云南省临沧市2021届新高考数学第四次调研试卷含解析
2021年全国统一高考数学试卷(新高考Ⅰ)(含答案解析)

2021年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|﹣2<x<4},B={2,3,4,5},则A∩B=()A.{2}??B.{2,3}??C.{3,4}??D.{2,3,4}2.(5分)已知z=2﹣i,则z(+i)=()A.6﹣2i??B.4﹣2i??C.6+2i??D.4+2i3.(5分)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2??B.2??C.4??D.44.(5分)下列区间中,函数f(x)=7sin(x﹣)单调递增的区间是()A.(0,)??B.(,π)??C.(π,)??D.(,2π)5.(5分)已知F1,F2是椭圆C:+=1的两个焦点,点M在C上,则|MF1|•|MF2|的最大值为()A.13??B.12??C.9??D.66.(5分)若tanθ=﹣2,则=()A.﹣??B.﹣??C.??D.7.(5分)若过点(a,b)可以作曲线y=ex的两条切线,则()A.eb<a??B.ea<b??C.0<a<eb??D.0<b<ea8.(5分)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立??B.甲与丁相互独立??C.乙与丙相互独立??D.丙与丁相互独立二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.(5分)有一组样本数据x1,x2,…,xn,由这组数据得到新样本数据y1,y2,…,yn,其中yi=xi+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同??B.两组样本数据的样本中位数相同??C.两组样本数据的样本标准差相同??D.两组样本数据的样本极差相同10.(5分)已知O为坐标原点,点P1(cosα,sinα),P2(cosβ,﹣sinβ),P3(cos(α+β),sin(α+β)),A(1,0),则()A.||=||??B.||=||??C.•=•??D.•=•11.(5分)已知点P在圆(x﹣5)2+(y﹣5)2=16上,点A(4,0),B(0,2),则()A.点P到直线AB的距离小于10??B.点P到直线AB的距离大于2??C.当∠PBA最小时,|PB|=3??D.当∠PBA最大时,|PB|=312.(5分)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值??B.当μ=1时,三棱锥P﹣A1BC的体积为定值??C.当λ=时,有且仅有一个点P,使得A1P⊥BP??D.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三、填空题:本题共4小题,每小题5分,共20分。
2021年高考数学试卷新高考2卷含参考答案解析

2021年高考数学试卷新高考2卷含参考答案解析2021年普通高等学校招生全国统一考试数学试卷(新高考2卷)注意事项:1.在答题卡上填写姓名、考生号、考场号和座位号。
用2B铅笔将试卷类型填涂在答题卡相应位置上,并将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,用2B铅笔在答题卡上对应题目的答案信息点涂黑。
如需改动,用橡皮擦干净后再涂其他答案。
不要在试卷上作答。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上。
如需改动,先划掉原来的答案,然后再写上新答案。
不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
单选题:1.复数2-i在复平面内对应的点所在的象限为()。
A.第一象限 B.第二象限 C.第三象限 D.第四象限2.设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A∪B的结果为()。
A.{3} B.{1,6} C.{5,6} D.{1,3}3.抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为2,则p=()。
A.1 B.2 C.22 D.44.北斗三号全球卫星导航系统是我国航天事业的重要成果,其中地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为km。
将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数。
地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1-cosα)(单位:km2)。
则S占地球表面积的百分比约为()。
A.26% B.34% C.42% D.50%5.正四棱台的上底面和下底面的边长分别为2和4,侧棱长为2,则其体积为()。
A.20+123 B.282 C.56√3/2 D.282√3/36.某物理量的测量结果服从正态分布N(10,σ),下列结论中不正确的是()。
2021届高三数学新高考冲刺四套卷-强化小题(1)(答案解析)

D. (−3, − 1) 3
【答案】B 【解析】 【分析】
由
x0
y0
−1 ,求出
x0
的取值范围,再求
y0 x0
的范围.
