∴=+=+=矩形矩形矩形.【分析】以C 为圆心DE 长为半径画弧交BC 于F ,连接CF ,根据已知条件依次写出相应的解答过程即可.【解答】解:根据题意作图如下:由题知,在BAE ∆和EFB ∆中,EF BC ⊥ ,90EFB ∴∠=︒.又90A ∠=︒,A EFB ∴∠=∠,①//AD BC ,AEB FBE ∴∠=∠,②又BE EB =,③()BAE EFB AAS ∴∆≅∆.同理可得()EDC CFE AAS ∆≅∆,④111222BCE EFB EFC ABFE EFCD ABCD S S S S S S ∆∆∆∴=+=+=矩形矩形矩形,故答案为:①A EFB ∠=∠,②AEB FBE ∠=∠,③BE EB =,④()EDC CFE AAS ∆≅∆.四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在对应的位置上.19.(10分)公司生产A 、B 两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A 、B 型扫地机器人中各随机抽取10台,在完全相同条件下试验,记录下它们的除尘量的数据(单位:)g ,并进行整理、描述和分析(除尘量用x 表示,共分为三个等级:合格8085x <,良好8595x <,优秀95)x ,下面给出了部分信息:10台A 型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B 型扫地机器人中“良好”等级包含的所有数据为:85,90,90,90,94抽取的A 、B 型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A 9089a 26.640%B 90b 903030%根据以上信息,解答下列问题:(1)填空:a =95,b =,m =;(2)这个月公司可生产B 型扫地机器人共3000台,估计该月B 型扫地机器人“优秀”等级的台数;(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).【分析】(1)根据众数、中位数概念可求出a 、b 的值,由B 型扫地机器人中“良好”等级占50%,“优秀”等级所占百分比为30%,可求出m 的值;(2)用3000乘30%即可得答案;(3)比较A 型、B 型扫地机器人的除尘量平均数、众数可得答案.【解答】解:(1)在83,84,84,88,89,89,95,95,95,98中,出现次数最多的是95,∴众数95a =,10台B 型扫地机器人中“良好”等级有5台,占50%,“优秀”等级所占百分比为30%,∴“合格”等级占150%30%20%--=,即20m =,把B 型扫地机器人的除尘量从小到大排列后,第5个和第6个数都是90,90b ∴=,故答案为:95,90,20;(2)该月B 型扫地机器人“优秀”等级的台数300030%900⨯=(台);(3)A 型号的扫地机器人扫地质量更好,理由是在平均除尘量都是90的情况下,A 型号的扫地机器人除尘量的众数B >型号的扫地机器人除尘量的众数(理由不唯一).20.(10分)已知一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象相交于点(1,)A m ,(,2)B n -.(1)求一次函数的表达式,并在图中画出这个一次函数的图象;(2)根据函数图象,直接写出不等式4kx b x+>的解集;(3)若点C 是点B 关于y 轴的对称点,连接AC ,BC ,求ABC ∆的面积.【分析】(1)根据反比例函数解析式求出A 点和B 点的坐标,然后用待定系数法求出一次函数的表达式即可;(2)根据图象直接得出不等式的解集即可;(3)根据对称求出C 点坐标,根据A 点、B 点和C 点坐标确定三角形的底和高,进而求出三角形的面积即可.