Crystallization, morphology and luminescent properties of YAG:Ce 3+ phosphor powder prepared b
Sm3 + 透辉石微晶玻璃析晶及发光的影响

第31卷 第22期2009年11月武 汉 理 工 大 学 学 报JOURNA L OF WUHAN UNIVERSIT Y OF TECHN OLOG Y Vol.31 No.22 Nov.2009DOI :10.3963/j.issn.167124431.2009.22.011B 2O 3对Sm 3+透辉石微晶玻璃析晶及发光的影响田培静,全 健,陈珍霞,欧阳舒(武汉理工大学硅酸盐工程教育部重点实验室,武汉430070)摘 要: 制备了具有不同硼含量的Sm 3+掺杂透辉石系微晶玻璃。
采用X 射线衍射仪、扫描电子显微镜、荧光光谱仪研究了该微晶玻璃的析晶及发光性能。
由XRD 、SEM 证实,该系统玻璃属表面析晶。
随着B 2O 3的增加,该系统玻璃更加容易分相。
且B 2O 3的增加有助于次晶相方石英的析出。
发射与激发光谱表明,B 2O 3外加量的增多使得微晶玻璃发光强度先增大后减小。
关键词: 微晶玻璃; Sm 3+; 透辉石; B 2O 3中图分类号: TQ 171.733文献标识码: A 文章编号:167124431(2009)2220036204Influence of Boron on the Crystallization and LuminescenceProperties of Sm 3+Doped Diopside G lass 2ceramicsTIA N Pei 2ji ng ,Q UA N Jian ,CH EN Zhen 2xia ,O U YA N G S hu(K ey Laboratory for Silicate Materials Science and Engineering of Ministry of Education ,Wuhan University ofTechnology ,Wuhan 430070,China )Abstract : Sm 3+doped CaO 2MgO 2SiO 2luminescent glass ceramics with different content of B 2O 3were prepared by the melt 2ing -quenching method.The crystallization and luminescent properties of the glass ceramics were researched by X 2ray diffrac 2tion ,scanning electron microscope and fluorescence spectra.The XRD and SEM results show that the glasses are prone to sur 2face crystallization ,and more phase separation is observed in the glass ceramics with more B 2O 3.With the increase of boron content ,the sub 2crystalline phase of cristobalite 2beta precipitates ,the luminescent intensity increases ,and then decreases when the content of B 2O 3is over 5%(in mole ).K ey w ords : glass ceramics ; Sm 3+; diopside ; B 2O 3收稿日期:2009206226.作者简介:田培静(19832),女,博士生.E 2mail :peijingtian @稀土掺杂微晶玻璃作为一种新型的发光材料,具有物理化学稳定性好、发光强度高等优点[1,2],在白光发光二极管(white light 2emitting diode ,W 2L ED )[3]、大面积平板显示器(flat panel display ,FPD )[4]等发光领域具有重要应用前景。
Synthesis and luminescent properties of Ce~3+ doped LuAG nano-sized powders by mixed solvo-therm

J OURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010,p.16Found at ion item:Project supported by National Natural Science Foundati on of China (10774140),Knowledge Innovation Project of the Chinese Academy of Sci-(K X YW M ),S z R F f D f (6355)S F f T f ,(Z )YIN M (y @;T +65536)DOI 6S ()6Synthesis and luminescent proper ties of Ce 3+doped LuAG nano-sized powders by mixed solvo-ther mal methodWANG Linxiang (王林香)1,2,3,YIN Min (尹民)1,2,GUO Changxin (郭常新)2,ZHANG Weiping (张慰萍)2(1.Hefei Nati onal Laboratory for Physical Sciences at Microscale,Chinese Academy of Sciences,Hefei 230026,China;2.Physics Department,University of Science and Technology of C hina,Hefei 230026,China;3.School of Mathemati cs ,Physics and Information S ciences ,X injiang N ormal Univers ity,Urumqi 830054,China)Received 31April 2009;revised 8September 2009Abstract:Polycrystalline LuAG:Ce 3+(cerium 3+-doped lutetium aluminum garnet)powders were prepared by mixed solvo-thermal method.Fourier-transform IR spectroscopy (FTIR)and X-ray diffraction (XRD)measurements showed that the precursors were ethanol derivatives AlO(OH)crystal with hydroxyl and carbonate group.XRD results showed that phase of Lu 2O 3disappeared with the precursors were annealed at 400°C,cubic phase LuAG:Ce 3+appeared but only one diffraction peaks of LuAP (LuAlO 3)at calcination temperature to 700°C,and thepurified crystalline phase of LuAG:Ce 3+was obtained at 1000°C.The scanning electron microscopy (SEM)analysis revealed that the synthe-sized LuAG:Ce 3+powders were uniform and had good dispersivity with an average particle size about 100nm.Excitation and emission spec-tra of Ce 3+doped LuAG phosphors were measured.Many factors of affecting the intensity of emission spectra were discussed.Keywords:LuAG:Ce 3+phosphors;hydrothermal;mixed solvo-thermal method;photoluminescence;rare earthsAn inorganic scintillator plays an important role in radia-tion detection in many sectors of research concerning almost all medical diagnostic imaging modalities that use X-ray or gamma rays,dosimetry,nuclear medicine,high energy physics and also in many industrial measuring systems [1,2].For these different applications,scintillator is the primary radiation sensor,and scintillator material can absorb high-energy photons and then emit different energy photons [3].Recently,lutetium aluminum garnet (Lu 3Al 5O 12),because of its high density (6.73g/cm 3,94%of BGO),high lumi-nescent efficiency,and good chemical radiation stability,has been known to be one of the promising host crystals for scin-tillating materials.In rare earth ions doped Lu 3Al 5O 12host lattice,cerium (Ce 3+)as luminescent activators can yield fast decay with 5d-4f allowed transitions of the Ce 3+ion,so LuAG:Ce 3+is a fast efficient response scintillator materi-als [4–6].However,the growth of high optical quality LuAG:Ce 3+single crystal is an arduous process with high costs and long production cycle [7,8].Instead of this goal,for achieving the luminescent properties,synthesizing high density,fine dispersive and less agglomerative LuAG:Ce 3+powder is re-quired.Many methods have been used to synthesize rare earth (RE)-doped LuAG such as combustion method [8],high temperature solid-state method [9,10],sol-gel method [11],and precipitation method [12,13].However,hydrothermal method is scarcely used to synthesize LuAG:RE phosphors.In this paper,LuAG:Ce 3+nano-phosphors were synthesized by mixed solvo-thermal method.The structures and photolu-minescent properties of LuAG:Ce 3+phosphors were inves-tigated.1Experimental1.1PreparationFig.1shows the schematic flow chart for the synthesis of LuAG:Ce 3+nano-sized powders.The synthesis procedure of LuAG:Ce 3+phosphors can be divided into three steps.Firstly,lutetium oxide (Lu 2O 3,99.99%)dissolved in dilute nitric acid (HNO 3)under continuously stirring and heating.Alu-minum nitrate (Al(NO 3)39H 2O,99.99%)and cerium nitrate (Ce(NO 3)36H 2O,99.99%)were dissolved in deionized wa-ter.Then the solutions of Lu(NO 3)3,Al(NO 3)3and Ce(NO 3)3were mixed to yield a composition with general formula(Lu 1–x Ce x )3Al 5O 12(x mol.%Ce 3+),and then proper ethanol was added as dispersant.The mixture was stirred for hours at room temperature.Mixed solution was dripped into the pre-cipitation agent solution at a titration speed of 2ml/min,and stirred continuously.Three precipitants,AHC+AW (ammonium hydrogen carbonate and ammonia water),AW (ammonia water)and urea were used respectively.After the titration finished,proper amount of ammonium was dripped into the mixture to adjust the pH value (pH ≈8–9)of suspen-sion.After continuously stirring and aging for hours,the white precipitation was washed four times with distilled wa-ter and collected by filtrating.Proper amount of the resultante nc es JC 2--11pec iali ed esea rch und or the octoral Program o H ighe r Educ ation 2000804and pecia l oundati on or ale nts o A nhui Province China 2007021Corre sponding a uthor :in E-m ai l:inmi n el.:8-1-07412:10.101/1002-0721090041-7WANG Linxiang et al.,Synthesis and luminescent properties of Ce3+doped LuAG nano-sized powders by mixed solvo-thermal…17Fig.1Schematic flow chart for the synthesis of LuAG:Ce3+pow-ders by mixed solvo-thermal methodprecipitate,mixed with a certain proportion of alcohol and water,was sealed in a50ml autoclave,and then put into an oven at250°C for20h.The precursor powder was obtained by filtrating and drying at100°C,and was annealed at a higher temperature ranging from400to1100°C in a muffle furnace for2h in air.In addition,for the sake of contrast,the part of the above mentioned white precipitation was respec-tively washed four times with distilled water and anhydrous ethanol,without hydrothermal treatment,and then dried at 100°C.The obtained powders were crushed and directly calcined at800°C for2h in air.1.2Charact erizationThe phase evolution of the product was identified by X-ray diffraction(XRD,MAC Science Co.Ltd. MXP18AHF)with Cu Kαradiation in the range of2θ= 10°–70°.FTIR spectra were measured with Magra-IR750 (Nicolet Instrument Co.U.S.A)Fourier transform infrared spectrometer.The microstructure and morphology of pre-cursor and calcined powders were examined by scanning electron