【详解】由题意 3x0 + y0 + 2 = 0 , y0 = −3x0 − 2 ,
∵
x0
y0
−1 ,∴
x0
−3x0
−
2 −1,解得
x0
−
3 4
,
y0 = −3x0 − 2 = −3 − 2 ,
则下列结论正确的是( )
A. f(x)的图象关于直线 x = 对称 2
B. f(x)在(0,2π)上有且只有 3 个极大值点,f(x)在(0,2π)上有且只有 2 个极小值点
3
A.
2
B. 2
4
C.
3
5
D.
3
【答案】A
【解析】
分析】
设该圆锥的底面半径为 r ,母线长为 l ,根据题意可得 r = l ,所以 l = 2r ,然后根据圆锥的表面积公式
计算即可.
【详解】设该圆锥的底面半径为 r ,母线长为 l ,根据题意可得 r = l ,所以 l = 2r
( ) 所以这个圆锥的表面积与侧面积比值是 rl : rl + r2 = 2 r2 : 3 r2 = 2 : 3
对于 B ,在线性回归模型中,相关指数 R2=0.96 ,说明解释变量对于预报变量变化的贡献率约为 96% ,故
选项 B 正确;
对于 C ,因为 = 2 且 P(0 X 2) = 0.4 ,所以 P(2 X 4) = 0.4 ,所以 P(X 4) = P(X 2) − P(0 X 2) = 0.5 − 0.4 = 0.1 ,故选项 C 错误;
2021届高三数学新高考冲刺四套卷-强化小题(3)(答案解析)

A. 0,1是 f ( x) 一个“完美区间”
的 B.
【详解】解:
g ( x)
=
2
sin
3 2
−
x
−
1
=
−2cos x −1
,因为
f
( x) 与 g ( x) 图象关于
y 轴对称,
x
x
则 f ( x) = −2cos(−x) −1 = 2cos x +1, x 0 ,
−x
x
f
2
=
2cos 2
2
+1
=
2
0 ,排除
C,
f
−
2
=
2
cos
【详解】因为 y = log3 x 在 (0, +) 上单调递增,
所以 a = log3 0.2 log3 1 = 0,
因为 y = log0.2 x 在 (0, +) 上单调递减,
所以 0 = log0.2 1 b = log0.2 0.3 log0.2 0.2 = 1, 因为 y = 10x 在 R 上单调递增,
, 又 f (x −1) 是奇函数,所以 f (x) 关于(−1,0) 对称,
所以 f (x − 3) + f (1− x) = 0 则 f (x − 3) = f (x +1) ,
所以 f (x) = f (x + 4) , 即 f ( x) 是以 4 为一个周期的函数,
云南省临沧市2021届新第二次高考模拟考试数学试卷含解析

云南省临沧市2021届新第二次高考模拟考试数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,在三棱锥S ABC -中,SA ⊥平面ABC ,AB BC ⊥,现从该三棱锥的4个表面中任选2个,则选取的2个表面互相垂直的概率为( )A .12B .14C .13D .23【答案】A 【解析】 【分析】根据线面垂直得面面垂直,已知SA ⊥平面ABC ,由AB BC ⊥,可得BC ⊥平面SAB ,这样可确定垂直平面的对数,再求出四个面中任选2个的方法数,从而可计算概率. 【详解】由已知SA ⊥平面ABC ,AB BC ⊥,可得SB BC ⊥,从该三棱锥的4个面中任选2个面共有246C =种不同的选法,而选取的2个表面互相垂直的有3种情况,故所求事件的概率为12. 故选:A . 【点睛】本题考查古典概型概率,解题关键是求出基本事件的个数. 2.已知{}1A x x =<,{}21xB x =<,则A B =U ( ) A .()1,0- B .()0,1C .()1,-+∞D .(),1-∞【答案】D 【解析】 【分析】分别解出集合,A B 、然后求并集. 【详解】解:{}{}111A x x x x =<=-<<,{}{}210xB x x x =<=<A B =U (),1-∞故选:D 【点睛】考查集合的并集运算,基础题. 3.复数12ii--的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】 【详解】试题分析:由题意可得:131255i i i -=--. 共轭复数为3155i +,故选A. 考点:1.复数的除法运算;2.以及复平面上的点与复数的关系4.