【解答】解:(1) 反比例函数4y x =的图象过点(1,)A m ,(,2)B n -,∴41m =,42n =-,解得4m =,2n =-,(1,4)A ∴,(2,2)B --,一次函数(0)y kx b k =+≠的图象过A 点和B 点,∴422k b k b +=⎧⎨-+=-⎩,解得22k b =⎧⎨=⎩,∴一次函数的表达式为22y x =+,描点作图如下:(2)由(1)中的图象可得,不等式4kx b x+>的解集为:20x -<<或1x >;(3)由题意作图如下:由图知ABC ∆中BC 边上的高为6,4BC =,146122ABC S ∆∴=⨯⨯=.21.(10分)在全民健身运动中,骑行运动颇受市民青睐,甲、乙两骑行爱好者约定从A 地沿相同路线骑行去距A 地30千米的B 地,已知甲骑行的速度是乙的1.2倍.(1)若乙先骑行2千米,甲才开始从A 地出发,则甲出发半小时恰好追上乙,求甲骑行的速度;(2)若乙先骑行20分钟,甲才开始从A 地出发,则甲、乙恰好同时到达B 地,求甲骑行的速度.【分析】(1)设乙骑行的速度为x 千米/时,则甲骑行的速度为1.2x 千米/时,利用路程=速度⨯时间,结合甲追上乙时二者的行驶路程相等,即可得出关于x 的一元一次方程,解之即可求出乙骑行的速度,再将其代入1.2x 中即可求出甲骑行的速度;(2)设乙骑行的速度为y 千米/时,则甲骑行的速度为1.2y 千米/时,利用时间=路程÷速度,结合乙比甲多用20分钟,即可得出关于y 的分式方程,解之经检验后即可求出乙骑行的速度,再将其代入1.2y 中即可求出甲骑行的速度.【解答】解:(1)设乙骑行的速度为x 千米/时,则甲骑行的速度为1.2x 千米/时,依题意得:111.2222x x ⨯=+,解得:20x =,1.2 1.22024x ∴=⨯=.答:甲骑行的速度为24千米/时.(2)设乙骑行的速度为y 千米/时,则甲骑行的速度为1.2y 千米/时,依题意得:3030201.260y y -=,解得:15y =,经检验,15y =是原方程的解,且符合题意,1.2 1.21518y ∴=⨯=.答:甲骑行的速度为18千米/时.22.(10分)如图,三角形花园ABC 紧邻湖泊,四边形ABDE 是沿湖泊修建的人行步道.经测量,点C 在点A 的正东方向,200AC =米.点E 在点A 的正北方向.点B ,D 在点C 的正北方向,100BD =米.点B 在点A 的北偏东30︒,点D 在点E 的北偏东45︒.(1)求步道DE 的长度(精确到个位);(2)点D 处有直饮水,小红从A 出发沿人行步道去取水,可以经过点B 到达点D ,也可以经过点E 到达点D .请计算说明他走哪一条路较近?1.414≈ 1.732)≈【分析】(1)过D 作DF AE ⊥于F ,由已知可得四边形ACDF 是矩形,则200DF AC ==米,根据点D 在点E 的北偏东45︒,即得283DE ==≈(米);(2)由DEF ∆是等腰直角三角形,283DE =米,可得200EF DF ==米,而30ABC ∠=︒,即得2400AB AC ==米,BC ==米,又100BD =米,即可得经过点B 到达点D 路程为500AB BD +=米,100)CD BC BD =+=米,从而可得经过点E 到达点D 路程为100529AE DE +=+≈米,即可得答案.【解答】解:(1)过D 作DF AE ⊥于F ,如图:由已知可得四边形ACDF 是矩形,200DF AC ∴==米,点D 在点E 的北偏东45︒,即45DEF ∠=︒,DEF ∴∆是等腰直角三角形,283DE ∴==≈(米);(2)由(1)知DEF ∆是等腰直角三角形,283DE =米,200EF DF ∴==米,点B 在点A 的北偏东30︒,即30EAB ∠=︒,30ABC ∴∠=︒,200AC = 米,2400AB AC ∴==米,BC =米,100BD = 米,∴经过点B 到达点D 路程为400100500AB BD +=+=米,100)CD BC BD =+=米,100)AF CD ∴==米,100)200100)AE AF EF ∴=-=-=米,∴经过点E 到达点D 路程为100529AE DE +=-+≈米,529500> ,∴经过点B 到达点D 较近.23.