初三全国数学竞赛题及答案
初中全国数学竞赛试卷答案

一、选择题1. 下列哪个数是负数?A. 3B. -2C. 0D. 5答案:B解析:负数是小于零的数,所以选项B是正确答案。
2. 一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?A. 16B. 32C. 40D. 64答案:B解析:长方形的面积计算公式为长乘以宽,所以8厘米乘以4厘米等于32平方厘米。
3. 下列哪个分数是最简分数?A. $\frac{6}{8}$B. $\frac{3}{4}$C. $\frac{9}{12}$D. $\frac{4}{6}$答案:B解析:最简分数是指分子和分母没有公因数的分数,所以选项B是最简分数。
4. 下列哪个图形是平行四边形?A. 正方形B. 长方形C. 等腰梯形D. 三角形答案:B解析:平行四边形是指具有两对平行边的四边形,所以选项B是正确答案。
5. 一个圆的半径是5厘米,它的周长是多少厘米?A. 10πB. 20πC. 15πD. 25π答案:B解析:圆的周长计算公式为2π乘以半径,所以2π乘以5厘米等于20π厘米。
二、填空题6. 一个长方体的长是12厘米,宽是6厘米,高是4厘米,它的体积是多少立方厘米?答案:288解析:长方体的体积计算公式为长乘以宽乘以高,所以12厘米乘以6厘米乘以4厘米等于288立方厘米。
7. 一个等腰三角形的底边长是8厘米,腰长是5厘米,它的面积是多少平方厘米?答案:20解析:等腰三角形的面积计算公式为底边乘以高除以2,所以8厘米乘以5厘米除以2等于20平方厘米。
8. 一个分数的分子是5,分母是10,将它约分到最简形式是多少?答案:$\frac{1}{2}$解析:将分子和分母都除以它们的最大公因数,即5,得到$\frac{1}{2}$。
9. 下列哪个数是正数?A. -3B. 0C. 3D. -5答案:C解析:正数是大于零的数,所以选项C是正确答案。
10. 一个正方形的边长是8厘米,它的周长是多少厘米?答案:32解析:正方形的周长计算公式为4乘以边长,所以4乘以8厘米等于32厘米。
初三数学竞赛考试试题及答案

初三数学竞赛考试试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个直角三角形的两个直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 83. 一个数的立方根是2,这个数是多少?A. 2B. 4C. 8D. 164. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 一个数的相反数是-3,这个数是多少?A. 3B. -3C. 6D. -66. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 07. 如果一个二次方程的解是x1=2和x2=3,那么这个方程可以表示为?A. x^2 - 5x + 6 = 0B. x^2 - 5x + 4 = 0C. x^2 + 5x - 6 = 0D. x^2 + 5x + 4 = 08. 一个数列的前三项是2, 4, 6,这是一个什么数列?A. 等差数列B. 等比数列C. 等比数列D. 既不是等差也不是等比数列9. 一个长方体的长、宽、高分别是2, 3, 4,那么它的体积是多少?A. 24B. 26C. 28D. 3210. 一个分数的分子是3,分母是6,化简后是多少?A. 1/2B. 2/3C. 3/6D. 1/3二、填空题(每题4分,共20分)11. 一个数的平方根是4,这个数是_________。
12. 一个数的平方是16,这个数是_________。
13. 一个数的立方是27,这个数是_________。
14. 一个数的倒数是2/3,这个数是_________。
15. 一个数的对数(以10为底)是2,这个数是_________。
三、解答题(每题10分,共50分)16. 解一个一元二次方程:x^2 - 7x + 10 = 0。
17. 证明:对于任意实数a和b,(a + b)^2 ≤ 2(a^2 + b^2)。
初三数学竞赛试题及答案

初三数学竞赛试题及答案一、选择题(每题5分,共20分)1. 已知a、b、c是三角形的三边,下列不等式中一定成立的是()。
A. a^2 + b^2 < c^2B. a^2 + b^2 = c^2C. a^2 + b^2 > c^2D. a^2 + b^2 ≥ c^2答案:C2. 一个数的立方根是它本身的数是()。
A. 0B. 1C. -1D. 0和1答案:D3. 一个多项式除以x-2,商式为x^2 + 2x + 3,余数为1,则这个多项式是()。
A. x^3 + 5x^2 + 7x + 1B. x^3 + 3x^2 + 7x + 1C. x^3 + 3x^2 + 7x + 2D. x^3 + 5x^2 + 7x + 2答案:D4. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1 + x2的值为()。
A. 3B. 6C. 9D. 12答案:B二、填空题(每题5分,共20分)5. 已知直角三角形的两直角边长分别为3和4,则斜边长为_________。