microscope(SEM,Sirion200,FEI Co.,Ltd.,Hol-land).The excitation and emission spectra of the samples were measured by a HITACHI(JAPAN)M850fluorospec-trophotometer using an Xe lamp as the excitation source.All the measurements were carried out at room temperature.2Results and discussions2.1FTIR analysisThe FT-IR spectra of the precursor(1)and powders(2) calcined at1000°C for2h are shown in Fig.2.In precursor (1),the peaks at488,618,737cm–1are corresponding to the Lu–OH,Al–OH and the Al–O vibration absorption[13–16].Asf,–O–f[5,],5–f Fig.2FTIR spectra of the precursor(1)and powders(2)calcined at 1000°C for2hC–H deformation mode that is attributed to coupling of O–H planar deformation angle vibration and C–OH stretching vi-bration[15,17],and the broad band from3310to3330cm–1is typical absorption caused by hydroxyl group[15,17,18].Those organic characteristic absorption peaks indicate that precur-sor powders contain a certain amount of organic ingredients. The peak at3090is assigned to the stretching and bending mode of O–H bands in pseudoboehmite[15,17,18],which refer to the poorly crystallized Al3+compound of composition Al2O3nH2O(1.0<n<2.0)[15,19].In addition,there are some weak peaks,such as the peak at about840cm–1,which is associated with the out-of-plane bending of CO32–[16],the peak at about1630cm–1from the bending of H–O–H,which overlaps the O–C–O stretching band[20,21],the absorption peaks of CO2at2350cm–122],and the weak peaks at2850 and2925cm–1corresponding to the vibrations of–CH3and –CH2–,respectively[23].As temperature increases,all the above peaks become weaker or finally disappear because of the decomposition of the precursor.As shown in the sample (2),at1000°C,the characteristic peaks of organic ingredi-ents disappear and are replaced by the fingerprint vibrations of the isolated[AlO4]tetrahedral and[AlO6]octahedral at 809,742,708,575,519and460cm–1[14,15],which indicates that pure LuAG phase is formed[15].This result well coin-cides with the XRD patterns in Fig.3.2.2XRD patternsXRD patterns of the precursor and powders calcined at different temperatures are shown in Fig.3.For the precursor, the part of diffraction peaks were in agreement with the data of AlO(OH),which indicates that hexa-coordinate octahe-dral structure crystalline materials are formed in hydrother-mal process[24,25].It is reported that the LuAG powders obtained by co-precipitation or sol-gel combustion method were all found to be amorphous until calcined temperature to800°C[12,14].As seen in Fig.3,at calcined temperature to 800°C powders without hydrothermal treatment are stillT yff y y zf I x,fcharacteristic peaks o ethanol the strong absorption peak at 1070cm1is due to H stretching vibration o ethanol117 two absorption peaks at1420and140cm1originate rom amorphous phase.his illustrates that the h drothermal process can e ectivel reduce the cr stalli ation temperature or the precursor.n this e periment a ter precursor isannealed18JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010Fig.3XRD patterns of the precursor and powders calcined at vari-ous temperatures for2hat400°C for2h,phase of Lu2O3(JCPDS card86-2475)ap-pears.At600°C,diffraction peak intensities of Lu2O3be-come stronger.Until calcined temperature reaches700°C, cubic phase LuAG appears and the data are all in good agreement with those of JCPDS card(73-1368),but only one peak at2θ=34.59°is characteristic diffraction peaks of LuAP (LuAlO3).With the calcined temperature increasing,the in-tensity of LuAP diffraction peaks decreases.At calcined temperature of1000°C,pure cubic phase LuAG is ob-tained.At calcined temperature from1000to1100°C,the phase of LuAG has no change,but the width of diffraction peaks becomes narrower.It indicates that the particle di-ameter grows.2.3SEM imagesFig.4shows SEM micrograph of the precursor(a),pow-ders calcined at1000°C(b)and1100°C(c)for LuAG:Ce3+ powders.SEM result showed that the precursors(a)are crys-tal with octahedral structure,which is consistent with the XRD results seen in Fig.3.In Fig.4(b),the morphology of LuAG:Ce powders calcined at1000°C is uniform and near spherical,with an average particle size of about100nm and good dispersivity,which is generally beneficial to improving the powers luminescence efficiency and producing transpar-ent polycrystalline ceramics.When the calcined temperature reaches1100°C,agglomeration of particles becomes serious, and the average particle size of a polycrystalline material grows up,which are consistent with analysis results of XRD.2.4Formation mechanisms analysis of LuAG:CeIn the experimental process,we found that pure LuAG was relatively easy to obtain only in volume ratio from3to5 for alcohol and water in the same hydrothermal condition. When mixed ethanol was too much or too little,pure LuAG was difficult to get in the same condition.Through infrared spectra,we can obtain qualitative analy-sis of the chemical composition and molecular structure. Based on the above analysis,the formation mechanism of LuAG crystals and the effect of hydrothermal on synthesis of LuAG are as follows.The first,in the hydrothermal condi-tion,suspensions dissolve and generate Lu3+,A13+ions,and then Lu3+,A13+and OH–1will form anion coordination polyhedron[Al-(OH)6]3–,[Lu-(OH)6]3–,[Lu-(OH)9]6–,that is crystal growth units[24,25].At the same time,hydroxyl oxy-gen atoms of ethanol molecule have higher electronegativity, easily connect with above mentioned growth units,and form relevant alcohol derivatives with low stability.The alcohol derivatives and ethanol prevent OH–intervention and avoid the formation of the Boehm mine[25].With the temperature increase,alcohol derivatives molecules can be easily separated from derivatives[26,27]and the part of the OH–1is replaced by oxygen atoms.OH–1,O and A13+will constitute a hexa-coordinate octahedral AlO3(OH)3[20,24,25],which is in agreement with analysis results of XRD patterns for precur-sor.It indicates that weak crystallization has existed in the precursor.When the precursor powders are calcined at high temperature,and the weak bond Al-OH leads to dehydration of Al-(OH)6octahedral until O and Al3+form isolated[AlO4]tet-rahedral and[AlO6]octahedral.Meanwhile Lu3+will be lo-cated in dodecahedron consisted of aluminum oxygen tetrahe-dron and aluminum oxygen octahedron which indicate that pure cubic phase lutetium aluminum garnet is generated[14,24,25].2.5Luminescence properties of LuAG:CeFig.5shows the excitation spectrum and emission spec-trum of LuAG:Ce3+powders calcined at1100°C for2h.It F S M f()°()°(),yig.4E micrograph o the precursor a and powders calcined at1000C b and1100C c respectivelWANG Linxiang et al.,Synthesis and luminescent properties of Ce 3+doped LuAG nano-sized powders by mixed solvo-thermal (19)can be seen that excitation spectrum of Ce 3+contains two bands,a weak band with maximum peak at 347nm and a strong broad band with a maximum at 450nm.These excita-tion bands result from the absorption of the incident radia-tion by Ce 3+ions,which lead to the excitation of electrons from the 4f 1ground state (2F 5/2,2F 7/2)to the excited 5d 1level (2D)[8,28,29].The emission spectra display an apparent broad band covering from 450to 650nm with a maximum at 510nm,which is well in agreement with the room temperature spectra of the LuAG:Ce single crystal films [11,30,31].Accord-ing to the Gaussian fitted curves for emission spectra for λex =450nm,the photoluminescence spectra consist of two bands of Ce 3+emission centered at about 500and 534nm,respectively,which is also observed in the luminescence spectrum of the LuAG:Ce 3+single crystal films at 9K [30].This emission is ascribed to the electron transitions from the lowest crystal-splitting component of the 5d level (2D)to the ground state of Ce 3+(2F 5/2,2F 7/2)[11,30].At room temperature,two emission bands overlap.Fig.6shows intensity dependence of 5d →4f emission on concentration of Ce 3+for LuAG phosphors.As shown in Fig.6,the maximum intensity of 5d →4f emission was obtained at 1%Ce 3+doped LuAG phosphors.With doped concentration of Ce 3+gradually increase,the emission intensity of Ce 3+re-duced.Fig.7shows the emission