已知非零向量,a b r r 满足a b λ=r r ,若,a b rr 夹角的余弦值为1930,且()()23a b a b -⊥+r r r r ,则实数λ的值为( ) A .49-B .23C .32或49-D .32【答案】D 【解析】 【分析】根据向量垂直则数量积为零,结合a b λ=r r以及夹角的余弦值,即可求得参数值.【详解】依题意,得()()230a b a b -⋅+=r r r r ,即223520a a b b -⋅-=rr r r .将a b λ=r r代入可得,21819120λλ--=,解得32λ=(49λ=-舍去).故选:D. 【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题. 5.设命题p:n ∃>1,n 2>2n ,则⌝p 为( ) A .21,2n n n ∀>> B .21,2n n n ∃≤≤ C .21,2n n n ∀>≤ D .21,2n n n ∃>≤【答案】C 【解析】根据命题的否定,可以写出p ⌝:21,2nn n ∀>≤,所以选C.6.若双曲线()222210,0x y a b a b-=>>的渐近线与圆()2221x y -+=相切,则双曲线的离心率为( )A .2 B.CD【答案】C 【解析】 【分析】利用圆心(2,0)到渐近线的距离等于半径即可建立,,a b c 间的关系. 【详解】由已知,双曲线的渐近线方程为0bx ay ±=,故圆心(2,0)到渐近线的距离等于11=,所以223a b =,c e a ====3. 故选:C. 【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立,,a b c 三者间的方程或不等关系,本题是一道基础题.7.已知a ,b ,R c ∈,a b c >>,0a b c ++=.若实数x ,y 满足不等式组040x x y bx ay c ≥⎧⎪+≤⎨⎪++≥⎩,则目标函数2z x y =+( ) A .有最大值,无最小值 B .有最大值,有最小值 C .无最大值,有最小值 D .无最大值,无最小值【答案】B 【解析】 【分析】判断直线0bx ay c ++=与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况. 【详解】由0a b c ++=,a b c >>,所以可得0,0a c ><.1112,22222c c c ca b a a c b c a c c a a a a>⇒>--⇒>->⇒-->⇒<-∴-<<-⇒<-<,所以由0b cbx ay c y x a a++=⇒=--,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值. 故选:B 【点睛】本题考查了目标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.8.设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101, B .(]099, C .(]0100, D .()0+∞,【答案】B 【解析】 【分析】画出函数图像,根据图像知:1210x x +=-,341x x =,31110x ≤<,计算得到答案. 【详解】()21010 lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示:根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.9.在平行四边形ABCD中,113,2,,D,32AB AD AP AB AQ A====u u u v u u u v u u u v u u u v若CP C12,Q⋅=u u u v u u u v则ADC∠=( )A.56πB.34πC.23πD.2π【答案】C 【解析】【分析】由23CP CB BP AD AB=+=--u u u r u u u r u u u r u u u r u u u r,12CQ CD DQ AB AD=+=--u u u r u u u r u u u r u u u r u u u r,利用平面向量的数量积运算,先求得,3BADπ∠=利用平行四边形的性质可得结果. 