答案:56. 一个数的绝对值是5,则这个数是_________。
答案:±57. 已知一个二次函数的顶点坐标为(1,-2),且图象经过点(0,-1),则该二次函数的解析式为_________。
答案:y = 3(x - 1)^2 - 28. 已知一个等差数列的首项为2,公差为3,则该数列的第10项为_________。
答案:29三、解答题(每题15分,共60分)9. 已知一个等腰三角形的底边长为6,腰长为x,且该三角形的面积为12。
求x的值。
解:根据题意,等腰三角形的底边长为6,腰长为x,面积为12。
设底边的高为h,则有:1/2 × 6 × h = 12h = 4根据勾股定理,有:x^2 = 3^2 + 4^2x^2 = 9 + 16x^2 = 25x = 5所以,腰长x的值为5。
10. 已知一个二次函数的图象开口向上,且经过点(1,0)和(-1,0)。
初三数学竞赛试题及答案解析

(第7题图)BCD GFE(第5题图) 全国初中数学竞赛试题一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1、在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪。
刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )A 、36B 、37C 、55D 、902、已知21+=m ,21-=n ,且()()876314722=--+-n n a m m ,则a 的值等于( )A 、5-B 、5C 、9-D 、9 3、ABC Rt ∆的三个顶点A ,B ,C 均在抛物线2x y =上,并且斜边AB 平行于x 轴。
若斜边上的高为h ,则( )A 、1 hB 、1=hC 、21 hD 、2 h 4、一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A 、2004B 、2005C 、2006D 、20075、如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QO QP =,则QAQC的值为( ) A 、132- B 、32 C 、23+ D 、23+二、填空题 (共5小题,每小题6分,满分30分)6、已知a ,b ,c 为整数,且2006=+b a ,2005=-a c .若b a ,则c b a ++的最大值为 .7、如图,面积为c b a -的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则bc a -的值等于 .8、正五边形广场ABCDE 的周长为2000米.甲、乙两人分别从A 、C 两点同时出发,沿A →B →C →D →E →A →…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上。
初三数学竟赛试题及答案

初三数学竟赛试题及答案初三数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的立方等于它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -13. 如果一个三角形的两边长分别为3和4,第三边长x满足的条件是:A. 1 < x < 7B. 0 < x < 7C. 1 < x < 5D. 0 < x < 54. 一个圆的直径是10cm,那么它的半径是:A. 5cmB. 10cmC. 20cmD. 15cm5. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 任意数6. 一个数的绝对值是它本身,这个数是:A. 0B. 正数C. 负数D. 0或正数7. 一个数的倒数是它本身,这个数是:A. 1B. -1C. 0D. 1或-18. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -19. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 0, 1, -110. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 0, 1二、填空题(每题4分,共20分)11. 如果一个数的平方是25,那么这个数是______。
12. 一个数的绝对值是5,那么这个数是______。
13. 一个数的倒数是1/2,那么这个数是______。
14. 一个数的平方根是3,那么这个数是______。
15. 一个数的立方根是2,那么这个数是______。
三、解答题(每题10分,共50分)16. 计算:(3+2√2)(3-2√2)。
17. 证明:对于任意实数a和b,(a+b)^2 = a^2 + 2ab + b^2。
18. 已知一个等腰三角形的两边长分别为5和8,求第三边的长度。
19. 一个圆的面积是π,求这个圆的半径。
20. 解方程:x^2 - 5x + 6 = 0。
全国初中数学竞赛试题及答案