(10分)若一个四位数M 的个位数字与十位数字的平方和恰好是M 去掉个位与十位数字后得到的两位数,则这个四位数M 为“勾股和数”.例如:2543M =,223425+= ,2543∴是“勾股和数”;又如:4325M =,225229+= ,2943≠,4325∴不是“勾股和数”.(1)判断2022,5055是否是“勾股和数”,并说明理由;(2)一个“勾股和数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,记()9c d G M +=,|10()()|()3a cb d P M -+-=.当()G M ,()P M 均是整数时,求出所有满足条件的M .【分析】(1)由“勾股和数”的定义可直接判断;(2)由题意可知,2210a b c d +=+,且220100c d <+<,由()G M 为整数,可知9c d +=,再由()P M 为整数,可得22812c d cd +=-为3的倍数,由此可得出M 的值.【解答】解:(1)22228+= ,820≠,2022∴不是“勾股和数”,225550+= ,5055∴是“勾股和数”;(2)M 为“勾股和数”,2210a b c d ∴+=+,220100c d ∴<+<,()G M 为整数,9c d +为整数,9c d ∴+=,22|10()()||99|()33a cb dcd c P M -+-+--∴==为整数,22812c d cd ∴+=-为3的倍数,cd ∴为3的倍数.∴①0c =,9d =或9c =,0d =,此时8109M =或8190;②3c =,6d =或6c =,3d =,此时4536M =或4563.24.(10分)如图,在平面直角坐标系中,抛物线212y x bx c =++与直线AB 交于点(0,4)A -,(4,0)B .(1)求该抛物线的函数表达式;(2)点P 是直线AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P作y 轴的平行线交x 轴于点D ,求PC PD +的最大值及此时点P 的坐标;(3)在(2)中PC PD +取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,M 为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N ,使得以点E ,F ,M ,N 为顶点的四边形是平行四边形,写出所有符合条件的点N 的坐标,并写出求解点N 的坐标的其中一种情况的过程.Ⅷ【分析】(1)用待定系数法可得抛物线的函数表达式为2142y x x =--;(2)设直线AB 解析式为y kx t =+,把(0,4)A -,(4,0)B 代入可得直线AB 解析式为4y x =-,设21(,4)2P m m m --,则2142PD m m =-++,可得21(2C m m -,214)2m m --,2122PC m m =-+,则2222113252434()2224PC PD m m m m m m m +=-+-++=-+-=--+,利用二次函数性质可得PC PD +的最大值为254,此时点P 的坐标是3(2,35)8-;(3)将抛物线2142y x x =--向左平移5个单位得抛物线217422y x x =++,对称轴是直线4x =-,即可得7(0,)2F ,7(2E -,35)8-,设(4,)M n -,217(,422N r r r ++,分三种情况:①当EF 、MN 为对角线时,EF 、MN 的中点重合,可得1(2N ,458;②当FM 、EN 为对角线时,FM 、EN 的中点重合,可得1(2N -,138;③当FN 、EM 为对角线时,FN 、EM 的中点重合,可得15(2N -,138.