【详解】如图所示,平行四边形ABCD 中, 3,2AB AD ==,11,32AP AB AQ AD ==u u u r u uu r u u u r u u u r ,23CP CB BP AD AB ∴=+=--u u u r u u u r u u u r u u u r u u u r ,12CQ CD DQ AB AD =+=--u u u r u u u r u u u r u u u r u u u r ,因为12CP CQ ⋅=u u u r u u u r,所以2132CP CQ AD AB AB AD ⎛⎫⎛⎫⋅=--⋅-- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r22214323AB AD AB AD =++⋅u u ur u u u r u u u r u u u r222143232cos 12323BAD =⨯+⨯+⨯⨯⨯∠=, 1cos 2BAD ∠=,,3BAD π∴∠= 所以233ADC πππ∠=-=,故选C. 【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和). 10.复数1i i+=( ) A .2i - B .12i C .0 D .2i【答案】C 【解析】略11.如图是一个几何体的三视图,则该几何体的体积为( )A .23 B.43C .233D .433【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =2AB =.∴该几何体的体积为1232232V =⨯= 故选:A. 【点睛】本题考查三视图及棱柱的体积,属于基础题. 12.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】设i,(,)z a b a b R =+∈,由||23z z i =-,得222i=(a b z a b +--+,利用复数相等建立方程组即可. 【详解】设i,(,)z a b a b R =+∈,则222i=(a bz a b +--+,所以2220a b a b ⎧+⎪=⎨⎪+=⎩, 解得222a b ⎧=⎪⎨⎪=-⎩,故22i z =-,复数z 在复平面内对应的点为2(2)-,在第四象限.故选:D. 【点睛】本题考查复数的几何意义,涉及到共轭复数的定义、复数的模等知识,考查学生的基本计算能力,是一道容易题.二、填空题:本题共4小题,每小题5分,共20分。
2021新高考新题型——数学多选题专项练习(4)(含答案解析)

2021新高考新题型——数学多选题专项练习(4)一、多选题1. 我们将横、纵坐标均为整数的点称为整点,则直线:(l y kx b =+ ) A .存在k ,b R ∈使得直线l 上无整点B .存在k ,b R ∈使得直线l 上恰有一个整点C .存在k ,b R ∈使得直线l 上恰有两个整点D .存在k ,b R ∈使得直线l 上有无数个整点2. 已知实数a ,b 满足0a >,0b >,1a ≠,1b ≠,且lgb x a =,lga y b =,lga z a =,lgb w b =,则( )A .存在实数a ,b ,使得x y z w >>>B .存在a b ≠,使得x y z w ===C .任意符合条件的实数a ,b 都有x y =D .x ,y ,z ,w 中至少有两个大于13. 已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,下列关于函数()f x 的性质,描述正确的是( ) A .()f x 是增函数 B .()f x 是周期函数 C .()f x 的值域为[0,1)D .()f x 是偶函数 4. 正方体截面的形状有可能为( ) A .正三角形B .正方形C .正五边形D .正六边形5. 已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆B .B A ⊆C .A B =D .AB =∅6. 设全集{0U =,1,2,3,4},集合{0A =,1,4},{0B =,1,3},则( ) A .{0A B =,1} B .{4}UB =C .{0AB =,1,3,4}D .集合A 的真子集个数为87. 定义“正对数”: 0011x ln x lnx x +<<⎧=⎨⎩若0a >,0b >,则下列结论中正确的是( )A .()b ln a bln a ++=B .()ln ab ln a ln b +++=+C .()aln ln a ln b b+++-D .()ln a b ln a ln b +++++E .()2ln a b ln a ln b ln ++++++8. 如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确的是( )A .PB AC ⊥ B .PC BC ⊥C .AC ⊥平面PBCD .平面PAB ⊥平面PBCE .平面PAC ⊥平面PBC 9. 下面说法中错误的是( )A .经过定点0(P x ,0)y 的直线都可以用方程00()y y k x x -=-表示B .