全国初中数学竞赛试题及答案全国初中数学竞赛试题及答案一、选择题1、在一张纸上,我们画了一个圆和一条直径,直径与圆相交于A、B 两点。
如果我们在这张纸上连续地画了8个点,使得这些点都在圆上,那么这8个点的最密集分布是()。
A. 像一个“十”字形,两边各4个点 B. 像一个“十”字形,两边各3个点 C. 像一个“米”字形,上面各4个点 D. 像一个“米”字形,上面各3个点答案:C 解析:根据圆的对称性,我们可以得知,直径两侧的点到圆心的距离相等,因此在一个“十”字形中,中间的交点是最密集的。
而在“米”字形中,上面的4个点距离交点的距离相等且最短,因此是最密集的。
2、在一个等边三角形ABC中,D、E、F分别是AB、BC、CA的中点。
现在以D为圆心,DE为半径画圆弧,交AB于G。
则△DFE的面积是阴影部分面积的()。
A. 2倍 B. 3倍 C. 4倍 D. 6倍答案:C 解析:由题意可知,DE是△ABC的中位线,因此DE=1/2AB。
而△DFE是直角三角形,斜边DE是直径,因此∠DFE=90°。
所以,△DFE的高是DE的一半,即1/4AB。
因此,△DFE的面积是1/2×1/2AB×1/4AB=1/8AB²。
而阴影部分的面积是△ABC面积的一半,即1/2×1/2AB×√3/2AB=√3/4AB²。
所以,△DFE的面积是阴影部分面积的4倍。
3、在一个等腰直角三角形ABC中,∠C=90°,AC=BC=1。
现在以这个三角形的顶点为圆心,1为半径画圆弧,则这三个圆弧的长度之和为()。
A. 3π/2 B. π C. 2π D. 5π/2 答案:C 解析:根据题意,我们可以得到三个圆弧的半径都是1。
其中第一个圆弧的长度为1/4×2π×1=π/2,第二个圆弧的长度也为π/2,第三个圆弧的长度为1/4×2π×√2=π√2/2。
初三竞赛数学试题及答案
初三竞赛数学试题及答案一、选择题(每题4分,共40分)1. 若a、b、c是三角形的三边长,且满足a²+b²+c²=ab+ac+bc,则该三角形是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定2. 已知a、b、c是实数,且a+b+c=0,那么下列式子中一定成立的是()A. ab+bc+ca=0B. (a+b)(b+c)(c+a)=0C. a²+b²+c²=ab+bc+caD. a³+b³+c³=3abc3. 一个等腰三角形的两边长分别为6和8,那么这个三角形的周长是()A. 16B. 20C. 22D. 244. 已知x²-3x+1=0,那么x³-5x+1的值为()A. 0B. 1C. -4D. -85. 一个数的平方根是2和-2,那么这个数是()A. 4B. -4C. 0D. 26. 已知一个二次函数y=ax²+bx+c(a≠0),其图像开口向上,且与x轴有两个交点,那么下列说法正确的是()A. a>0,b²-4ac>0B. a<0,b²-4ac>0C. a>0,b²-4ac<0D. a<0,b²-4ac<07. 一个圆的半径为r,那么这个圆的面积是()A. πrB. πr²C. 2πrD. 2πr²8. 已知一个等差数列的首项为a,公差为d,那么这个数列的第n项是()A. a+(n-1)dB. a-(n-1)dC. a+ndD. a-nd9. 已知一个等比数列的首项为a,公比为q,那么这个数列的第n项是()A. aq^(n-1)B. aq^nC. a/q^(n-1)D. a/q^n10. 已知一个函数y=f(x),那么下列说法正确的是()A. f(a)=f(b) 则a=bB. f(a)≠f(b) 则a≠bC. f(a)=f(b) 则a≠bD. f(a)≠f(b) 则a=b二、填空题(每题4分,共20分)11. 已知一个三角形的三边长分别为3、4、5,那么这个三角形的面积是_________。
全国初三初中数学竞赛测试带答案解析
全国初三初中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、填空题1.分数,,,,中最小的一个是。
2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN的面积为。
3.将105表示成不少于两个连续的(非零)自然数之和,最多有种表达方式。
4.将奇数1、3、5、…、2007、2009从小到大排成一个多位数A=135********…20072009,从A中截出能被5整除的五位数,则所有的这种五位数中,最小数是,最大数是。
二、解答题1.如果一个自然数n能被不超过的所有的非0自然数整除,我们称自然数n为“牛数”。
请写出所有的牛数。
2.循环小数0.xyz可以表达成0.xyz=。
已知算式´0.c5d=中a,b,c,d,e,f都是数字,且c<4。
求出所有满足条件的两位数。
3.下列m个整数中恰有69个不同的整数,问自然数m的最大值和最小值分别是多少?[],[],[],…,[]。
4.已知四边形ABCD中AD//BC,AD:BC=1:2,SD AOF :SD DOE=1:3,SD BEF="24" cm2,求r AOF的面积。
全国初三初中数学竞赛测试答案及解析一、填空题1.分数,,,,中最小的一个是。
【答案】【解析】略2.如右图所示,ABCD是一个正方形,其中几块阴影部分的面积如图所示,则四边形BMQN的面积为。