【解答】解:(1)把(0,4)A -,(4,0)B 代入212y x bx c =++得:4840c b c =-⎧⎨++=⎩,解得14b c =-⎧⎨=-⎩,∴抛物线的函数表达式为2142y x x =--;(2)设直线AB 解析式为y kx t =+,把(0,4)A -,(4,0)B 代入得:440t k t =-⎧⎨+=⎩,解得14k t =⎧⎨=-⎩,∴直线AB 解析式为4y x =-,设21(,4)2P m m m --,则2142PD m m =-++,在4y x =-中,令2142y m m =--得212x m m =-,21(2C m m ∴-,214)2m m --,2211()222PC m m m m m ∴=--=-+,2222113252434()2224PC PD m m m m m m m ∴+=-+-++=-++=--+,10-< ,∴当32m =时,PC PD +取最大值254,此时221133354(422228m m --=⨯--=-,3(2P ∴,35)8-;答:PC PD +的最大值为254,此时点P 的坐标是3(2,35)8-;(3) 将抛物线2142y x x =--向左平移5个单位得抛物线22117(5)(5)44222y x x x x =+-+-=++,∴新抛物线对称轴是直线44122x =-=-⨯,在217422y x x =++中,令0x =得72y =,7(0,)2F ∴,将3(2P ,35)8-向左平移5个单位得7(2E -,35)8-,设(4,)M n -,217(,422N r r r ++,①当EF 、MN 为对角线时,EF 、MN 的中点重合,∴270427351742822r n r r ⎧-=-+⎪⎪⎨⎪-=+++⎪⎩,解得12r =,∴22171117454()42222228r r ++=⨯+⨯+=,1(2N ∴,458;②当FM 、EN 为对角线时,FM 、EN 的中点重合,∴270427351742822r n r r ⎧-=-+⎪⎪⎨⎪+=-+++⎪⎩,解得12r =-,∴22171117134()4()2222228r r ++=⨯-+⨯-+=,1(2N ∴-,13)8;③当FN 、EM 为对角线时,FN 、EM 的中点重合,∴270427173542228r r r n ⎧+=--⎪⎪⎨⎪+++=-+⎪⎩,解得152r =-,∴2217115157134(4()2222228r r ++=⨯-+⨯-+=,15(2N ∴-,138;综上所述,N 的坐标为:1(2,45)8或1(2-,138或15(2-,13)8.25.(10分)如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边AB ,AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且BD CE =,BCD CBE ∠=∠,求CFE ∠的度数;(2)如图2,若AB AC =,且BD AE =,在平面内将线段AC 绕点C 顺时针方向旋转60︒得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段BF ,CF ,CN 之间存在的数量关系,并证明你的猜想;(3)若AB AC =,且BD AE =,将ABC ∆沿直线AB 翻折至ABC ∆所在平面内得到ABP ∆,点H 是AP 的中点,点K 是线段PF 上一点,将PHK ∆沿直线HK 翻折至PHK ∆所在平面内得到QHK ∆,连接PQ .在点D ,E 运动过程中,当线段PF 取得最小值,且QK PF ⊥时,请直接写出PQ BC 的值.【分析】(1)如图1中,在射线CD 上取一点K ,使得CK BE =,证明()BCE CBK SAS ∆≅∆,推出BK CE =,BEC BKD ∠=∠,再证明180ADF AEF ∠+∠=︒,可得结论;(2)结论:2BF CF CN +=.首先证明120BFC ∠=︒.