经过定点0(P x ,0)y 的直线都可以用方程00()x x m y y -=-表示C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .不经过原点的直线都可以用方程1x ya b+=表示 E .经过任意两个不同的点11(P x ,1)y ,22(P x ,2)y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示10. 已知双曲线2222:1(0,0)x y C a b a b-=>>23,右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点,则有( ) A .渐近线方程为3y x = B .渐近线方程为3y x = C .60MAN ∠=︒D .120MAN ∠=︒11. 设有一组圆224:(1)()(*)C x y k k k N -+-=∈,下列四个命题正确的是( )A .存在k ,使圆与x 轴相切B .存在一条直线与所有的圆均相交C .存在一条直线与所有的圆均不相交D .所有的圆均不经过原点12. 一几何体的平面展开图如图所示,其中四边形ABCD 为正方形,E 、F 分别为PB 、PC 的中点,在此几何体中,给出的下面结论中正确的有( )A .直线AE 与直线BF 异面B .直线AE 与直线DF 异面C .直线//EF 平面PADD .直线DF ⊥平面PBC13. 已知函数()2sin(2)13f x x π=-+,则下列说法正确的是( )A .()2()6f x f x π-=-B .()6f x π-的图象关于4x π=对称C .若1202x x π<<<,则12()()f x f x <D .若123,,[,]32x x x ππ∈,则123()()()f x f x f x +>14. 已知函数()2x x e e f x --=,()2x xe e g x -+=,则()f x 、()g x 满足( )A .()()f x f x -=-,()()g x g x -=B .(2)f f -<(3),(2)g g -<(3)C .(2)2()()f x f x g x =D .22[()][()]1f x g x -=15. 现有一段长度为n 的木棍,希望将其锯成尽可能多的小段,要求每一小段的长度都是整数,并且任何一个时刻,当前最长的一段都严格小于当前最短的一段长度的2倍,记对n 符合条件时的最多小段数为()f n ,则( ) A .f (7)3=B .f (7)4=C .(30)6f =D .(30)7f =16. 已知O ,A ,B ,C 为平面上两两不重合的四点,且(0)xOA yOB zOC O xyz ++=≠,则( )A .当且仅当0xyz <时,O 在ABC ∆的外部B .当且仅当::3:4:5x y z =时,4ABC OBC S S ∆∆= C .当且仅当x y z ==时,O 为ABC ∆的重心D .当且仅当0x y z ++=时,A ,B ,C 三点共线 17. 下列说法,正确的有( )A .函数()36f x lnx x =+-的零点只有1个且属于区间(1,2)B .若关于x 的不等式2210ax ax ++>恒成立,则(0,1)a ∈C .函数y x =的图象与函数sin y x =的图象有3个不同的交点D .函数sin cos sin cos ,[0,]4y x x x x x π=++∈的最小值是118. 已知x ,y ,z R ∈,且x y z π++=,则cos cos cos f x y z =++的最值情况为( ) A .最大值为3B .最小值为3-C .最大值为32D .最小值为32-19. 在数列{}n a 中,*n N ∈,若211(n n n na a k k a a +++-=-为常数),则称{}n a 为“等差比数列”,下列对“等差比数列”的判断正确的为( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为02021新高考新题型——数学多选题专项练习(4)答案解析一、多选题1. 我们将横、纵坐标均为整数的点称为整点,则直线:(l y kx b =+ ) A .存在k ,b R ∈使得直线l 上无整点B .存在k ,b R ∈使得直线l 上恰有一个整点C .存在k ,b R ∈使得直线l 上恰有两个整点D .