spectrum of 1%Ce 3+doped LuAG using different precipitator.In this experiment,theFig.5Excitation spectrum and emission spectrum of 1%Ce 3+-doped LuAG phosphors calcined at 1100°C for 2hF 6I y f 5→f f3+f L G °f mixture of NH 4HCO 3and NH 3H 2O ,NH 3H 2O or urea respectively as precipitator,it is found that using mixture precipitator of NH 4HCO 3and NH 3H 2O,the emission spec-trum intensity of Ce 3+is stronger compared with using other two precipitator,and the obtained powders using mixture precipitator of NH 4HCO 3and NH 3H 2O are more loosely agglomerated and uniform.The relative large values of the solubility constants of NH 3H 2O or urea may cause rapid and thorough reaction of the precipitation,resulting in a fast growing rate and uncontrolled severe agglomeration of the resultant crystallites [32,33].It can be concluded that precipi-tant plays an important role in the morphology of the final powders.Thereby,the particle size distribution and ag-glomeration will further affect luminescent properties of powders [32].The emission spectra of 1%Ce 3+-doped LuAG phosphors sintered at different temperatures were obtained as shown in Fig.8.The emission intensity increases with increasing sin-tering temperature below 1000°C.The crystallite growth and the defects which decrease with temperature were proba-bly the reason for the above-mentioned factor [4],while the sintered temperature reaches 1100°C,the emission intensityof Ce 3+is weakened,and this may be ascribed to the oxy-genation of certain Ce 3+ions at this temperature.According to the above analysis,there are many factors that could affect the emission intensity of rare earth ion,Fig.7Emission spectrum (λex =450nm)for 1%Ce3+doped LuAG phosphors calcined at 1000°C for 2h using different pre-cipitationagentF f %3+LG f f ig.ntensit dependence o d 4emission on concentration o Ce or uA phosphors calcined at 1000C or 2hig.8Emission spectrum o 1Ce -doped uA calcined at di -erent temperatures20JOURNAL OF RARE EARTHS,Vol.28,No.1,Feb.2010such as the concentration of the solution,pH values of the solution,the speed of titration,the different precipitation agent and effect of titration sequence.In this study,the ex-periments have been repeated several times under strictly controlled conditions,although the results of each experi-ment come out a bit different.The detailed mechanism de-serves to be further investigated.Additionally,the emission spectra match well with the sensitivity curve of Si photodiode and CCD arrays that may be a good candidate as scintillation sensors in digital appli-cation under X-ray or blue-green light excitation[34–36].3ConclusionsThe Polycrystalline LuAG:Ce3+powders with an average particle size of about100nm were synthesized by mixed solvo-thermal method.FTIR,XRD measurements showed that the precursors were hexa-coordinate octahedral structure ethanol derivatives crystal with hydroxyl and carbonate group.The purified crystalline phase of LuAG:Ce3+was formed from the precursors materials calcined at1000°C for 2h.Intensity dependence of5d→4f emission on concentra-tion of Ce3+,different precipitation agent and sintering tem-perature was measured.It was found that the emission inten-sity reached the maximum for1%Ce3+-doped LuAG using the mixture precipitator of NH4HCO3and NH3H2O at cal-cined temperature to1000°C by mixed solvo-thermal method.The emission spectra of Ce3+doped LuAG phos-phors were located in the range of450–650nm consisting of two emission bands,because of transition from the lowest5d excited state(2D)to the4f ground state of Ce3+,which matched well with the sensitivity curve of the Si-photodiode. References:[1]Van Eijk C W E.Inorganic-scintillator development.NuclearInstruments and Methods in Physics Research A,2001,460:1.[2]Cicillini S A,Pires A M,Serra O A.Luminescent and mor-phological studies of Tm-doped Lu3Al5O12and Y3Al5O12fine powders for scintillator detector application.Journal of A lloys and Compounds,2004,374:169.[3]Greskovich C,Duclos S.Ceramic scintillators.Annu.Rev.Mater.Sci.,1997,27:69.[4]You Baogui,Yin Min,Zhang Weiping,Guo Hai,Lin Lin.Lu-minescence properties of Tb3+-doped LuAG films prepared by Pechini sol-gel method.J.Rare Earth,2006,24(6):745.[5]Van Eijk C W E.Development of inorganic scintillators.Nu-clear Instruments and Methods in Phy sics Research A,1997, 392:285.[6]Nikl M,Mihokova E,Mares J A,Vedda A,MartiniM,Nejez-chleb K,Bla ek K.Traps and timing characteristics of LuAG: Ce3+scintillator.Phys.Stat.Sol.(a),2000,181:R10.[7]Cherepy N J,Kuntz J D,Tillotson TM,Speaks D T,Payne S A,Chai B H T,Porter-Chapman Y,Derenzo S E.Cerium-doped y,N I M y R S,,5()3[8]Li Huili,Liu Xuejian,Huang Liping.Luminescent propertiesof LuAG:Ce phosphors with different Ce contents prepared bya sol-gel combustion method.Optical Materials,2007,29(9):1138.[9]Li Huili,Liu Xuejian,Huang Liping.Fabrication of transparentCe:LuAG ceramics by a solid-state reaction method.Journal ofInorganic Materials(in Chin.),2006,21(5):1161.[10]Li Huili,Liu Xuejian,Huang Liping.Fabrication of Transpar-ent cerium-doped lutetium aluminum garnet(LuAG:Ce)ce-ramics by a solid-state reaction method.Journal of the A meri-can Ceramic Society,2005,88(11):3226.[11]Li Huili,Liu Xuejian,Zhang Qitu,Huang Liping.Synthesisand characterization of cerium-doped lutetium aluminum gar-net phosphors by nitrate-citrate sol-gel combustion process.J.Rare Earths,2007,25(4):401.[12]Li Huili,Liu Xuejian,Huang Liping.Synthesis of nanocrystal-line lutetium aluminum garnet powders by co-precipitation method.Ceramics International,2006,32(3):309.[13]Xie Jianjun,Shi Ying,Hu Yaoming,Chen Qiwei,Shi Jianlin.Synthesis study of Lu3Al5O12(Ce)nanoscaled powder by co-precipitation.Journal of Inorganic Materials(in Chin.),2009, 24(1):79.[14]Li Huili,Liu Xuejian,Huang Liping.Synthesis of lutetiumaluminum garnet powders by nitrate-citrate sol-gel combustion process.Ceramics International,2007,33(6):1141.[15]Yang Ru,Qin Jie,Li Min,Liu Guoqiang.Synthesis of yttriumaluminum garnet(YAG)powder by homogeneous precipita-tion combined with supercritical carbon dioxide or ethanol fluid drying.Journal of the European Ceramic Society,2008, 28(15):2903.[16]Wang Jieqiang,Xu Hongyan,Wang Yong,Yue Yunlong.Ef-fect of sulfate ions on YAG powders synthesized by micro-wave homogeneous precipitation.Journal of Rare Earths, 2006,24(1):284.[17]Li Xia,Liu Hong,Wang Jiyang,Cui Hongmei,Yang Shunli-ang,Boughton I R.Solvothermal synthesis and luminescent properties of YAG:Tb nano-sized phosphors.Journal of Phys-ics and Chemistry ofSolids,2005,66(1):201.[18]Sato Taich.Thermal decomposition of aluminum hydroxidesto aluminas.Thermochimica A cta,1985,88(1):69.[19]Maria Lúcia Pereira Antunes,Helena de Souza Santos,Persiode Souza Santos.Characterization of the aluminum hydroxide microcrystals formed in some alcohol-water solutions.Materi-als Chemistry and Physics,2002,76(3):243.[20]Liao Yikun,Jiang Danyu,Shi Jianlin.Transparent lutetiumaluminum garnet sintered from carbonate coprecipitated pow-ders.Materials Letters,2005,59(28):3724.[21]Vera Bolis,Giuliana Magnacca,Giuseppina Cerrato,ClaudioMorterra.Microcalorimetric and IR-spectroscopic study of the room temperature adsorption of CO2on pure and sulphated t-ZrO2.Thermochimica Acta,2001,379(1-2):147.[22]Saraswati V,Rao G V N,Rama Rao G V.Structural evolutionin alumina gel.Journal of Materials Science,1987,22(7): 2529.[23]Xu Guogang,Zhang Xudong,He Wen,Liu Hong,Li Hong.The study of surfactant application on synthesis of YAG nano-sized powders.Powder Technology,2006,163(3):202. []L X,L,W y,,F, Z X,B R I R y f Y Gz y M L,,single cr stal and transparent ceramic lutetium aluminum gar-net scintillators.uclear nstruments and ethods in Ph sics esea rch.ection A2007791:8.24i ia iu Hong ang Ji ang Cui Hongmei Han eng hang udong oughton.apid s nthesis o A nano-si ed powders b a novel method.aterials etters2004WANG Linxiang et al.,Synthesis and luminescent properties of Ce3+doped LuAG nano-sized powders by mixed solvo-thermal (21)58(19):2377.[25]Li Xia,Liu Hong,Wang Jiyang,Cui Hongmei,Han Feng,Zhang Xudong.Synthesis of yttrium aluminium garnet(YAG) nano-sized powders by mixed solv-thermal method.Journal of Inorganic Materials(in Chin.),2004,19(5):1168.