如图21-中,延长CN 到Q ,使得NQ CN =,连接FQ ,证明()CNM QNF SAS ∆≅∆,推出FQ CM BC ==,延长CF 到P ,使得PF BF =,则PBF ∆是等边三角形,再证明()PFQ PBC SAS ∆≅∆,推出PQ PC =,60CPB QPF ∠=∠=︒,推出PCQ ∆是等边三角形,可得结论;(3)由(2)可知120BFC ∠=︒,推出点F 的运动轨迹为红色圆弧(如图31-中),推出P ,F ,O 三点共线时,PF 的值最小,此时tanAO APK AP ∠==,如图32-中,过点H 作HL PK ⊥于点L ,设2HL LK ==,PL =,PH =,KH =PQ ,可得结论.【解答】解:(1)如图1中,在射线CD 上取一点K ,使得CK BE =,在BCE ∆和CBK ∆中,BC CB BCK CBE BE CK =⎧⎪∠=∠⎨⎪=⎩,()BCE CBK SAS ∴∆≅∆,BK CE ∴=,BEC BKD ∠=∠,CE BD = ,BD BK ∴=,BKD BDK ADC CEB ∴∠=∠=∠=∠,180BEC AEF ∠+∠=︒ ,180ADF AEF ∴∠+∠=︒,180A EFD ∴∠+∠=︒,60A ∠=︒ ,120EFD ∴∠=︒,18012060CFE ∴∠=︒-︒=︒;(2)结论:2BF CF CN +=.理由:如图2中,AB AC = ,60A ∠=︒,ABC ∴∆是等边三角形,AB CB ∴=,60A CBD ∠=∠=︒,AE BD = ,()ABE BCD SAS ∴∆≅∆,BCF ABE ∴∠=∠,60FBC BCF ∴∠+∠=︒,120BFC ∴∠=︒,如图21-中,延长CN 到Q ,使得NQ CN =,连接FQ ,NM NF = ,CNM FNQ ∠=∠,CN NQ =,()CNM QNF SAS ∴∆≅∆,FQ CM BC ∴==,延长CF 到P ,使得PF BF =,则PBF ∆是等边三角形,120PBC PCB PCB FCM ∴∠+∠=∠+∠=︒,PFQ FCM PBC ∴∠=∠=∠,PB PF = ,()PFQ PBC SAS ∴∆≅∆,PQ PC ∴=,60CPB QPF ∠=∠=︒,PCQ ∴∆是等边三角形,2BF CF PC QC CN ∴+===.(3)由(2)可知120BFC ∠=︒,∴点F 的运动轨迹为红色圆弧(如图31-中),P ∴,F ,O 三点共线时,PF 的值最小,此时tanAO APK AP ∠==45HPK ∴∠>︒,QK PF ⊥ ,45PKH QKH ∴∠=∠=︒,如图32-中,过点H 作HL PK ⊥于点L ,设PQ 交KH 题意点J ,设2HL LK ==,PL =,PH =,KH =1122PHK S PK HL KH PJ ∆=⋅⋅=⋅⋅ ,22PQ PJ ∴===+∴14PQ BC =.。
2022年重庆市(A卷)中考数学真题(含解析)
又如: ,∵ , ,∴4325不是“勾股和数”.
(1)判断2022,5055 否是“勾股和数”,并说明理由;
(2)一个“勾股和数” 的千位数字为 ,百位数字为 ,十位数字为 ,个位数字为 ,记 , .当 , 均是整数时,求出所有满足条件的 .
24.如图,在平面直角坐标系中,抛物线 与直线 交于点 , .
二、填空题
13.计算: _________.
14.有三张完全一样正面分别写有字母A,B,C的卡片.将其背面朝上并洗匀,从中随机抽取一张,记下卡片上的字母后放回洗匀,再从中随机抽取一张,则抽取的两张卡片上的字母相同的概率是_________.
15.如图,菱形 中,分别以点 , 为圆心, , 长为半径画弧,分别交对角线 于点 , .若 , ,则图中阴影部分 面积为_________.(结果不取近似值)
25.如图,在锐角 中, ,点 , 分别 边 , 上一动点,连接 交直线 于点 .
(1)如图1,若 ,且 , ,求 的度数;
(2)如图2,若 ,且 ,在平面内将线段 绕点 顺时针方向旋转 得到线段 ,连接 ,点 是 的中点,连接 .在点 , 运动过程中,猜想线段 , , 之间存在的数量关系,并证明你的猜想;
A. B. C. D.
10.如图, 是 的切线,B为切点,连接 交 于点 ,延长 交 于点 ,连接 .若 ,且 ,则 的长度是()
A 3B.4C. D.