存在k ,b R ∈使得直线l 上有无数个整点 【解析】解:根据题意,依次分析选项: 对于A ,当1k =,13b =时,直线l 的方程为13y x =+,直线l 上无整点,A 正确;对于B ,当k 0b =时,直线l 的方程为y =,直线l 上恰有一个整点(0,0),B 正确;对于C ,假设直线l 上恰有两个整点为1(m ,1)n 和2(m ,2)n ,则有0k ≠, 此时直线l 存在第三个整点:21(2m m -,212)n n -,C 错误;对于D ,当0k =,1b =时,直线l 的方程为1y =,直线l 上有无数个整点; 则ABD 正确; 故选:ABD .2. 已知实数a ,b 满足0a >,0b >,1a ≠,1b ≠,且lgb x a =,lga y b =,lga z a =,lgb w b =,则( )A .存在实数a ,b ,使得x y z w >>>B .存在a b ≠,使得x y z w ===C .任意符合条件的实数a ,b 都有x y =D .x ,y ,z ,w 中至少有两个大于1【解析】解:设lga p =,lgb q =.则有10p a =,10q b =,则(10)10lgb p q pq x a ===,(10)10q p pq y ==,2(10)10p p p z ==,2(10)10q q q w ==. 所以任意符合条件的a ,b 都有x y =.C 正解,A 错误. 若a b ≠,则p q ≠,则x z ≠,B 错误.因为1a ≠,1b ≠,所以0p ≠,0q ≠,所以20p >,20q >,故1z >,且1w >,D 正确. 故选:CD .3. 已知函数()[]f x x x =-,其中[]x 表示不大于x 的最大整数,下列关于函数()f x 的性质,描述正确的是( ) A .()f x 是增函数 B .()f x 是周期函数 C .()f x 的值域为[0,1)D .()f x 是偶函数【解析】解:当21x -<-时,[]2x =-,此时()[]2f x x x x =-=+. 当10x -<时,[]1x =-,此时()[]1f x x x x =-=+. 当01x <时,[]0x =,此时()[]f x x x x =-=. 当12x <时,[]1x =,此时()[]1f x x x x =-=-. 当23x <时,[]2x =,此时()[]2f x x x x =-=-. 当34x <时,[]3x =,此时()[]3f x x x x =-=-.⋯由此可得函数[][0y x x =-∈,1),故C 正确; 函数[]y x x =-为非奇非偶函数,故A ,D 错误; 函数[]y x x =-是周期为1的周期函数,故B 正确;函数[]y x x =-在区间[0,1)上为增函数,但整个定义域为不具备单调性,故A 错; 故选:BC .4. 正方体截面的形状有可能为( ) A .正三角形B .正方形C .正五边形D .正六边形【解析】解:画出截面图形如图:可以画出正三角形但不是直角三角形(如图1); 可以画出正方形(如图2)经过正方体的一个顶点去切就可得到五边形.但此时不可能是正五边形(如图3);正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,且可以画出正六边形(如图4); 故选:ABD .5. 已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈,则( ) A .A B ⊆B .B A ⊆C .A B =D .AB =∅【解析】解:已知集合{|32A x x a b ==+,a ,}b Z ∈,{|23B x x a b ==-,a ,}b Z ∈, 若x 属于B ,则:233*(2)2*(2)x a b a b a =-=-+-; 2a b -、2a -均为整数,x 也属于A ,所以B 是A 的子集;若x 属于A ,则:322*(3)3*x a b a b =+=+-(a ); 3a b +、a 均为整数,x 也属于B ,所以A 是B 的子集;所以:A B =, 故选:ABC .6. 设全集{0U =,1,2,3,4},集合{0A =,1,4},{0B =,1,3},则( ) A .{0A B =,1} B .{4}UB =C .{0AB =,1,3,4}D .集合A 的真子集个数为8【解析】解:全集{0U =,1,2,3,4},集合{0A =,1,4},{0B =,1,3}, {0AB ∴=,1},故A 正确,{2UB =,4},故B 错误, {0AB =,1,3,4},故C 正确,集合A 的真子集个数为3217-=,故D 错误 故选:AC .7. 定义“正对数”: 0011x ln x lnx x +<<⎧=⎨⎩若0a >,0b >,则下列结论中正确的是( )A .()b ln a bln a ++=B .