[26]Inoue Masashi,Otsu Hiroyuki,Kominami Hiroshi,Inui To-moyuki.Synthesis of yttrium aluminum garnet by the Glyco-thermal method.Journal of the A merican Ceramic Society, 1991,74(6):1452.[27]Zhong Weizuo,Hua Sukun.Crystal Growth Morphology.Bei-jing:Science Press(in Chin.),1999.279.[28]Zhou Yonghui,Lin Jun,Yu Min,Wang Shubin,Zhang Hong-jie.Synthesis-dependent luminescence properties of Y3Al5O12: Re3+(Re=Ce,Sm,Tb)phosphors.Materials Letters,2002, 56(5):628.[29]Liu Xuejian,Li Huili,Xie Rongjun,Zeng Yi,Huang Liping.Spectroscopic properties of nano-sized cerium-doped lutetium aluminum garnet phosphors via sol-gel combustion process.Journal ofLuminescence,2007,124(1):75.[30]Zorenko Yu,Gorbenko V,Konstankevych I,Voloshi-novskiiA,Stryganyuk G,Mikhailin V,Volobanov V,Spassky D.Sin-gle-crystalline films of Ce doped YAG and LuAG phosphors: advantages over bulk crystals analogues.J.Lumin.,2005, 114(2):85.[31]Mares J A,Nikl M,Beitlerova A,Solovieva Natalia,D’AmbrosioCarmelo,Blazek Karel,Maly Petr,Nejezchleb Karel,Fabeni Pasquale,Pazzi Gian Paolo.Ce3+-doped scintillators:status and properties of(Y,Lu)aluminium perovskites and garnets.Nuclear Instruments and Methods in Physics Research Section A,2005,537(1-2):271.[32]Wang Zhifang,Zhang Weiping,You Baogui,Yin Min.Effectsof precipitant on microstructure and luminescent properties of Lu2O3:Eu3+nanopowders and ceramics.Spectrochimica A cta Part A,2008,70(4):835.[33]Chen Qiwei,Shi Ying,An Liqiong,Wang Shiwei,Chen Ji-yang,Shi Jianlin.A novel co-precipitation synthesis of a new phosphor Lu2O3:Eu3+.Journal of the European Ceramic Soci-ety,2007,27(1):191.[34]Lempicki A,Brecher C,Szupryczynski P,Lingertat H,Na-garkar S V,Tipnis SV,Miller S R.A new lutetia-based ce-ramic scintillator for X-ray imaging.Nuclear Instruments and Methods in Physics Research Section A,2002,488(3):579. [35]Greskovich C D,Cusano D,Hoffman D,Riedner R J.Ceramicsscintillators for advanced,medical X-ray detectors.A merican Ceramic Society Bulletin,1992,71(7):1120.[36]Ambrosio C D,Notaristefani F de,Hull G,Orsolini Cencelli V,Pani R.Study of LaCl3:Ce light yield proportiona lity with a hybrid photomultiplier tube.Nuclear Instruments and Methods in Physics Research Section A,2006,556(1):187.。
YAG系列晶体

尺寸:按需求提供体。
5、Tm、Ho:YAG晶体
Ho和Tm激光器有很大的市场潜力。由于Ho和Tm激光输出波长在2微米左右,与水的吸收峰相接近,有极好的对人体组织切割和凝血效果,可以用普通光纤传输,是理想的手术激光光源。人体组织对2μm激光吸收率高,几乎比Hd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。美国已批准20多种2微米激光在医疗临床使用。可治疗多种疾病。2微米激光对人眼安全,大气穿透好,可作为激光雷达光源,其综合性能优于Nd:YAG和CO2激光器。
4、Er:YAG晶体
Er:YAG激光波长为2.94微米,此波段激光较之二氧化碳激光的10.6微米更易被水、Ca、P等所吸收,多用于切开、切除多水份的身体软组织及骨切开术,性能大大优于二氧化碳激光刀。目前较多研究治疗牙周病及利用Er:YAG激光器代替高速涡轮牙钻,实施对牙体硬组织的切割等,这方面有应用前景可作关节游离体摘除、炎性滑膜摘除、半月板切除、经皮穿刺椎间盘减压术等。Er浓度为50at.%,能提供F1-10(D) ´ 10-120(L)mm的激光棒和各种板条元件。
二、钛宝石激光晶体
钛宝石(Ti:sapphire,Ti3+:Al2O3)是当今最优秀的可调谐激光晶体,调谐带宽:660nm~1100nm,吸收带位于400~600nm,峰值吸收在490nm附近。表征晶体质量除按光学晶体要求外,一个重要的指标是晶体的品质因素(figure of merit,简称FOM)。FOM定义为:FOM=α490∏/α800∏,α490∏、α800∏分别表示晶体在490nm和800nm对∏偏振光的吸收系数。
Ce^(3+)激活NaSr_(4)(BO_(3))_(3)荧光粉的格位占据和发光性质研究

第50卷第12期2021年12月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.50㊀No.12December,2021Ce3+激活NaSr4(BO3)3荧光粉的格位占据和发光性质研究苗宇昊,王维昊,王延惠,罗嘉诚,蓝㊀璇(广东第二师范学院化学与材料科学学院,广州㊀510800)摘要:采用高温固相法制备了一系列可被紫外光有效激发的Na1+x Sr4-2x(BO3)3ʒx Ce3+荧光粉,并通过X射线衍射㊁扫描电镜㊁荧光光谱等测试方法对样品的物相结构㊁形貌和发光特性进行了表征及分析㊂X射线衍射结果显示,Ce3+成功掺入到基质NaSr4(BO3)3中;利用高斯峰拟合㊁多光谱对比等手段,分析并验证了发光中心Ce3+占据了NaSr4(BO3)3中Sr2+(1)和Sr2+(2)两个格位;研究了不同浓度Ce3+的掺杂对发光位置和发光强度的影响,随着Ce3+掺杂浓度的提高,发射光谱出现红移,发光强度出现增强ң减弱ң再增强的趋势;将荧光粉的发射光谱与植物光合色素吸收光谱进行对比,发现它不仅可以吸收300~350nm的紫外光,发射光谱还很好地覆盖了植物光合色素所需的蓝光区吸收波段,证明其在农业生产的转光剂方面有潜在应用价值㊂关键词:NaSr4(BO3)3ʒCe3+;硼酸盐;高温固相法;蓝色荧光粉;格位占据;转光剂;稀土发光材料中图分类号:O482.31;TQ422㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2021)12-2276-07Site Occupation and Luminescence Properties of Ce3+Activated NaSr4(BO3)3PhosphorsMIAO Yuhao,WANG Weihao,WANG Yanhui,LUO Jiacheng,LAN Xuan(College of Chemistry and Materials Science,Guangdong University of Education,Guangzhou510800,China) Abstract:A series of Na1+x Sr4-2x(BO3)3ʒx Ce3+phosphors which can be excited by ultraviolet light were prepared by high temperature solid phase method.The phase structure,morphology and luminescence characteristics of the samples were characterized and analyzed by X-ray diffraction,scanning electron microscopy and fluorescence spectrum.X-ray diffraction results show that Ce3+is successfully doped into NaSr4(BO3)3.It is found that luminescence center of Ce3+occupied Sr2+ (1)and Sr2+(2)in NaSr4(BO3)3by means of Gaussian peak fitting and contrastive analysis of multiple spectra.The effects of Ce3+doping concentration on the luminescence location and luminescence intensity were studied.With the increase of Ce3+ doping concentration,the emission spectra show a red shift and the luminescence intensity shows a trend of enhancingңweakeningңre-enhancing.By comparing the emission spectra of phosphors with the absorption spectra of plant photosynthetic pigments,it is found that the phosphors can not only absorb300~350nm UV light,but also well cover the absorption band of blue light region required by plant photosynthetic pigments.This results show that the phosphor has potential value in agricultural production as a light conversion agent.Key words:NaSr4(BO3)3ʒCe3+;borate;high temperature solid phase method;blue phosphor;site occupation;light conversion agent;rare earth luminescent material㊀㊀㊀收稿日期:2021-08-19㊀㊀基金项目:广东省大学生创新创业训练计划(S202014278024,S202014278030,S202114278011,S202114278027);广东省科技创新培育专项资金项目( 攀登计划 项目)(pdjh2020b0427);广州市科技计划(202102020458);广东第二师范学院博士科研专项经费研究项目(2016ARF01)㊀㊀作者简介:苗宇昊(1998 ),男,山西省人㊂E-mail:965708349@㊀㊀通信作者:王延惠,博士,讲师㊂E-mail:1169281417@㊀第12期苗宇昊等:Ce3+激活NaSr4(BO3)3荧光粉的格位占据和发光性质研究2277㊀0㊀引㊀㊀言稀土离子掺杂的发光材料如今已被广泛应用于显示㊁照明㊁医学成像㊁辐射探测等各个领域[1-2]㊂稀土离子发光跃迁有f-f跃迁和f-d跃迁两种,f-d跃迁是4f n组态和4f n-15d组态能级之间的跃迁㊂由于稀土离子的5d轨道裸露在外,受晶体场环境影响比较大,因此稀土离子的f-d跃迁很大程度上取决于基质中被取代格位的晶体场状况[3]㊂众多稀土离子中,Ce3+的4f1电子组态使其5d能级跃迁性质最为简单㊂其发光来自5d1组态中最低晶体场能级到基态两个能级(2F2/5和2F7/2)间的跃迁,它的发射是典型的双带形状㊂由于其简单的5d能级性质,可以作为探针来探明基质内被取代离子的晶格环境,作为参比离子来预测相同格位其他镧系离子的最低5d性质和发光情况[4-6],且精确度能达到ʃ600cm-1,所以对于Ce3+的发光和格位占据研究具有十分重要的意义㊂硼酸盐具有合成温度低㊁原料价格低廉㊁热稳定性好等一系列优势,是一类重要的发光材料基质,受到了许多学者的青睐[7-9]㊂在2005年有学者解析出一系列新型的MMᶄ4(BO3)3(M=Li,Mᶄ=Sr;M=Na,Mᶄ= Sr,Ba)硼酸盐结构,并向其中掺杂稀土离子,如Eu2+和Eu3+,发现了有效的在黄色区和红色区的发射[10];向其中掺入Sm3+或Pr3+,发现了红色光区的强烈发射[11-12];向NaSr4(BO3)3掺杂Dy3+,发现了蓝光区和黄色光区的发射[13];向KSr4(BO3)3中掺杂Pb2+,观察到328nm处的发射[14]㊂作为同为稀土离子的Ce3+,也在该基质中拥有高效的发射,并且具有不同的可取代格位,使本身较宽的Ce3+发射带进一步拓宽,在此前已经有学者报道过KSr4(BO3)3ʒCe3+和NaCa4(BO3)3ʒCe3+荧光粉的发光性质[15-16],在2011年报道的NaSr4(BO3)3ʒCe3+,Tb3+荧光粉,讨论了两发光中心离子间的能量传递问题[17],目前为止Ce3+掺入此类基质的相关报道还比较少,仍有较大的探索空间㊂使用稀土发光材料作为转光剂,加入PE树脂等材料制成的农用转光膜,相较于传统棚膜,具有调节植物光环境,提高光合效率的优点,在现代设施农业起着至关重要的作用[18-21]㊂转光剂需要有性质稳定㊁转换效率高㊁价格低廉㊁发射光谱与植物光合色素吸收光谱重叠度高等要求㊂另外,有研究表明,太阳光中300~350nm 波段的紫外光能诱发植物产生病虫害[22]㊂因此,还要求转光剂能够吸收这一波段的光转化成为植物生长所需要的光,而400~500nm处便是多种光合色素的吸收波段,这就要求发光中心不仅要在300~350nm波段有较强的吸收,而且还要在400~500nm波段有较强的发射㊂Ce3+发光中心在很多基质中都能满足这种需求,加上硼酸盐的优良特性,能够很好地满足转光剂所需要的条件㊂已经有报道表明,在农业生产中转光膜相较于传统农膜具有提高生菜和西红柿等农作物产量的作用,同时能够改变西红柿的营养成分,提高茄红素㊁维生素C等营养物质的含量[23-24]㊂除此之外,转光膜对于草莓㊁油桃㊁茶叶等农产品的种植均具有良性影响[25-27]㊂综合以上分析,本文设计并制备了一系列Na1+x Sr4-2x(BO3)3ʒx Ce3+荧光粉,表征了它的物相和结构,深入分析了Ce3+在NaSr4(BO3)3基质中的发光性质和格位占据情况,并探索了它在农业生产的转光剂方面的潜在应用价值㊂1㊀实㊀㊀验1.1㊀实验试剂与设备无水碳酸钠(分析纯),广州化学试剂厂;碳酸锶(分析纯),天津科密欧化学试剂厂;硼酸(分析纯),天津市大茂化学试剂厂;氧化铈(99.99%),广东珠江稀土有限公司㊂本次实验样品合成所用设备为西尼特(北京)科技有限公司生产的TSX-8-14型纤维马弗炉,额定功率8kW,最大控制温度1400ħ,炉膛尺寸400mmˑ250mmˑ160mm,容积16L,工作电压380V,三相,控制方式为可控硅调压控制(多段程序控温)㊂1.2㊀样品制备合成了系列Na1+x Sr4-2x(BO3)3ʒx Ce3+(x=0.5%㊁1%㊁3%㊁5%㊁8%㊁10%,摩尔分数)荧光粉样品㊂根据不同元素的化学计量比,用分析天平准确称取一定量的原料,其中硼酸过量10%作为高温挥发损失的补偿,将其全部转入玛瑙研钵中,加入无水乙醇充分混合研磨㊂将研磨好的样品置于小坩埚中,小坩埚放在大坩埚2278㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷内,在500ħ下预烧4h,待其冷却至室温取出,充分研磨后,在850ħ下煅烧8h㊂再次取出充分研磨后,在910ħ下煅烧8h,冷却至室温,研磨后得到该系列荧光粉样品,所有煅烧过程都使用碳块提供还原气氛㊂1.3㊀样品表征XRD表征用德国布鲁克有限公司生产的D8Advance型X射线粉末衍射仪测定,X射线源是Cu靶,工作电压40kV,电流25mA㊂样品的形貌表征采用捷克TESCAN MIRA3测得,测试条件为高压15kV,电子束10,工作距离10mm㊂样品的激发光谱和发射光谱由岛津企业管理(中国)有限公司生产的RF-5310PC型荧光分光光度计测得,激发光源为150W的氙灯,波长扫描范围为200~800nm㊂2㊀结果与讨论2.1㊀物相表征图1展示了荧光粉Na1+x Sr4-2x(BO3)3ʒx Ce3+的XRD图谱,其衍射峰与NaSr4(BO3)3(ICSD:56-0118)基本匹配[28],但在2θ为29ʎ附近出现杂峰,经分析,杂峰有可能来自NaB3O3(OH)4,杂峰位置与其标准卡片(PDF#20-1081)相吻合㊂此外,并未有关于Ce3+在NaB3O3(OH)4基质中发光的相关报道,故不影响后续的发光分析㊂随着Ce3+掺杂浓度的上升,衍射峰出现向高角度方向偏移的现象,这是由于Ce3+的离子半径(r Ce3+,CN=6=0.101nm)小于Sr2+的离子半径(r