11.若关于 的一元一次不等式组 的解集为 ,且关于 的分式方程 的解是负整数,则所有满足条件的整数 的值之和是()
A.-26B.-24C.-15D.-13
(3)若 ,且 ,将 沿直线 翻折至 所在平面内得到 ,点 是 的中点,点 是线段 上一点,将 沿直线 翻折至 所在平面内得到 ,连接 .在点 , 运动过程中,当线段 取得最小值,且 时,请直接写出 的值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 重庆市2020年初中学业水平暨高中招生考试 数学试题(A卷) 一、选择题 1.下列各数中,最小的数是( )
A. -3 B. 0 C. 1 D. 2 2.下列图形是轴对称图形的是( )
A. B. C. D. 3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为
( ) A. 32610 B. 32.610 C. 42.610 D. 50.2610 4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角
形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )
A. 10 B. 15 C. 18 D. 21 5.如图,AB是O的切线,A切点,连接OA,OB,若20B,则AOB的度数为( )
A. 40° B. 50° C. 60° D. 70° 6.下列计算中,正确的是( )
A. 235 B. 2222 C. 236 D. 2323 7.解一元一次方程11(1)123xx时,去分母正确的是( )
A. 3(1)12xx B. 2(1)13xx C. 2(1)63xx D. 3(1)62xx 8.如图,在平面直角坐标系中,ABC的顶点坐标分别是(1,2)A,(1,1)B,(3,1)C,以原点为位似中心,在原 2
点的同侧画DEF,使DEF与ABC成位似图形,且相似比为2:1,则线段DF的长度为( ) A. 5 B. 2 C. 4 D. 25 9.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)1:0.75i,
山坡坡底C点到坡顶D点的距离45mCD,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为( ) (参考数据:sin280.47,cos280.88,tan280.53)
A. 76.9m B. 82.1m C. 94.8m D. 112.6m 10.若关于x的一元一次不等式结3132xxxa的解集为xa;且关于y的分式方程34122yayyy有正整
数解,则所有满足条件的整数a的值之积是( ) A. 7 B. -14 C. 28 D. -56 11.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把ABD△沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DGGE,3AF,2BF,ADG的面积为2,则点F到BC的距离为( ) 3
A. 55 B. 255 C. 455 D. 433 12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若
AD平分OAE,反比例函数(0,0)kykxx的图象经过AE上的两点A,F,且AFEF,ABE△的面
积为18,则k的值为( )
A. 6 B. 12 C. 18 D. 24 二、填空题 13.计算:0(1)|2|__________.
14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.
15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗
均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别
记为m,n,则点P(m,n)在第二象限的概率为__________. 16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画
弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留)
17.A,B两地相距240 km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止,在甲出发的同时,
乙货车从B地沿同一公路匀速前往A地,到达A地后停止,两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CDDEEF所示.其中点C的坐标是0240,,点D的坐标是2.40,,则点E的坐标是__________. 4
18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方
式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 三、解答题
19.计算:(1)2()(2)xyxxy; (2)2291369mmmmm.
20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,
现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为: 7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.
七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数 中位数 8分及以上人数所占百分比 七年级 7.5 a 7 45% 八年级 7.5 8 b c
八年级20名学生的测试成绩条形统计图如图:
根据以上信息,解答下列问题: 5
(1)直接写出上述表中的a,b,c的值; (2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可); (3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少? 21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AEBD,CFBD,
垂足分别为E,F.AC平分DAE. (1)若50AOE,求ACB的度数; (2)求证:AECF.
22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以
下是我们研究函数261xyx性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象; x … -5 -4 -3 -2 -1 0 1 2 3 4 5 …
261xyx
… 1513 2417 125 -3 0 3 125 2417 1513 …
(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”; ①该函数图象是轴对称图形,它的对称轴为y轴;( ) ②该函数在自变量的取值范围内,有最大值和最小值,当1x时,函数取得最大值3;当1x时,函数取得最小值-3;( ) ③当1x或1x时,y随x增大而减小;当11x时,y随x的增大而增大;( ) (3)已知函数21yx的图象如图所示,结合你所画的函数图象,直接写出不等式26211xxx的解集(保留1位小数,误差不超过0.2). 6
23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数
的除法运算来研究一种数——“差一数”. 定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524,14342,所以14是“差一数”; 19534,但19361,所以19不
是“差一数”.
(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”. 24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对
A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均
为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元. (1)求A、B两个品种去年平均亩产量分别是多少千克? (2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加20%9a,求a的值. 25.如图,在平面直角坐标系中,已知抛物线2yxbxc与直线AB相交于A,B两点,其中3,4A,
0,1B.
(1)求该抛物线的函数表达式; (2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求PAB△面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线211110yaxbxca,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.