()ln ab ln a ln b +++=+C .()aln ln a ln b b+++-D .()ln a b ln a ln b +++++E .()2ln a b ln a ln b ln ++++++【解析】解:对于A ,由定义,当1a 时,1b a ,故()()b b ln a ln a blna +==,又bln a blna +=, 故有()b ln a bln a ++=;当01a <<时,1b a <,故()0b ln a +=,又1a <时0bln a +=,所以此时亦有()b ln a bln a ++=. 由上判断知A 正确;对于B ,此命题不成立,可令2a =,13b =,则23ab =,由定义()0ln ab +=,2ln a ln b ln +++=, 所以()ln ab ln a ln b +++≠+;由此知B 错误; 对于C ,当0a b >时,1a b ,此时()aln ln b+= ()0a b ,当1a b 时,()aln a ln b lna lnb ln b++-=-=,此时命题成立;当1a b >>时,ln a ln b lna ++-=,此时aa b>,故命题成立; 同理可验证当10a b >>时,()aln ln a ln b b++-+成立;当1ab<时,同理可验证是正确的,故C 正确; 对于D ,若01a b <+<,0b >时,左0=,右端0,显然成立; 若1a b +>,则()22a bln a b ln a ln b ln ln ln a ln b ++++++++++⇔+,成立,故D 错误,E 正确.故选:ACE .8. 如图,PA 垂直于以AB 为直径的圆所在的平面,点C 是圆周上异于A ,B 的任一点,则下列结论中正确的是( )A .PB AC ⊥ B .PC BC ⊥C .AC ⊥平面PBCD .平面PAB ⊥平面PBCE .平面PAC ⊥平面PBC【解析】解:由题意,BC AC ⊥,若PB AC ⊥,则AC ⊥平面PBC ,可得AC PC ⊥,与AC PA ⊥矛盾,故A 、C 错误;BC AC ⊥,又PA ⊥底面ABC ,PA BC ∴⊥,则BC ⊥平面PAC ,则BC PC ⊥,故B 、E 正确;平面PAC ⊥平面PBC ,若平面PAB ⊥平面PBC ,而平面PAB ⋂平面PAC PA =,则PA ⊥平面PBC ,可得PA PC ⊥,与AC PA ⊥矛盾,故D 错误. 故选:BE .9. 下面说法中错误的是( )A .经过定点0(P x ,0)y 的直线都可以用方程00()y y k x x -=-表示B .经过定点0(P x ,0)y 的直线都可以用方程00()x x m y y -=-表示C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .不经过原点的直线都可以用方程1x ya b+=表示 E .经过任意两个不同的点11(P x ,1)y ,22(P x ,2)y 的直线都可以用方程121121()()()()y y x x x x y y --=--表示【解析】解:当直线的斜率不存在时,经过定点0(P x ,0)y 的直线方程为0x x =,不能写成00()y y k x x -=-的形式,故A 错误.当直线的斜率等于零时,经过定点0(P x ,0)y 的直线方程为0y y =,不能写成00()x x m y y -=- 的形式,故B 错误.当直线的斜率不存在时,经过定点(0,)A b 的直线都方程为0x =,不能用方程y kx b =+表示,故C 错误.不经过原点的直线,当斜率不存在时,方程为(0)x a a =≠的形式,故D 错误.经过任意两个不同的点11(P x ,1)y ,22(P x ,2)y 的直线,当斜率等于零时,12y y =,12x x ≠,方程为1y y =,能用方程121121()()()()y y x x x x y y --=--表示;当直线的斜率不存在时,12y y ≠,12x x =,方程为1x x =,能用方程121121()()()()y y x x x x y y --=--表示,故E 正确,故选:ABCD .10. 已知双曲线2222:1(0,0)x y C a b a b-=>>,右顶点为A ,以A 为圆心,b为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点,则有( ) A.渐近线方程为y = B.