Sr2+,CN=6=0.118nm),当Ce3+取代Sr2+格位时,基质晶格发生收缩㊂图2是根据NaSr4(BO3)3结构绘制的晶胞结构图以及两种Sr2+配位环境图,晶体所属晶系为立方晶系,空间群为Ia-3d(230),晶胞参数为a=b=c=1.51463nm,其中Sr2+具有两种晶体学格位,Sr2+(1)与八个O 原子配位,形成双帽反三棱柱,Sr2+(2)与六个O原子配位,形成变形八面体[10]㊂从离子半径的角度考虑, Ce3+取代Sr2+的可能性最大(r Ce3+,CN=6=0.101nm,r Sr2+,CN=6=0.118nm,r Ce3+,CN=8=0.114nm,r Sr2+,CN=8= 0.126nm),Ce3+进入NaSr4(BO3)3中,理论上能够同时取代两种格位上的Sr2+,这将在后文中进一步验证㊂图1㊀Na1+x Sr4-2x(BO3)3ʒx Ce3+ (x=0.5%㊁1%㊁3%㊁5%㊁8%㊁10%)XRD图谱Fig.1㊀XRD patterns of Na1+x Sr4-2x(BO3)3ʒx Ce3+ (x=0.5%,1%,3%,5%,8%,10%)图2㊀基质NaSr4(BO3)3晶胞结构图及两种Sr2+配位环境Fig.2㊀Crystal structure of host NaSr4(BO3)3and the coordination environment of two Sr2+sites利用扫描电镜(SEM)分析了样品Na1.01Sr3.98Ce0.01(BO3)3的形貌,如图3所示㊂可以发现通过高温固相法合成的样品呈现无规则的晶体形貌,颗粒大小不均,在5~20μm不均等分布,有较大的团聚性,这是高温烧结的结果㊂2.2㊀发光性能分析2.2.1㊀Ce3+的格位占据分析图4是室温下Na1.01Sr3.98Ce0.01(BO3)3在307nm激发的发射光谱,对其进行高斯峰拟合后,得到了(a)㊁(b)㊁(c)㊁(d)四个高斯拟合峰,可见该发射带由四个宽带峰组成,对应峰值分别位于361nm(a)㊁388nm (b)㊁412nm(c)㊁448nm(d)㊂经过计算可得到(a)㊁(b)两峰间的能量差为1927.635cm-1,(c)㊁(d)两峰㊀第12期苗宇昊等:Ce 3+激活NaSr 4(BO 3)3荧光粉的格位占据和发光性质研究2279㊀间的能量差为1950.416cm -1,这两个值与Ce 3+的2F 5/2和2F 7/2能级之间的能量差值2000cm -1非常接近㊂因此,可将(a)㊁(b)两个发射带归结一个格位上的5d ң2F 7/2和5d ң2F 5/2跃迁,记为Ce 3+(1),将(c)㊁(d)两个发射带归结另外一个格位上的5d ң2F 7/2和5d ң2F 5/2跃迁,记为Ce 3+(2)㊂不同格位的Ce 3+发光中心经过f-d 跃迁产生不同的发射带和激发带,Ce 3+的最低5d 能级与4f 能级之间的能量差E 可近似用公式(1)表示[29]:E =Q 1-V 4()1/V ˑ10-nE a r 80[](1)式中:Q 为游离态Ce 3+的最低5d 能级激活能(50000cm -1);V 为Ce 的价态;n 为Ce 3+的配位数;E a 为O 原子形成O 2-的电子亲和能;r 为Sr 2+的半径㊂由于Q ㊁V ㊁E a 均为定值,八配位的Sr 2+(1)格位的n ㊁r 的值均大于六配位的Sr 2+(2)格位㊂所以当Ce 3+进入Sr 2+(1)格位则对应更大的E 值和较短波长的发射带,进入Sr 2+(2)格位时,对应更小的E 值和较长波长的发射带,所以(a)㊁(b)两个发射带来自Ce 3+(1)格位的发射,(c)㊁(d)两个发射带来自Ce 3+(2)格位的发射㊂为了进一步验证Ce 3+占据了Sr 2+(1)和Sr 2+(2)两个格位,测试了Na 1+x Sr 4-2x (BO 3)3ʒx Ce 3+(x =0.5%㊁1%)在不同波长激发下的发射光谱,如图5所示㊂发射光谱进行归一化处理后,同一样品激发能量不同时,发射光谱出现了较大的差异,进一步证实了Ce 3+的发光来自不同格位的跃迁㊂图3㊀Na 1.01Sr 3.98Ce 0.01(BO 3)3的SEM 照片Fig.3㊀SEM images of Na 1.01Sr 3.98Ce 0.01(BO 3)3图4㊀Na 1.01Sr 3.98Ce 0.01(BO 3)3在室温下的发射光谱(λex =307nm)Fig.4㊀Emission spectra (λex =307nm)of Na 1.01Sr 3.98Ce 0.01(BO 3)3at room temperature2.2.2㊀Ce 3+浓度对发光性质的影响在测试条件相同的基础上,测试了样品Na 1+x Sr 4-2x (BO 3)3ʒx Ce 3+(x =0.5%㊁1%㊁3%㊁5%㊁8%㊁10%)在室温下的激发光谱(λem =425nm)和发射光谱(λex =352nm),并将所有的光谱进行归一化,如图6所示㊂样品的激发光谱为250~400nm 的宽带光谱,这归属为Ce 3+的4f ң5d 跃迁吸收带㊂随着掺杂浓度的提高,发射光谱出现红移现象㊂造成这种红移现象可能有如下原因:①Ce 3+的激发光谱和发射光谱有一部分发生了重叠,产生了自吸收现象,使得Ce 3+发射光谱红移;②小半径的Ce 3+取代大半径的Sr 2+时,Ce 3+配位多面体尺寸缩小,晶体场劈裂值增大,Ce 3+的最低5d 能级下降,发射光谱红移,掺杂量越高,红移越明显㊂③Ce 3+进入NaSr 4(BO 3)3中,会产生Ce 3+(1)和Ce 3+(2)两种不同的跃迁发射,存在Ce 3+(1)ңCe 3+(2)的能量传递,随着浓度的增加,能量传递效应增强,Ce 3+(2)的发射增强,导致发射光谱红移㊂图7是室温下Na 1+x Sr 4-2x (BO 3)3ʒx Ce 3+(x =0.5%㊁1%㊁3%㊁5%㊁8%㊁10%)的发射光谱(λex =352nm),以及发光强度随浓度的变化趋势图㊂从图中可以发现,随着Ce 3+浓度的增加,发光强度先逐渐增强,在x =3%时达到峰值,在x =5%时急剧下降,但随后发射强度又随着浓度的增加而增强,最终x =3%处和x =10%处发射的最强峰峰值几乎相等㊂2280㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷图5㊀室温下Na1+x Sr4-2x(BO3)3ʒx Ce3+(x=0.5%㊁1%)在不同波长激发下的归一化发射光谱Fig.5㊀Normalized emission spectra of Na1+x Sr4-2x(BO3)3ʒx Ce3+ (x=0.5%,1%)under different excitation wavelengthsat roomtemperature图6㊀室温下Na1+x Sr4-2x(BO3)3ʒx Ce3+ (x=0.5%㊁1%㊁3%㊁5%㊁8%㊁10%)归一化激发光谱(λem=425nm)与发射光谱(λex=352nm) Fig.6㊀Normalized excitation(λem=425nm)and emission spectra(λex=352nm)of Na1+x Sr4-2x(BO3)3ʒx Ce3+ (x=0.5%,1%,3%,5%,8%,10%)at roomtemperature图7㊀(a)室温下Na1+x Sr4-2x(BO3)3ʒx Ce3+(x=0.5%㊁1%㊁3%㊁5%㊁8%㊁10%)的发射光谱(λex=352nm);(b)Ce3+掺杂浓度与发光强对应关系Fig.7㊀(a)Emission spectra of Na1+x Sr4-2x(BO3)3ʒx Ce3+(x=0.5%,1%,3%,5%,8%,10%)(λex=352nm)atroom temperature;(b)corresponding relationship between Ce3+doping concentration and the peak light intensity㊀㊀一般来说,一个发光中心对应着一个猝灭浓度㊂猝灭浓度之前,发光强度随着浓度的增大而升高,在猝灭浓度之后则随着浓度的增大而降低,但在Na1+x Sr4-2x(BO3)3ʒx Ce3+的发射光谱中却出现了发光强度下降之后再上升的现象,且发射峰位置逐渐向长波长方向移动,产生这种现象可能有以下几种原因:①在掺杂浓度为3%时,已经达到了Ce3+(1)的猝灭浓度,继续增大浓度,非辐射能量传递加剧,Ce3+(1)发射逐渐减弱,而Ce3+(2)在基质中所具有的晶体学格位较少,并未达到猝灭浓度,因此Ce3+(2)的发光强度随着浓度增加而升高;②Ce3+(1)的发射带与吸收带有部分重合,产生了Ce3+(1)的发射再吸收,浓度的增大会导致这种吸收增强,削弱了短波长方向的发射强度;③两种格位间激发带和发射带存在部分重叠,跃迁过程中产生了Ce3+(1)ңCe3+(2)的能量传递,导致长波长方向的发射逐渐增强,短波长方向的发射逐渐减弱,这与前文中所分析的发射光谱红移的结论是一致的㊂2.2.3㊀在植物照明上的应用前景图8展示了室温下Na1.005Sr3.99Ce0.005(BO3)3在337nm激发下的发射光谱和植物光合色素的吸收光谱,可以发现,该荧光粉的发光范围很好地覆盖了植物光合色素在蓝光区的吸收波段,且激发光谱显示该荧光粉在300~400nm有很强的吸收(见图6),能够有效地将太阳光中对植物有病虫害威胁的紫外光(300~350nm)转换成为植物生长所需要的蓝光(360~500nm)㊂同时,硼酸盐基质具有热稳定性好的优势,符合作为转光㊀第12期苗宇昊等:Ce3+激活NaSr4(BO3)3荧光粉的格位占据和发光性质研究2281㊀剂的条件㊂转光膜应用于农业,其成本也是一项重要的参考指标,硼酸盐荧光粉Na1+x Sr4-2x(BO3)3ʒx Ce3+由于合成温度低㊁条件简单,原料便宜的优势,能够大大地降低转光膜的合成成本,将该系列荧光粉与PE树脂等其他材料混合,能够得到农用的转光膜,具有促进光合色素吸收㊁提高棚内温度㊁减少化肥农药使用的作用,在农业生产的转光剂方面有潜在应用价值㊂除此之外,由于NaSr4(BO3)3基质中Sr2+具有两种格位,能够有效地拓宽发光中心的发射光谱覆盖范围,若在其中同时掺入红光发光中心,则有可能获得红光发射,获得红蓝双发射的植物照明用荧光粉,更好地与植物光合色素吸收光谱匹配㊂图8㊀室温下Na1.005Sr3.99Ce0.005(BO3)3发射光谱(λex=337nm)和植物光合色素吸收光谱Fig.8㊀Emission spectrum(λex=337nm)of Na1.005Sr3.99Ce0.005(BO3)3at room temperature andabsorption spectra of photosynthetic pigment3㊀结㊀㊀论通过高温固相法制备了一系列的Na1+x Sr4-2x(BO3)3ʒx Ce3+荧光粉㊂样品的XRD结果表明,所制得的荧光粉的XRD图谱与NaSr4(BO3)3标谱基本吻合,并分析了可能的杂相㊂利用扫描电镜测试了样品的形貌,样品呈现5~20μm无规则颗粒形貌㊂通过结构分析,认为Ce3+能够替代两种不同格位的Sr2+,并通过高斯峰拟合和理论计算,找到了Ce3+(1)和Ce3+(2)的5dң2F7/2㊁2F5/2跃迁发射峰位置㊂同一样品不同激发波长下的归一化发射光谱存在较大的差异,进一步验证了Ce3+能够替代两种不同格位的Sr2+㊂不同浓度样品的荧光测试结果显示,当掺杂浓度增加时,样品发射位置产生了明显的红移,且发光强度呈现增强ң减弱ң再增强的变化趋势;将样品的发射光谱与植物光合色素吸收光谱进行比对,其能很好地与光合色素在蓝光区的吸收波段相匹配,说明Na1+x Sr4-2x(BO3)3ʒx Ce3+荧光粉在农用转光膜上有潜在的应用价值㊂参考文献[1]㊀LIU J,KACZMAREK A M,VAN DEUN R.Advances in tailoring luminescent rare-earth mixed inorganic materials[J].Chemical SocietyReviews,2018,47(19):7225-7238.[2]㊀苏㊀锵,梁宏斌,王㊀静,等.稀土发光材料的进展与新兴技术产业[J].稀土信息,2010(9):5-8.SU Q,LIANG H B,WANG J,et al.Progress of rare earth luminescent materials and emerging technology industries[J].Rare Earth Information,2010(9):5-8(in Chinese).[3]㊀WU X L,JI X Y,WANG Z L,et al.Improving thermal stability and quantum efficiency through solid solution for Ce3+-activated(Ba1-x Sr x)3Y2(BO3)4phosphors[J].Journal of Alloys and Compounds,2021,855:157520.[4]㊀DORENBOS P.The4f n-5d1transitions of the trivalent lanthanides in halogenides and chalcogenides[J].Journal of Luminescence,2000,91(1/2):91-106.[5]㊀DORENBOS P.fңd transition energies of divalent lanthanides in inorganic compounds[J].Journal of Physics Condensed Matter,2003,15(3):575.[6]㊀DORENBOS P.Relation between Eu2+and Ce3+f↔d-transition energies in inorganic compounds[J].2003,15(27):4797.[7]㊀尹㊀超.探索非中心对称稀土硼酸盐作为近紫外LED用红色荧光粉的潜在应用[D].重庆:重庆大学,2019:10-12.YIN C.The potential application of noncentrosymmetric rare earth borates for near-UV LED pumped red phosphors[D].Chongqing:Chongqing University,2019:10-12(in Chinese).2282㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷[8]㊀WU S,XIONG P X,LIU X Q,et al.Sr3Y(BO3)3ʒBi3+phosphor with excellent thermal stability and color tunability for near-ultraviolet white-light LEDs[J].Journal of Materials Chemistry C,2021,9(10):3672-3681.[9]㊀SHI M L,YAO L Q,XU J F,et al.Far-red-emitting YAl3(BO3)4ʒCr3+phosphors with excellent thermal stability and high luminescent yield forplant growth LEDs[J].Journal of the American Ceramic Society,2021,104(7):3279-3288.[10]㊀WU L,CHEN X L,LI H,et al.Structure determination and relative properties of novel cubic borates MMᶄ4(BO3)3(M=Li,Mᶄ=Sr;M=Na,Mᶄ=Sr,Ba)[J].Inorganic Chemistry,2005,44(18):6409-6414.[11]㊀PEKGÖZLÜI㊃.Synthesis and photoluminescence properties of MSr4(BO3)3ʒSm3+(M=Li,Na)[J].Optik,2016,127(8):4114-4117.[12]㊀MA S Z,FENG W L,CHEN R,et al.KSr4(BO3)3ʒPr3+:a new red-emitting phosphor for blue-pumped white light-emitting diodes[J].Journal of Alloys and Compounds,2017,700:49-53.[13]㊀KHAN Z S,INGALE N B,OMANWAR S K.Synthesis and luminescence studies of NaSr4(BO3)3ʒDy3+phosphors[J].Optik,2016,127(15):6062-6065.[14]㊀PEKGÖZLÜ̇I.A novel UV-emitting phosphor:LiSr4(BO3)3ʒPb2+[J].Journal of Luminescence,2013,143:93-95.[15]㊀JIANG L H,ZHANG Y L,LI C Y,et al.Synthesis,photoluminescence,thermoluminescence and dosimetry properties of novel phosphorKSr4(BO3)3ʒCe[J].Journal of Alloys and Compounds,2009,482(1/2):313-316.[16]㊀SHI M L,ZHU C F,ZHANG M M,et al.NaCa4(BO3)3ʒCe,Dy,Eu phosphors for light emitting diode applications[J].Polyhedron,2018,140:19-24.[17]㊀GUO C F,DING X,SEO H J,et al.Double emitting phosphor NaSr4(BO3)3ʒCe3+,Tb3+for near-UV light-emitting diodes[J].Optics&Laser Technology,2011,43(7):1351-1354.[18]㊀征㊀雪,陈㊀悦,贾英华,等.高光效高热稳定性蓝色荧光粉Ca2-y Sr y SiO4ʒCe3+,Li+的组成筛选和发光机理[J].无机化学学报,2020,36(9):1659-1668.ZHENG X,CHEN Y,JIA Y H,et position-screening and luminescent mechanism in Ca2-y Sr y SiO4ʒCe3+,Li+for high quantum efficiency and thermally stable blue-emitting phosphor[J].Chinese Journal of Inorganic Chemistry,2020,36(9):1659-1668(in Chinese).