【答案】24【解析】S(ADP)+S(APM)+S(MBC)="0.5" S(ABCD)=S(AND)两边各减去公共部分即 APD QNR 即得到S(APM)+S(BMQN)+S(RNC)=S(DQPR)故S(BMQN)=243.将105表示成不少于两个连续的(非零)自然数之和,最多有种表达方式。
【答案】7【解析】首先,分为2类.一·数字个数为奇数.105=3×5×7 经验证数字个数可为 3 5 7 9 即 34 35 36; 19 20 21 22 23 ; 12 13 14 15 16 17 18 ;11 12 13 14 15 16 17 18 19二·数字个数为偶数.个数为二时,52 53;个数为 4 8 ……是不可能的,因为和不可能是奇数;根据奇数的情况知,偶数个数必须为 6 10 14 18等当数字个数为14时,中间的数介于6 到7之间,因此最小的数就不能满足为自然.故总共有 4+1+2 种情况.4.将奇数1、3、5、…、2007、2009从小到大排成一个多位数A=135********…20072009,从A中截出能被5整除的五位数,则所有的这种五位数中,最小数是,最大数是。
初三数学竞赛试题及答案
初三数学竞赛试题及答案一、选择题1. 已知平面内一直线L的倾斜角为α,斜率为k,若点A(-1,2)在L 上,则直线L的方程为:A. y-2 = k(x+1)B. y+2 = k(x-1)C. y-2 = k(x-1)D. y+2 = k(x+1)答案:A2. 若函数f(x) = ax^2 + bx + c 是一个减函数,那么a, b, c的关系是:A. a > 0, b > 0, c > 0B. a > 0, b < 0, c < 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c > 0答案:D3. 已知等差数列{an}的公差为d,首项为a1,末项为an,且an =3a1,若a4 = 7,则d的值是:A. 1B. 2C. 3D. 4答案:B4. 在ΔABC中,∠A=60°,AC=2AB,则∠B的度数为:A. 40°B. 50°C. 60°D. 70°答案:D5. 若直角三角形的两直角边分别为3和4,求斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题1. 已知ABC是一个等边三角形,AB的边长为5,则三角形ABC 的面积为______。
答案:(25√3)/42. 若一组数据中50%的数据小于等于10,25%的数据大于15,中位数为12,则这组数据的总个数为______。
答案:83. 若甲数是乙数的8倍,且甲数减去乙数等于30,则甲数的绝对值为______。
答案:404. 已知某数的60%等于120,这个数是______。
答案:2005. 若甲数是乙数的1/5,乙数是丙数的1/3,则甲数与丙数之和的三倍为______。
答案:28三、解答题1. 一条细长导线的电阻率R为ρ,长度为l,截面积为A。
如果将导线的长度翻倍,截面积减半,则新的导线的电阻率是多少?答:R2. 已知函数f(x)满足f(x+1) = 2f(x) - 1,且f(2) = 3,求f(5)的值。
全国初三数学竞赛试题含答案
中国教育学会中学数学教学专业委员会“《数学周报》杯”20XX 年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题7分,共35分. 以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.已知非零实数a ,b 满足24242a b a -+++=,则a b +等于( ).(A )-1 (B )0 (C )1 (D )22.如图,菱形ABCD 的边长为a ,点O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a 等于( ).(A)12 (B(C )1 (D )2 3.将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先 后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b ,则使关于x ,y的方程组322ax by x y +=⎧⎨+=⎩, 只有正数解的概率为( ). (A )121 (B )92 (C )185 (D )36134.如图1所示,在直角梯形ABCD 中,AB ∥DC ,90B ∠=︒. 动点P 从点 B 出发,沿梯形的边由B →C →D →A 运动. 设点P 运动的路程为x ,△ABP 的面积为y . 把y 看作x 的函数,函数的图象如图2所示,则△ABC 的面积为( ).(A )10 (B )16 (C )18 (D )325.关于x ,y 的方程22229x xy y ++=的整数解(x ,y )的组数为( ).(A )2组 (B )3组 (C )4组 (D )无穷多组二、填空题(共5小题,每小题7分,共35分)6.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶 3000 km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶 km .7.已知线段AB 的中点为C ,以点A 为圆心,AB 的长为半径作圆,在线段AB 的延长线上取点D ,使得BD =AC ;再以点D 为圆心,DA 的长为半径作圆,与⊙A 分别相交于F ,G 两点,连接FG 交AB 于点H ,则AH AB 的值为 . 8.已知12345a a a a a ,,,,是满足条件123459a a a a a ++++=的五个不同的整数,若b 是关于x 的方程()()()()()123452009x a x a x a x a x a -----=的整数根,则b 的值为 .9.如图,在△ABC 中,CD 是高,CE 为ACB ∠的平分线.若AC =15,BC =20,CD =12,则CE 的长等于 .10.10个人围成一个圆圈做游戏.游戏的规则是:每个人心里都想好一个数,并把自己想好的数如实地告诉他两旁的两个人,然后每个人将他两旁的两个人告诉他的数的平均数报出来.若报出来的数如图所示,则报3的人心里想的数是 .三、解答题(共4题,每题20分,共80分) 11.函数22(21)y x k x k =+-+的图象与x 轴的两个交点是否都在直线1x =的右侧?若是,请说明理由;若不一定是,请求出两个交点都在直线1x =的右侧时k 的取值范围.12.在平面直角坐标系xOy 中,我们把横坐标为整数、纵坐标为完全平方数的点称为“好点”,求二次函数2(90)4907y x =--的图象上所有“好点”的坐标.13.如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.14.n个正整数12n a a a ,,,满足如下条件:1212009n a a a =<<<=;且12n a a a ,,,中任意n -1个不同的数的算术平均数都是正整数.求n 的最大值.答案1.【答】C .解:由题设知a ≥3,所以,题设的等式为20b +=,于是32a b ==-,,从而a b +=1.2.【答】A .解:因为△BOC ∽ △ABC ,所以BO BC AB AC =,即 11a a a =+, 所以, 210a a --=.由0a >,解得a =3.【答】D .解:当20a b -=时,方程组无解.当02≠-b a 时,方程组的解为62,223.2b x a b a y a b -⎧=⎪⎪-⎨-⎪=⎪-⎩由已知,得⎪⎪⎩⎪⎪⎨⎧>-->--,0232,0226b a a b a b 即⎪⎪⎩⎪⎪⎨⎧<>>-,3,23,02b a b a 或⎪⎪⎩⎪⎪⎨⎧><<-.3,23,02b a b a 由a ,b 的实际意义为1,2,3,4,5,6,可得2345612a b =⎧⎨=⎩,,,,,,,共有 5×2=10种情况;或1456a b =⎧⎨=⎩,,,,共3种情况. 又掷两次骰子出现的基本事件共6×6=36种情况,故所求的概率为3613. 4.【答】B .解:根据图像可得BC =4,CD =5,DA =5,进而求得AB =8,故 S △ABC =12×8×4=16. 5.【答】C .解:可将原方程视为关于x 的二次方程,将其变形为22(229)0x yx y ++-=.由于该方程有整数根,则判别式∆≥0,且是完全平方数.由 2224(229)7116y y y ∆=--=-+≥0, 解得 2y ≤11616.57≈.于是 显然,只有216y =时,4∆=是完全平方数,符合要求.当4y =时,原方程为2430x x ++=,此时121,3x x =-=-;当y =-4时,原方程为2430x x -+=,此时341,3x x ==.所以,原方程的整数解为111,4;x y =-⎧⎨=⎩ 223,4;x y =-⎧⎨=⎩ 331,4;x y =⎧⎨=-⎩ 443,4.x y =⎧⎨=-⎩ 6.【答】3750.解:设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1 km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了x km ,交换位置后走了y km .分别以一个轮胎的总磨损量为等量关系列方程,有,50003000,50003000kx ky k ky kx k ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相加,得()()250003000k x y k x y k +++=, 则 237501150003000x y +==+. 7.解:如图,延长AD 与⊙D 交于点E ,连接AF ,EF . 由题设知13AC AD =,13AB AE =,在△FHA 和△EF A 中, 90EFA FHA ∠=∠=︒,FAH EAF ∠=∠所以 Rt △FHA ∽Rt △EF A , AH AF AF AE =.而AF AB =,所以AH AB 13=. 8.【答】 10. 解:因为()()()()()123452009b a b a b a b a b a -----=,且12345a a a a a ,,,,是五个不同的整数,所有12345b a b a b a b a b a -----,,,,也是五个不同的整数.