[19]㊀WANG D M,YU Y L,AI X,et al.Polylactide/poly(butylene adipate-co-terephthalate)/rare earth complexes as biodegradable light conversionagricultural films[J].Polymers for Advanced Technologies,2019,30(1):203-211.[20]㊀WU W B,ZHANG Z B,DONG R Y,et al.Characterization and properties of a Sr2Si5N8ʒEu2+-based light-conversion agricultural film[J].Journal of Rare Earths,2020,38(5):539-545.[21]㊀邵毛妮,周宁琳,李文秀,等.一种新型纳米转光膜的制备及增温效应[J].功能材料,2017,48(4):4013-4017.SHAO M N,ZHOU N L,LI W X,et al.Preparation and warming effect of a new nano photo-conversion film[J].Journal of Functional Materials,2017,48(4):4013-4017(in Chinese).[22]㊀蔡建亮.Cr3+激活的农用膜转光剂材料的制备及其发光性能[D].广州:暨南大学,2014:14.CAI J L.Preparation and luminescence of Cr3+activated sunlight-conversion agent for agriculture film[D].Guangzhou:Jinan University,2014: 14(in Chinese).[23]㊀高海荣,吴㊀勇,陈广峰,等.转光膜在设施生菜种植的应用[J].北方园艺,2021(4):51-57.GAO H R,WU Y,CHEN G F,et al.Application of light conversion film in greenhouse lettuce planting[J].Northern Horticulture,2021(4): 51-57(in Chinese).[24]㊀张玲玲,景㊀慧,路红霞,等.新型稀土转光膜对西红柿生长的影响研究[J].种子科技,2020,38(8):6-7.ZHANG L L,JING H,LU H X,et al.Study on the effect of new rare earth film on tomato growth[J].Seed Science&Technology,2020,38(8):6-7(in Chinese).[25]㊀刘㊀杨,刘㊀琪,卫慧波,等.转光膜对草莓生长及品质的影响[J].中国蔬菜,2019(9):62-68.LIU Y,LIU Q,WEI H B,et al.Effects of light conversion film on growth and quality of strawberry[J].China Vegetables,2019(9):62-68(in Chinese).[26]㊀邵毛妮.设施油桃专用纳米转光膜的研究[D].南京:南京师范大学,2017.SHAO M N.Study on nano-light transfer film for facility nectarine[D].Nanjing:Nanjing Normal University,2017.[27]㊀唐㊀颢,刘晓瑭,陈震东,等.冬春季低温期大棚茶园覆盖转光膜的综合效应[J].广东农业科学,2014,41(10):18-22.TANG H,LIU X T,CHEN Z D,et prehensive effect of greenhouse tea garden covered with light conversion film during low temperature period in winter and spring[J].Guangdong Agricultural Sciences,2014,41(10):18-22(in Chinese).[28]㊀PEKGÖZLÜI㊃.A novel UV-emitting phosphor:NaSr4(BO3)3ʒPb2+[J].Journal of Luminescence,2016,169:182-185.[29]㊀VAN UITERT L G.An empirical relation fitting the position in energy of the lower d-band edge for Eu2+or Ce3+in various compounds[J].Journal of Luminescence,1984,29(1):1-9.。
Phosphor Materials and Their Applications in Lighting and Displays

Phosphor Materials and Their Applications in Lighting and Displays(Shionoya& Yen: Phosphor Handbook (CRC Press 1999), Chap. 1 p. 7(Shionoya& Yen: Phosphor Handbook (CRC Press 1999), Chap. 1 p. 7Phosphors for Fluorescent Lamp 螢光燈用螢光粉1.Phosphors for Lighting 照明用螢光體(a)Lamp phosphors –Fluorescent lamps; High Pressure Hg Lamps(b) Phosphors for White-Light LED(Light Emitting Diodes) 白光LED用螢光體我國螢光材料產業之概況1987 日本Nichia化學與中國電器化學與中國電器、、台灣日光燈合資成立日亞連合照明(NICHIA-UNILUX CORPORATION),生產照明用螢光粉生產照明用螢光粉,,迄今該公司塲以上的市塲已取得國內日光燈螢光粉90%以上的市-當時國內CRT映像管生產者為: 中華映管(CPT)、台灣飛利普電子台灣飛利普電子、、台灣克林登協成電器、、順彥電台灣日光燈、、協成電器中國電器、、台灣日光燈-國內日光燈生產者為:中國電器、台灣岩崎等廠商新亞電器與水銀燈、器、新亞電器與水銀燈映像管螢光體,,CRT螢光體仍由國1990 連合照明接受CPT委託回收CRT映像管螢光體外進口工研院評估螢光體產業之應用與市塲塲1990-1992 工研院評估螢光體產業之應用與市2001 高雄南帝化工公司投資量產白光LED用螢光粉2004 台灣道爾科技(Dott Tech) –各式LED用或customer order螢光粉日本螢光體產業概況研究始於二次大戰之前,,戰後在影像管與日光燈產業居世界領導地位◆研究始於二次大戰之前◆1985前CRT管佔全球70%; 近年來高解析CRT管佔全球90%,目前全日本對新材料之開發不遺餘力,◆國內螢光粉生產體系極為健全,對新材料之開發不遺餘力國內螢光粉生產體系極為健全,螢光粉生產量占全世界一半以上精於螢光粉製造如::日亞化學Nichia Chemicals 、化成Kasei◆精於螢光粉製造如豐田合成、、Osram Melco與美國Optonix、東芝、日本電氣(NEC)、豐田合成G.E.、RCA與荷蘭飛利浦齊名近年來日亞化學已取得全球領先地位,,1990收購美國RCA成立日亞美國◆近年來日亞化學已取得全球領先地位生產照明用螢光材料。
烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案

烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案【案由】行政行政管理范围行政作为专利行政行政行为种类行政裁决【审理法院】北京市高级人民法院【审理法院】北京市高级人民法院【审结日期】2020.04.29【案件字号】(2019)京行终1960号【审理程序】二审【审理法官】马军王东勇苏志甫【审理法官】马军王东勇苏志甫【文书类型】判决书【当事人】烟台希尔德新材料有限公司;中华人民共和国国家知识产权局;三菱化学株式会社;国立研究开发法人物质材料研究机构【当事人】烟台希尔德新材料有限公司中华人民共和国国家知识产权局三菱化学株式会社国立研究开发法人物质材料研究机构【当事人-公司】烟台希尔德新材料有限公司中华人民共和国国家知识产权局三菱化学株式会社国立研究开发法人物质材料研究机构【代理律师/律所】李超北京市金杜律师事务所;宋新月北京市金杜律师事务所;刘宝荣北京市金杜律师事务所;许良瑞北京市金杜律师事务所【代理律师/律所】李超北京市金杜律师事务所宋新月北京市金杜律师事务所刘宝荣北京市金杜律师事务所许良瑞北京市金杜律师事务所【代理律师】李超宋新月刘宝荣许良瑞【代理律所】北京市金杜律师事务所【法院级别】高级人民法院【终审结果】二审维持原判【字号名称】行终字【原告】烟台希尔德新材料有限公司;三菱化学株式会社;国立研究开发法人物质材料研究机构【被告】中华人民共和国国家知识产权局【本院观点】根据本专利说明书记载,本专利实际要解决的技术问题是提供一种不同于现有技术中晶型的替代的荧光体。
【权责关键词】合法第三人反证合法性维持原判【指导案例标记】0【指导案例排序】0【更新时间】2022-09-24 21:16:40烟台希尔德新材料有限公司等与国家知识产权局专利复审委员会专利裁决纠纷上诉案北京市高级人民法院行政判决书(2019)京行终1960号上诉人(原审原告):烟台希尔德新材料有限公司,住所地中华人民共和国山东省烟台市。
压电晶体YbBa_(3)(PO_(4))_(3)的生长与性质表征
第50卷第4期2021年4月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALSVol.50㊀No.4April,2021压电晶体YbBa3(PO4)3的生长与性质表征武广达1,樊梦迪1,2,杜月浩3,姚贵腾1,苗鸿臣3,程秀凤1,于法鹏1,赵㊀显1,2(1.山东大学,晶体材料国家重点实验室,济南㊀250100;2.山东大学,光学高等研究中心,青岛㊀266237;3.西南交通大学力学与工程学院,成都㊀610031)摘要:压电材料在振动传感器㊁压力传感器和超声波压电换能器等器件技术领域有着广泛应用,探索新型压电晶体材料用于特种压电传感器件的研发具有重要意义㊂本文利用传统的提拉法生长出具有高熔点(~1800ħ)的磷酸钡镱(YbBa3(PO4)3,YbBP)新型压电晶体㊂X射线衍射分析表明,该晶体属于立方晶系I43d空间群,晶胞参数为a=b= c=1.0435nm㊂研究发现,该晶体沿垂直于(013)晶面的方向更容易生长㊂摇摆曲线半峰全宽测得为60.6ᵡ,表明生长的晶体具有较高的结晶品质㊂采用LCR电桥法㊁阻抗法和超声法测算了该晶体的相对介电常数和压电应变常数,得到晶体的相对介电常数ε11和压电应变常数d14分别为15.3和11.4pC/N㊂该晶体不仅具有较好的压电性能,同时具有纯的面切变振动模态,表明该晶体在压电传感技术领域具有潜在应用㊂关键词:YbBa3(PO4)3;稀土磷酸盐;提拉法;压电性能中图分类号:TB34㊀㊀文献标志码:A㊀㊀文章编号:1000-985X(2021)04-0735-06 Growth and Property Characterization of NovelPiezoelectric Crystal YbBa3(PO4)3WU Guangda1,FAN Mengdi1,2,DU Yuehao3,YAO Guiteng1,MIAO Hongchen3,CHENG Xiufeng1,YU Fapeng1,ZHAO Xian1,2(1.State Key Laboratory of Crystal Materials,Shandong University,Jinan250100,China;2.Center for Optics Research and Engineering,Shandong University,Qingdao266237,China;3.School of Mechanics and Engineering,Southwest Jiaotong University,Chengdu610031,China)Abstract:Piezoelectric materials are widely used in vibration sensors,pressure sensors and ultrasonic piezoelectric transducers etc.It is of great significance to explore novel piezoelectric crystal materials for using in special piezoelectric sensor devices. Herein,a novel non-centrosymmetric barium ytterbium phosphate(YbBa3(PO4)3,YbBP)piezoelectric crystal with high melting point(~1800ħ)was grown by traditional Czochralski method.The single crystal X-ray diffraction shows that this crystal belongs to the cubic symmetry with the space group of I43d and lattice parameters of a=b=c=1.0435nm.It is found that the YbBP single crystal is easier to grow along the direction perpendicular to the(013)facet.High resolution X-ray diffraction was carried out to evaluate the crystalline quality.The full width at half-maximum of rocking curves is60.6ᵡ, indicating that the grown YbBP single crystal shows good quality.Moreover,the dielectric permittivity and piezoele ctric constant were evaluated by using the LCR bridge method,impedance and ultrasonic methods.The relative dielectric permittivity(ε11)and piezoelectric strain constant(d14)of YbBP crystal are15.3and11.4pC/N,respectively.The YbBP crystal not only possesses large piezoelectric performance but also has pure face-shear vibration mode,indicating the potentials of this crystal for piezoelectric sensing application.Key words:YbBa3(PO4)3;rare earth phosphate;Czochralski method;piezoelectric property㊀㊀收稿日期:2021-02-12㊀㊀基金项目:国家自然科学基金(51872165);山东省重大科技创新工程项目(2019JZZY010313)㊀㊀作者简介:武广达(1994 ),男,山东省人,博士研究生㊂E-mail:wuguangda5@㊀㊀通信作者:于法鹏,博士,教授㊂E-mail:fapengyu@赵㊀显,博士,教授㊂E-mail:xianzhao@736㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷0㊀引㊀㊀言压电晶体是可以实现机械能和电能相互转换的一类重要的功能材料㊂由压电晶体研制的各类传感器件已被广泛应用于航空航天㊁无损检测㊁石油勘探㊁核电以及化学化工等技术领域[1-3]㊂作为器件的核心,压电晶体需要具备高的居里温度或熔点㊁高的电阻率或低的介电损耗以及较高的压电常数及温度稳定性等特点㊂针对压电器件应用技术要求,近些年来,国内外关注较多的压电晶体材料主要有α-SiO2㊁LiNbO3(LN)㊁La3Ga5SiO14(LGS)㊁Ca2Al2SiO7(CAS)和ReCa4O(BO3)3(ReCOB)等系列晶体㊂其中α-SiO2晶体属于三方晶系(32点群),具有低的成本和高的频率温度稳定性,但有效压电系数(d eff=2~3pC/N)和机电耦合系数较小,且存在相变(350ħ),难以用于宽温区环境[4];LN晶体同样属于三方晶系(3m点群),该晶体虽具有较高的居里温度(~1070ħ)和压电系数(d15>65pC/N),但高温下电阻率偏低且存在多畴结构,使得工作温度低于600ħ[5];LGS晶体是石英晶体的同构型化合物,具有较高熔点(>1400ħ),但电阻率和压电系数(~5pC/N)偏低[6];CAS晶体属于四方晶系(42m点群),该晶体成本低廉且具有较高的电阻率(~108Ω㊃cm@700ħ)[7],但该类晶体易开裂,生长难度大,不利于后续器件应用;ReCOB系列晶体到熔点(~1500ħ)前无相变,电阻率可达109Ω㊃cm@600ħ[8-9],压电系数d33为5~7pC/N㊂然而,由于该系列晶体属于单斜晶系(m点群),对称性低且存在热释电效应干扰,较难获得单一的压电振动模态[2,8]㊂因此,开发新型压电晶体材料成为压电领域的研究热点之一㊂磷酸钡镱(YbBa3(PO4)3,YbBP)系列化合物由于具有成本相对低廉㊁合成工艺简单㊁化学稳定性和热稳定性优良等优点在发光领域受到持续关注[10-12]㊂近些年来,该系列化学物粉末的激光特性和磁光性能也被陆续报道[13-14]㊂YbBa3(PO4)3系列化合物属于立方晶系且具有非中心对称结构,该系列晶体在其熔点(~1800ħ)以下无相变且无热释电效应,因此在高温压电领域具有潜在的应用价值㊂然而,对于其压电性能的研究报道并不多见[15]㊂本文研究了YbBP晶体的多晶合成和单晶生长工艺,采用提拉法生长得到了较大尺寸的透明单晶㊂并对该晶体基本的物理性质进行了系统研究,包括摇摆曲线㊁拉曼㊁紫外-漫反射光谱以及室温电弹性能等㊂1㊀实㊀㊀验1.1㊀多晶合成和晶体生长以纯度为4N的Yb2O3粉末㊁BaCO3粉末和NH4H2PO4粉末为合成原料,按照YbBa3(PO4)3化学计量比进行精确称量㊂为了补偿P2O5在物相合成和晶体生长过程中的挥发,将NH4H2PO4质量分数过量约5%㊂实验研究发现NH4H2PO4的过量有利于优质单晶的生长㊂经过24h充分混合后,在1300ħ下固相反应20h 