又因为()()2009117741=⨯-⨯⨯-⨯,所以1234541b a b a b a b a b a -+-+-+-+-=.由123459a a a a a ++++=,可得10b =.9.. 解:如图,由勾股定理知AD =9,BD =16,所以AB =AD +BD =25 .故由勾股定理逆定理知△ACB 为直角三角形,且90ACB ∠=︒.作EF ⊥BC ,垂足为F .设EF =x ,由1452ECF ACB ∠=∠=︒,得CF =x ,于是BF =20-x .由于EF ∥AC ,所以E F B F A C B C=, 即 201520x x -=, 解得607x =.所以7CE ==. 10.【答】2-.解:设报3的人心里想的数是x ,则报5的人心里想的数应是8x -.于是报7的人心里想的数是 12(8)4x x --=+,报9的人心里想的数是 16(4)12x x -+=-,报1的人心里想的数是 20(12)8x x --=+,报3的人心里想的数是4(8)4x x -+=--.所以4x x =--,解得2x =-.11.解:不一定,例如,当k =0时,函数的图象与x 轴的交点为(0,0)和 (1,0),不都在直线1x =的右侧. ………………5分设函数与x 轴的两交点的横坐标为12,x x ,则21212(21),x x k xx k +=--=,当且仅当满足如下条件12120,(1)(1)0,(1)(1)0x x x x ∆⎧⎪-+->⎨⎪-->⎩≥ ………………10分时,抛物线与x 轴的两交点都在直线1x =的右侧.由 222(21)40,210,20,k k k k k ⎧--⎪-->⎨⎪+>⎩≥解之,得 1,41,220.k k k k ⎧⎪⎪⎪<-⎨⎪<->⎪⎪⎩≤或 ………………15分 所以当2k <-时,抛物线与x 轴的两交点在直线1x =的右侧.………………20分12.解:设2,y m =22(90)x k -=,m ,k 都是非负整数,则22770114907k m -=⨯=⨯,即 ()()7701149k m k m -+=⨯=⨯. ……………10分 则有 701,49077; 1.k m k m k m km +=+=⎧⎧⎨⎨-=-=⎩⎩ 解得 1212354,2454,347;2453.k k m m ==⎧⎧⎨⎨==⎩⎩ 所以 312412342544,444,264,2364,120409;120409;6017209;6017209.x x x x y y y y ===-=-⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩ 故“好点”共有4个,它们的坐标是:4441204092641204092544601720923646017209--(,),(,),(,),(,). ………………20分13.解法1:结论是DF EG =.下面给出证明. ………………5分因为FCD EAB ∠=∠,所以Rt △FCD ∽ Rt △EAB .于是可得CD DF BE AB=⋅. 同理可得 CE EG AD AB =⋅. ………………10分 又因为tan AD BE ACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅DF EG =. ………………20分解法2:结论是DF EG =.下面给出证明.……………… 5分连接DE ,因为90ADB AEB ∠=∠=︒,所以A ,B ,D ,E四点共圆,故 CED ABC ∠=∠. ………………10分又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠. ………………15分 所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .………………20分14.解:设12n a a a ,,,中去掉i a 后剩下的n -1个数的算术平均数为正整数i b ,12i n =,,,.即 12()1n i i a a a a b n +++-=-. 于是,对于任意的1≤i j <≤n ,都有1j ii j a a b b n --=-,从而 1()j i n a a --. ………………5分由于 11200811n n a a b b n n --==--是正整数,故 312251n -⨯. ………………10分 由于 ()()()112211n n n n n a a a a a a a ----=-+-++- ≥()()()2111(1)n n n n -+-++-=-,所以,2(1)n -≤2008,于是n ≤45.结合312251n -⨯,所以,n ≤9. ………………15分另一方面,令123801,811,821a a a =⨯+=⨯+=⨯+,…,8871a =⨯+,982511a =⨯+,则这9个数满足题设要求.综上所述,n 的最大值为9. ………………20分(第13题)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国初中数学竞赛 试题参考答案及评分标准一、选择题(共5小题,每小题7分,满分35分) (1)设x =,则代数式(1)(2)(3)x x x x +++的值为( ). (A )0 (B )1 (C )﹣1 (D )2【答】C .解:由已知得2310x x ++=, 于是2222(1)(2)(3)(3)(32)(31)1 1.x x x x x x x x x x +++=+++=++-=-(2)已知x y z ,,为实数,且满足253x y z +-=,25x y z --=-,则222x y z ++的最小值为( ).(A )111(B )0 (C )5 (D )5411【答】D .解:由 25325x y z x y z +-=⎧⎨--=-⎩,, 可得 312.x z y z =-⎧⎨=+⎩,于是 22221125x y z z z ++=-+.因此,当111z =时,222x y z ++的最小值为5411. (3)若1x >,0y >,且满足3y y xxy x x y==,,则x y +的值为( ).(A )1 (B )2 (C )92(D )112【答】C .解:由题设可知1y y x -=,于是 341y y x yx x -==,所以411y -=.故12y =,从而4=x .于是92x y +=.(4)设333311111232011S =++++,则4S 的整数部分等于( ). (A )4 (B )5 (C )6 (D )7【答】A .解:当2 3 2011k =,,,,因为()()()32111112111k k k k k k k ⎡⎤<=-⎢⎥-+-⎣⎦, 所以333111111511123201122201120124S ⎛⎫<=++++<+-< ⎪⨯⎝⎭. 于是有445S <<,故4S 的整数部分等于4.(5)点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S ∆∆∆====四边形,,,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S < (B )1324S S S S = (C )1324S S S S > (D )不能确定 【答】C .解:如图,连接DE ,设1DEF S S ∆'=, 则1423S S EF S BF S '==,从而有1324S S S S '=.因为11S S '>,所以1324S SSS >.二、填空题(共5小题,每小题7分,共35分)(6)两条直角边长分别是整数a b ,(其中2011b <),斜边长是1b +的直角三角形的个数为 .【答】31.解:由勾股定理,得 12)1(222+=-+=b b b a .因为b 是整数,2011<b ,所以2a 是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即2223 5 63,,,.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数为31.(7)一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数之和为7的概率是 .【答】16.解: 在36对可能出现的结果中,有6对:(1,6), (2,5), (2,5), (3,4),(3,4),(4,3)的和为7,所以朝上的面两数字之和为7的概率是61366=.(8)若y =的最大值为a ,最小值为b ,则22a b +的值为 .【答】32.解:由1x -≥0,且12x -≥0,得12≤x ≤1.21122y =+=+ 由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故2b =.所以,2232a b +=.(9)如图,双曲线xy 2=(x >0)与矩形OABC 的边CB , BA 分别交于点E ,F ,且AF=BF ,连接EF ,则△OEF 的面积为 .【答】32.解:如图,设点B 的坐标为a b (,),则点F 的坐标为2ba (,).因为点F 在双曲线2y x=上,所以 4.ab = 又点E 在双曲线上,且纵坐标为b ,所以点E 的坐标为2(,)b b.于是11212222221312.22OEF OEC FBEOFBC S S S S b b b a b a b b ab ∆∆∆=--=+-⨯⨯-⨯⨯-=+-=梯形()()() (10)如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .【答】84.解:如图,设BC =a,AC =b , 则22235a b +==1225. ① 又Rt △AFE ∽Rt △ACB , 所以FE AF CB AC =,即1212b a b-=, 故12()a b ab +=. ②由①②得 2222122524a b a b ab a b +=++=++()(),解得a +b =49(另一个解-25舍去),所以 493584a b c ++=+=.三、解答题(共4题,每题20分,共80分)(11)已知关于x 的一元二次方程20x cx a ++=的两个整数根恰好比方程20x ax b ++=的两个根都大1,求a b c ++的值.