后得到单晶生长用YbBP多晶料㊂采用西安理工大学研制的TDL-J40型中频感应炉进行单晶生长实验㊂将合成的YbBP多晶料放入ϕ60mmˑ50mm铱坩埚中㊂为了防止铱坩埚的氧化,采用氩气混合体积分数1%的氧气作为生长气氛㊂晶体生长过程中的提拉速度控制为0.3~2mm/h,旋转速度控制在8~15r/min㊂生长过程结束后,将晶体从熔体中脱离,以30~55ħ/h的速率降至室温㊂为消除晶体中的生长热应力,对取出后的晶体进行退火处理㊂退火过程如下:将晶体置于高温退火炉中,在一个大气压㊁空气气氛下经20h升温到1200ħ,保温10h后再以30h降温时长降至室温[16]㊂1.2㊀性能测试使用德国Bruker D8Advance型X射线粉末衍射仪对YbBa3(PO4)3多晶料进行物相表征㊂以Cu-Kα射线作为衍射光源,扫描范围2θ是10ʎ~90ʎ,步幅为0.02ʎ,设置的电压和电流分别为40kV和40mA㊂使用美国Perkin Elmer公司的Diamond TG/DTA型同步热分析仪对YbBa3(PO4)3多晶料进行TG-DTA测试,测试温度为25~1400ħ,升温速率为10ħ/min,测试气氛为氮气㊂使用德国Bruker公司生产的D8Discover型高分辨X射线衍射仪对YbBa3(PO4)3单晶进行摇摆曲线测试㊂使用法国Jobin Yvon公司的LabRAM HR800型拉曼光谱仪对YbBa3(PO4)3晶体进行自发拉曼测试,激发波长为532nm,光谱分辨率为0.65cm-1,测试采用背反射几何配置收集拉曼散射光,探测器为CCD探测㊀第4期武广达等:新型压电晶体YbBa 3(PO 4)3的生长与性质表征737㊀器,测试温度为室温㊂用UH-4150型紫外-漫反射光谱仪测试晶体的吸收光谱,测试波长为200~3200nm,测试步长为1nm㊂YbBa 3(PO 4)3晶体的密度测定采用阿基米德法进行,室温的测算结果为4.72g /cm 3㊂晶体的电弹性能测试采用LCR 电桥法㊁阻抗法和超声法进行㊂其中,LCR 电桥法采用的设备型号为HP 4263B LCR Meter,阻抗法采用的设备是HP 4294A 型阻抗分析仪,超声法采用的设备是Panametrics 200MHz PULSER /RECElVER 超声脉冲发射接收器;由于该晶体属于立方晶系43m 点群,因此只有一个独立的介电常数和一个独立的压电应变常数,分别为ε11和d 14㊂在介电性能测试中,使用的晶片厚度方向为X 的方片样品,尺寸为6mm ˑ6mm ˑ1mm㊂在压电性能测试中,使用的是厚度方向为X ,长度方向为Y 的长条片,尺寸为12mm ˑ4mm ˑ1.5mm㊂以上所用晶片样品待测表面均蒸镀铂金电极㊂2㊀结果与讨论2.1㊀物相分析为了确定多晶合成工艺,将Yb 2O 3㊁BaCO 3和NH 4H 2PO 4粉末按照化学计量比配制,分别在1200ħ㊁1250ħ和1300ħ温度下恒温20h,烧结完成后研磨进行XRD 测试,如图1所示㊂结果表明,经1300ħ固相反应合成得到多晶粉体的XRD 衍射峰与纯的YbBa 3(PO 4)3标准PDF 卡片完全一致,没有多余的杂峰,表明由Yb 2O 3㊁BaCO 3和NH 4H 2PO 4固相合成的多晶料为纯的YbBa 3(PO 4)3物相㊂通过数据拟合,计算得到晶体的晶胞参数为a =b =c =1.0435nm,具有立方晶系结构特征,与已报道晶体物相相吻合(JCPDF Card No.43-0211)㊂YbBa 3(PO 4)3多晶粉体的TG-DTA 曲线分析结果如图2所示,升温及降温的过程在氮气环境下进行,从图中可以看出,从室温到1400ħ,整个曲线中的TG 曲线没有明显的质量损失,并且没有明显的吸热或放热峰㊂这些结果表明YbBa 3(PO 4)3化合物具有良好的热稳定性㊂另外,该化合物在25~1400ħ区间内无其他相变过程,表明YbBa 3(PO 4)3适合采用提拉法进行生长实验㊂图1㊀YbBa 3(PO 4)3粉末的XRD 图谱Fig.1㊀XRD patterns of YbBa 3(PO 4)3powder 图2㊀YbBa 3(PO 4)3晶体的TG-DTA 曲线Fig.2㊀TG-DTA curves of YbBa 3(PO 4)3crystal 2.2㊀结晶品质分析图3(a)为采用提拉法生长的YbBa 3(PO 4)3单晶,尺寸是ϕ15mm ˑ28mm㊂从图中可以看出,该晶体无肉眼可见的包裹体和开裂等宏观缺陷㊂为了进一步表征晶体的结晶品质,对该晶体进行了高分辨X 射线衍射测试㊂测试所用的晶片是(013)面YbBa 3(PO 4)3晶片,样品两面平行且双面抛光,尺寸为6mm ˑ6mm ˑ1.5mm㊂图3(b)是YbBa 3(PO 4)3晶体(013)面的摇摆曲线图,曲线的峰形尖锐且没有劈裂,半峰全宽(FWHM)为60.6ᵡ,表明生长的晶体具有较高的结晶品质,为后续的基本性质研究提供了基础㊂2.3㊀拉曼和紫外-可见吸收光谱分析晶体的拉曼振动模式和晶体结构有关,YbBa 3(PO 4)3晶体为43m 点群,I 43d 空间群,根据模态分析,晶体在布里渊区的振动ΓN 可表示为[14,17]:ΓN =4A 1+5A 2+9E +14F 1+15F 2(1)738㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷式中:A1和E为拉曼活性模式;A2和F1为拉曼惰性模式;F2为红外或者拉曼活性模式㊂测得的自发拉曼光谱如图4(a)所示,YbBa3(PO4)3晶体拉曼光谱中的频移峰位于438cm-1㊁571cm-1㊁970cm-1和1100cm-1处,与P-O基团的拉伸和弯曲振动有关,最大的频移峰位于970cm-1位置,对应于P-O对称拉伸振动,较弱的频移峰位于1100cm-1,对应于P-O反对称拉伸振动,而位于438cm-1和571cm-1的频移峰分别对应于P-O反对称弯曲振动和对称弯曲振动[18-21]㊂晶体材料的紫外-可见漫反射光谱不仅可以得到其光学透过范围的紫外截止边,还可以通过公式转换得到其带隙值㊂测试结果如图4(b)所示,从图中可以看出,YbBa3(PO4)3晶体的紫外截止边小于250nm,具有较短的紫外截止边㊂晶体禁带附近的光学吸收符合以下公式:αhυ=A(hυ-E g)n/2(2)式中:α表示吸收系数;h表示普朗克常数;υ代表光波频率;A是与晶体材料带隙类型相关的常数;E g为禁带宽度;n取值为1(直接带隙)或者4(间接带隙)㊂如图4(b)插图所示,YbBa3(PO4)3晶体的带隙值在4.76eV左右㊂一般来说,较大的带隙对应于较高的电阻率㊂图3㊀(a)采用提拉法生长出的YbBa3(PO4)3单晶;(b)(013)面摇摆曲线Fig.3㊀(a)YbBa3(PO4)3single crystal grown by Czochralski method;(b)rocking curve of the(013)facet图4㊀(a)YbBa3(PO4)3晶体的自发拉曼光谱;(b)紫外-可见漫反射光谱,插图为晶体的(αhv)2-hv曲线Fig.4㊀(a)Spontaneous Raman spectrum of YbBa3(PO4)crystal;(b)UV-visible diffuse reflectance spectrum,the inset shows the relationship between(αhv)2and hv2.4㊀压电性能采用LCR电桥法测量了X方片的电容,相对介电常数εii按照公式(3)计算获得:εii=εε0=C㊃tS㊃ε0(i=1,2,3)(3)式中:ε为晶片的绝对介电常数;S为晶片的面积;t为晶片的厚度;C为晶片在频率为100kHz时的电容;ε0=8.85pF/m,为真空中的介电常数㊂采用谐振-反谐振法和超声法测量了弹性柔顺常数s E44㊁机电耦合系数k14和压电应变常数d14,相关计算㊀第4期武广达等:新型压电晶体YbBa3(PO4)3的生长与性质表征739㊀公式如下:s E44=1c E44(4)k214=π2f r fa tan(f a-f r fa)(5)d14=k14εT11s E44(6)式中:c E44为弹性刚度常数;f r和f a分别为X方片的谐振频率常数和反谐振频率常数㊂利用上述公式并结合样品测试,计算得到了该晶体的相对介电常数ε11和压电应变常数d14㊂为了便于比较,同时将压电晶体石英㊁CAS和LGS的相对介电常数和压电应变常数也进行了比对,结果如图5所示㊂测算结果表明:YbBP晶体的相对介电常数为15.3,优于压电晶体石英和CAS,略低于LGS晶体;压电应变常数d14为11.4pC/N,压电活性优于所报道的石英㊁CAS和LGS等压电晶体㊂图5㊀(a)相对介电常数;(b)压电应变常数d14Fig.5㊀(a)Relative dielectric permittivity;(b)piezoelectric strain constant d14鉴于该晶体具有独立的压电应变常数d14,为了设计最佳的晶体切型,分析了该晶体压电应变常数d14的最值分布,结果如图6(a)所示㊂结果表明,该晶体最大压电应变常数d14出现在未旋转的方向上㊂考虑到YbBP晶体具有纯的面切变振动模态,采用有限元仿真方法进一步研究了晶体激发单模态水平剪切波情况,结果如图6(b)所示㊂研究表明YbBP晶体能够在4个主方向上激励出水平剪切波,与其面内剪切变形相对应,这意味着该晶体在特种压电换能器件领域具有潜在的应用价值[15,22]㊂图6㊀(a)压电应变常数d14的方向依赖性;(b)有限元仿真的柱坐标下切向位移云图Fig.6㊀(a)Orientation dependence of the piezoelectric strain constant d14;(b)simulated tangentialdisplacement contour in the cylindrical coordinate3㊀结㊀㊀论采用提拉法成功生长出整体透明㊁无包裹体的尺寸为ϕ15mmˑ28mm的YbBa3(PO4)3单晶,高分辨740㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第50卷XRD摇摆曲线测试结果显示(013)晶面的FHWM为60.6ᵡ,具有较高的结晶品质㊂采用LCR电桥法测量了晶体的相对介电常数,采用谐振-反谐振法和超声法测量了压电应变常数,晶体的相对介电常数ε11和压电应变常数d14分别为15.3和11.4pC/N,YbBa3(PO4)3晶体的压电活性优于目前所报道的石英㊁CAS和LGS压电晶体㊂此外,YbBa3(PO4)3晶体能够激励纯的振动模态,有望用于特殊的声波传感器件研发㊂参考文献[1]㊀ZHANG S J,LI F,YU F P,et al.Recent developments in piezoelectric crystals[J].Journal of the Korean Ceramic Society,2018,55(5):419-439.[2]㊀ZHANG S J,FEI Y T,CHAI B H T,et al.Characterization of piezoelectric single crystal YCa4O(BO3)3for high temperature applications[J].Applied Physics Letters,2008,92(20):202905.[3]㊀SHIMIZU H,NISHIDA T,TAKEDA H,et al.Dielectric,elastic and piezoelectric properties of RCa4O(BO3)3(R=rare-earth elements)crystals with monoclinic structure of point group M[J].Journal of Crystal Growth,2009,311(3):916-920.[4]㊀ZHANG S J,YU F P.Piezoelectric materials for high temperature sensors[J].Journal of the American Ceramic Society,2011,94(10):3153-3170.[5]㊀ZHANG S J,FRANTZ E,XIA R,et al.Gadolinium calcium oxyborate piezoelectric single crystals for ultrahigh temperature(>1000ħ)applications[J].Journal of Applied Physics,2008,104(8):084103.[6]㊀BOHM J,CHILLA E,FLANNERY C,et al.Czochralski growth and characterization of piezoelectric single crystals with langasite structure:La3Ga5SiO14(LGS),La3Ga5.5Nb0.5O14(LGN)and La3Ga5.5Ta0.5O14(LGT)Ⅱ.Piezoelectric and elastic properties[J].Journal of Crystal Growth,2000,216(1/2/3/4):293-298.[7]㊀JIANG C,LONG Y,YU F P,et al.Single crystal growth and temperature dependent behaviors of melilite type piezoelectric crystal Ca2Al2SiO7[J].Journal of Crystal Growth,2018,496/497:57-63.[8]㊀YU F P,HOU S,ZHANG S J,et al.Electro-elastic properties of YCa4O(BO3)3piezoelectric crystals[J].Physica Status Solidi(a),2014,211(3):574-579.[9]㊀TIAN S W,LI L L,LU X Y,et al.Electrical conduction mechanism of rare-earth calcium oxyborate high temperature piezoelectric crystals[J].Acta Materialia,2020,183:165-171.[10]㊀YANG B Z,YANG Z P,LIU Y F,et al.Synthesis and photoluminescence properties of the high-brightness Eu3+-doped Sr3Y(PO4)3redphosphors[J].Ceramics International,2012,38(6):4895-4900.[11]㊀WANG J Y,WANG J B,DUAN P.Luminescent properties of Dy3+doped Sr3Y(PO4)3for white LEDs[J].Materials Letters,2013,107:96-98.[12]㊀HUANG B Y,FENG B L,LUO L,et al.Warm white light generation from single phase Sr3Y(PO4)3ʒDy3+,Eu3+phosphors with nearultraviolet excitation[J].Materials Science and Engineering:B,2016,212:71-77.[13]㊀CHEN X,GONG Z L,WAN Q P,et al.Ba3Tb(PO4)3:crystal growth,structure,magnetic and magneto-optical properties[J].OpticalMaterials,2015,44:48-53.[14]㊀ZNAMIEROWSKA T,SZUSZKIEWICZ W,HANUZA J,et al.Ternary orthophosphates of the Ba3Y1-x Nd x(PO4)3family as possible powderlaser materials[J].Journal of Alloys and Compounds,2002,341(1/2):371-375.[15]㊀WU G D,KONG L K,FAN M D,et al.Electro-elastic features of YBa3(PO4)3and YbBa3(PO4)3crystals with pure face-shear mode foracoustic wave sensor applications[J].Journal of Materiomics,2020.[16]㊀WU G D,FAN M D,YU F P,et al.Growth,thermal,and spectroscopic properties of YbBa3(PO4)3single crystal:a new stoichiometric lasingmaterial[J].Crystal Growth&Design,2020,20(12):7963-7971.[17]㊀GUO N,HUANG Y,JIA Y,et al.A novel orange-yellow-emitting Ba3Lu(PO4)3ʒEu2+,Mn2+phosphor with energy transfer for UV-excitedwhite LEDs[J].Dalton Transactions(Cambridge,England),2013,42(4):941-947.[18]㊀MEYER K.Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy[J].Journal of Non-Crystalline Solids,1997,209(3):227-239.[19]㊀FOMIN V I,GNEZDILOV V P,KURNOSOV V S,et al.Raman scattering in a LiNiPO4single crystal[J].Low Temperature Physics,2002,28(3):203-209.[20]㊀BURBA C M,FRECH R.Vibrational spectroscopic study of lithium intercalation into LiTi2(PO4)3[J].Solid State Ionics,2006,177(17/18):1489-1494.[21]㊀MESFAR M,ABDELHEDI M,DAMMAK M,et al.Synthesis,crystal structure and vibrational spectra characterization of CeP5O14[J].Journalof Molecular Structure,2012,1028:196-199.[22]㊀MIAO H C,LI F X.Shear horizontal wave transducers for structural health monitoring and nondestructive testing:a review[J].Ultrasonics,2021,114:106355.。
Y3+和Gd3+对LaBO3:Eu3+发光粉结构和发光性能的影响
Y3+和Gd3+对LaBO3:Eu3+发光粉结构和发光性能的影响马晶;赵婉男;李艳红【摘要】采用溶胶凝胶-燃烧法合成了系列不同掺杂浓度Y3+和Gd3+的LaBO3:Eu3+发光粉,对其结构、形貌和发光性能进行了表征.XRD研究结果表明:发光粉的结构与基质掺杂离子的种类和掺杂浓度有关系.荧光光谱结果表明:适量比例Y3+和Gd3+离子掺杂将提高LaBO3:Eu3+发光粉的发光强度.Y3+和Gd3+离子最佳掺杂摩尔分数分别为1.5%和12.5%.5 D0→7F2与5 D0→7F1跃迁发射的相对强度比值说明:掺杂改变LaBO3:Eu3+中Eu3+局域环境的对称性.发光性能改变主要受晶体结构、掺杂离子电负性影响.Gd3+离子掺杂更有利于发光粉结构稳定性和发光性能的改善.【期刊名称】《发光学报》【年(卷),期】2018(039)009【总页数】7页(P1213-1219)【关键词】溶胶-凝胶燃烧法;LaBO3:Eu3+;发光粉;发光性能【作者】马晶;赵婉男;李艳红【作者单位】沈阳化工大学材料科学与工程学院, 辽宁沈阳 110142;沈阳化工大学材料科学与工程学院, 辽宁沈阳 110142;中国振华(集团) 新云电子元器件有限责任公司,贵州贵阳 550018;沈阳化工大学材料科学与工程学院, 辽宁沈阳110142【正文语种】中文【中图分类】O482.31;TQ133.31 引言稀土发光材料在紫外到红外波段范围内优良的发光特性使其在显示、照明、生物标记等诸多领域有着广泛应用[1-4]。
稀土发光材料的发光性能除与激活离子本身电子跃迁特性有关外,基质的晶体场和电子结构对激活离子的发光特性也有着较大影响[5]。
合适的基质能为发光离子提供良好的发光环境[6-9]。
近些年来,利用替换基质阳离子掺杂方式微调基质结构而进一步改善发光性能的研究已引起人们极大兴趣[10-11]。
在众多的发光基质中,硼酸盐具有较好的紫外吸收、结构多样性等特点引起人们广泛的关注[12-13]。
Ce,Pr∶YLuAG原料合成、晶体生长及LED应用
Ce,Pr∶YLuAG原料合成、晶体生长及LED应用牛雪姣;徐家跃;周鼎;王树贤;张怀金【摘要】采用共沉淀法合成了Ce,Pr∶YLuAG粉末,在1450℃下煅烧可获得石榴石结构纯相.经过压制成型、固相烧结等工艺制备了多晶料棒,TEM显示二次烧结获得的料棒具有良好的结晶性.采用光学浮区法生长了Ce,Pr∶YLuAG晶体.晶体通体透明,呈浅黄色,肩部有少量裂纹.透过率达到81.8%,接近于理论值84.2%.晶体在460 nm波长激发下呈现530 nm发射带和610 nm发射峰,分别对应Ce3+和pr3+的特征发射,表明Ce3+可以向Pr3+进行能量转移;在487 nm激发下晶体仅出现pr3+离子的特征发射峰.Ce,Pr∶YLuAG晶体色坐标为(0.474,0.495),比商用Ce∶YAG荧光粉更靠近红光区域,可以弥补现有荧光粉不足,更适合制造白光LED.【期刊名称】《无机材料学报》【年(卷),期】2015(030)011【总页数】6页(P1183-1188)【关键词】光学浮区法;晶体生长;掺杂;YLuAG晶体【作者】牛雪姣;徐家跃;周鼎;王树贤;张怀金【作者单位】上海应用技术学院材料科学与工程学院,晶体生长研究所,上海201418;上海应用技术学院材料科学与工程学院,晶体生长研究所,上海201418;上海应用技术学院材料科学与工程学院,晶体生长研究所,上海201418;山东大学晶体材料研究所,济南250100;山东大学晶体材料研究所,济南250100【正文语种】中文【中图分类】O799白光发光二极管(LED)以其体积小、固态化、无污染、节能环保等优势正逐步取代节能灯进入照明领域[1-2]。
市场上最常用的白光 LED大多是采用黄色荧光粉Ce:YAG与蓝光芯片耦合制成的,但是存在三个突出问题: 第一,荧光粉涂抹不均匀会造成白光 LED的光色一致性差[3]; 第二,封装胶长时间或在大功率条件下工作容易老化,进而降低LED的使用寿命[4]; 第三,在现有 Ce:YAG黄色荧光粉+蓝光芯片耦合制得的 LED中,由于缺少红光而使LED色温偏低[5]。
透明荧光陶瓷用于白光LED的研究_雷牧云
Study on Transparent Phosphor Ceramic Used in WhiteLEDMuyun LEI1, Zailiang LOU1, Xunli XIA2, Zhen LI1, Yanmin ZHAO1, Yongliang YANG11Bright Crystals Technology, Inc. Beijing, China, 1000182Foshan Nation Star Optoelectronics Co., Ltd. Foshan, China, 528000Email: lmy@Abstract: Using MgAl2O4 powder mixed with phosphor commercial and homemade respectively, the trans-parent phosphor ceramic was sintered, machined and used to package LED. The electro-optical parameters of the LED packaged with ceramic with different thickness and concentration were tested. The influence of the thickness and concentration on the electro-optical parameters was discussed. Uniform distribution of the phosphor in transparent ceramic avoids the precipitation of phosphor in resin and improves the uniformity of the light. Owing to higher thermal conductivity than resin, ceramic material can accelerate the cooling of LED. Meanwhile, the transparent ceramic has excellent mechanical performance; it can be used for LED package directly. This research will extend the application field of LED.Keywords: transparent phosphor ceramic; Light Emitting Diode (LED); packaging material透明荧光陶瓷用于白光LED的研究雷牧云1,娄载亮1,夏勋力2,李祯1,赵艳民1,杨勇良11烁光特晶科技有限公司,北京,中国,1000182佛山市国星光电股份有限公司,佛山,中国,528000Email: lmy@摘要:采用自制的铝酸镁粉体分别混合自制和市售的荧光粉制备透明荧光陶瓷,将透明荧光陶瓷加工并替代传统白光LED中的荧光粉层和环氧树脂封装外壳对LED进行封装。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Science Press
Available online at www.sciencedirect.com 搴ClEHCE D-秘置CT 0
Trans.Nonferrous Met.Soc.China 17(20071 1093—1099 Transacfions of
Nonferrous Metais Society of China
ww3v CSt1.edu.cn/ysxb/ Crystallization,morphology and luminescent properties of YAG:Ce +phosphor powder prepared by polyacrylamide gel method
LIU chun_jia(刘春佳),YU Rui—min(-]z ̄0,XU Zhi—wei(许志伟),CAI Jing( ̄.靖), YAN Xing.huang(严星煌),LUO Xue—tao( ̄学涛)
Department of Materials Science and Engineering,College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 36 1 005,China
Received 30 January 2007;accepted 1 6 April 2007
Abstraet:A novel synthesis process,based on the polyacrylamide gel method,was used to prepare Ce—doped YAG phosphor powders.Effects of heat treatment parameters,temperature and holding time,the fluxes,and atmosphere on microstructure and particle morphology as well as luminescent properties ofYAG:Ce”phosphor powders were studied by X—ray powder diffractometry, scanning electron microscopy.and fluorescence spectrophotometry.The results show that the formation temperature(1 000℃1 of pure YAG phase is significant low when being synthesized by the polyacrylamide gel method.compared with solid—state reaction. For luminescent properties.the intensity of emission of YAG:Ce”phosphor increases steadily with increasing temperature from 900 ℃to 1 300℃and prolonging holding time from 100 min to 400 rain,But blue shift phenomenon is observed for 400 min calcination. Fluxes as BaF,and H BO can enhance the intensity of emission of phosphor due to the improvement of crystallization of YAG and the stabilization of trivalence cerium ion in YAG host lattice at high temperature.Weak reduction atmos.phere can contribute to improvement ofthe emission intensity ofYAG:Ce3 phosphor powders.
Key words:YAG phosphor;polyacrylamide gel;crystallization;morphology;luminescent properties
l IntrOductiOn YAG(Y3A15012,the cubic garnet structure[卜2】 based phosphor、has been widely used as solid.state laser materialin luminescence fields.As known as an efficient phosphor,cerium、activated yttrium aluminum garnet rYAG:Ce”)has strong yellow luminescence excited by blue light diode.and its broad emission band from 4f to 5d levels extends from 500 to 650 run.So YAG:Ce” phosphor has extensive application in white light emitting diode(WLED),To obtain properties of higher power and brightness,there are many technologies used for preparation of YAG powder with high crystallinity, small particle size and regular morphology,Although the traditional solid state method is easy to foFITI pure YAG phase.it normally needs a high temperature near l 600 ℃using ynria(Y203)and aluminum(A1203)compounds [3—4],Generally,several stable phases of yttrium aluminum perovskite YA1O,(YAP) and yttrium aluminum monoclinic Y4A12Oq(YAM)are formed as intermediate products during the solid.state reaction.As a result,the particulates are nonuniforn and large in size, and have irregular shape,which brings negative influence to luminescent properties.In recent years, several wet chemical techniques such as co—precipitation method[5—6], sol—gel[7—8], combustion[9~1 0] hydrothermal synthesis[1 1],glycothermal method[1 2], and spray—pyrolysis synthesis[1 3—1 4]were used to prepare the YAG precursor,Although YAG phosphor particles synthesized by chemical methods have many advantages,i.e,high purity,homogenous composition and fine grains,they require additional heat treatment at higher temperatures(>1 000℃)to get well crystallized products,Thus,hard aggregation of resulting powder is easily caused during the post heat treatment. The polyacrylamide gel method was reported firstly by DOUY and ODIER[1 5]to prepare YBa2Cu307 x powder.This process is fast and easy to scale—up method for obtaining fine powders of complex compounds. However,so far,no individual study has been published on the YAG:Ce phosphors prepared by the polyacrylamide gel method. In this study,the polyacrylamide gel method was used to forlTl an organic
Corresponding author:LUO Xue—tap;Tel:+86—592—2 1 8488 1;E—mail:xuetao@xmu.edu.cn
维普资讯 http://www.cqvip.com 1 094 LIU Chunojia,et al/Trans.Nonterrou ̄ ln.boc.China 1 7(20071 three—dimension(3D)tangled network,where a solution of Y .Ce”and A1”was soaked.The polyacrylamide
gel reduces the diffusion path(up to nano—metric scale) f0r obtaining the desired materia1.The effects of the fluxes and atmosphere on luminescent properties(PL excition and emission spectra)of YAG:Ce’ phosphor powders was also discussed.