解:设方程20x ax b ++=的两个根为αβ,,其中αβ,为整数,且α≤β,则方程20x cx a ++=的两根为11αβ++,,由题意得()()11a a αβαβ+=-++=,, ………………………………5分两式相加,得2210αβαβ+++=,即 (2)(2)3αβ++=, 所以,2123αβ+=⎧⎨+=⎩,;或232 1.αβ+=-⎧⎨+=-⎩,………………………………10分 解得 11αβ=-⎧⎨=⎩,; 或53.αβ=-⎧⎨=-⎩,又因为[11]a b c αβαβαβ=-+==-+++(),,()(), 所以012a b c ==-=-,,;或者8156a b c ===,,, 故3a b c ++=-,或29. ………………………………………………20分(12)如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.证明:如图,延长AP 交⊙2O 于点Q , 连接 AH BD QB QC QH ,,,,.因为AB 为⊙1O 的直径,所以∠ADB =∠90=︒BDQ .…………5分 故BQ 为⊙2O 的直径. 于是CQ BC BH HQ ⊥⊥,. ……………………………………………………10分又因为点H 为△ABC 的垂心,所以.AH BC BH AC ⊥⊥,所以AH ∥CQ ,AC ∥HQ , 四边形ACQH为平行四边形. ………………………………………………15分所以点P 为CH 的中点. ………………………………………………20分(13) 如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x =于P ,Q 两点. (Ⅰ)求证:∠ABP =∠ABQ ; (Ⅱ)若点A 的坐标为(0,1), 且∠PBQ =60º,试求所有满足条件的 直线PQ 的函数解析式.解:(Ⅰ)如图,分别过点P Q , 作y. 设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ). 设直线PQ 的函数解析式为y kx t =+,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x =+⎧⎪⎨=⎪⎩,, 得2203x kx t --=,于是 32P Q x x t =-,即 23P Q t x x =-.于是,222323P P Q Qx t y t BC BD y t x t ++==++22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x --===--- …………5分又因为P Q x PC QD x =-,所以BC PCBD QD=. 因为∠BCP =∠90BDQ =︒,所以△BCP ∽△BDQ . 故∠ABP =∠ABQ . …………………………………………………………10分(Ⅱ)解法一 设PC a =,DQ b =,不妨设a ≥b >0, 由(Ⅰ)可知∠ABP =∠30ABQ =︒,BC,BD, 所以 AC2-,AD=2. 因为PC ∥DQ ,所以△ACP ∽△ADQ . 于是PC ACDQ AD=,即a b.所以a b +=. 由(Ⅰ)中32P Q x x t =-,即32ab -=-,所以322ab a b =+=,于是,可求得2==a b将2b =代入223y x =,得到点Q 的坐标,12). …………………15分再将点Q 的坐标代入1y kx =+,求得=k .所以直线PQ 的函数解析式为13y x =-+. 根据对称性知,所求直线PQ 的函数解析式为1y =+,或1y x =+. ………………20分解法二 设直线PQ 的函数解析式为y kx t =+,其中1t =. 由(Ⅰ)可知,∠ABP =∠30ABQ =︒,所以2BQ DQ =.故 2Q x =将223Q Q y x =代入上式,平方并整理得 4241590Q Q x x -+=,即22(43)(3)0Q Q x x --=.所以 2Q x =. 又由(Ⅰ),得3322P Q x x t =-=-,32P Q x x k +=.若2Q x =代入上式得 P x = 从而 2()3P Q k x x =+=.同理,若Q x = 可得2P x =-从而 2()33P Q k x x =+=.所以,直线PQ 的函数解析式为1y x =+,或1y x =+. ………………………………………20分(14)已知0122011i a i >=,, , , ,且122011a a a <<<,证明:122011a a a ,,,中一定存在两个数i j a a i j <,(),使得(1)(1)2010i j j i a a a a ++-<.证明:令20101 2 20111i ix i a ==+,,,,, ……………………………………5分则20112010102010x x x <<<<<. …………………………………10分故一定存在1≤k ≤2010, 使得11k k x x +-<,从而120102010111k k a a +-<++. …………………………………15分即11(1)(1)2010k k k k a a a a ++++-<. …………………………………………20分。