渐近线方程为y x = C .60MAN ∠=︒ D .120MAN ∠=︒【解析】解:由题意可得c e a =2c t =,a ,0t >,则b t =,A ,0), 圆A的圆心为,0),半径r 为t ,双曲线的渐近线方程为by x a=±,即y =,圆心A到渐近线的距离为3|3t d ==, 弦长||MN t b ===,可得三角形MNA 为等边三角形, 即有60MAN ∠=︒. 故选:BC .11. 设有一组圆224:(1)()(*)C x y k k k N -+-=∈,下列四个命题正确的是( ) A .存在k ,使圆与x 轴相切 B .存在一条直线与所有的圆均相交 C .存在一条直线与所有的圆均不相交 D .所有的圆均不经过原点【解析】解:对于A :存在k ,使圆与x 轴相切2*()k k k N ⇔=∈有正整数解0k ⇔=或1k =,故A 正确;对于B :因为圆心(1,)k 恒在直线1x =上,故B 正确;对于C :当k 取无穷大的正数时,半径2k 也无穷大,因此所有直线与圆都相交,故C 不正确;对于D :将(0,0)代入得241k k +=,即221(1)k k =-,因为右边是两个相邻整数相乘为偶数,而左边为奇数,故方程恒不成立,故D 正确. 故选:ABD .12. 一几何体的平面展开图如图所示,其中四边形ABCD 为正方形,E 、F 分别为PB 、PC 的中点,在此几何体中,给出的下面结论中正确的有( )A .直线AE 与直线BF 异面B .直线AE 与直线DF 异面C .直线//EF 平面PADD .直线DF ⊥平面PBC【解析】解:如图,把几何体恢复原状,显然AE ,BF 异面,可知A 正确; //EF BC ,//BC AD , //EF AD ∴,//EF ∴平面PAD ,可知C 正确;易知AEFD 为等腰梯形,可知B ,D 错误. 故选:AC .13. 已知函数()2sin(2)13f x x π=-+,则下列说法正确的是( )A .()2()6f x f x π-=-B .()6f x π-的图象关于4x π=对称C .若1202x x π<<<,则12()()f x f x <D .若123,,[,]32x x x ππ∈,则123()()()f x f x f x +>【解析】解:()2sin(2)13f x x π=-+,对:()2sin[2()]12sin 212()663A f x x x f x πππ∴-=--+=-+≠-,故A 错误;对B :当4x π=时,()2sin 1162f x ππ-=-+=-,故()6f x π-关于4x π=对称,故B 正确; 对:()C f x 在(0,)2π上不单调,∴1202x x π<<<,不一定12()()f x f x <,故C 错误;对:()D f x 在5(,)312ππ上单调递增,在5(,)122ππ上单调递减,∴当123,,[,]32x x x ππ∈,由()f x 的图象知123()()()f x f x f x +>,故D 正确. 故选:BD .14. 已知函数()2x x e e f x --=,()2x xe e g x -+=,则()f x 、()g x 满足( )A .()()f x f x -=-,()()g x g x -=B .(2)f f -<(3),(2)g g -<(3)C .(2)2()()f x f x g x =D .22[()][()]1f x g x -=【解析】解:()()22x x x x e e e e f x f x -----==-=-,()()2x xe e g x g x -+-==.故A 正确,()f x 为增函数,则(2)f f -<(3),成立,22(2)2e e g -+-=,g (3)33(2)2e e g -+=>-,故B 正确,222()()222(2)222x x x x x xe e e e e ef xg x f x ----+-=⨯=⨯=,故C 正确,22[()][()][()()]f x g x f x g x -=+.[()()]()1x x f x g x e e --=-=-,故D 错误, 故选:ABC .15. 现有一段长度为n 的木棍,希望将其锯成尽可能多的小段,要求每一小段的长度都是整数,并且任何一个时刻,当前最长的一段都严格小于当前最短的一段长度的2倍,记对n 符合条件时的最多小段数为()f n ,则( ) A .f (7)3=B .f (7)4=C .(30)6f =D .(30)7f =【解析】解:当7n =时,最多可锯成3段:734322=+=++,f ∴(7)3=,故A 正确,B 不正确;当30n =时,最多能锯6段,具体如下:301218121086610866558665544=+=++=+++=++++=+++++.下证大于6段是不可能成立的:若可锯成7段,设为1x ,2x ,⋯,7x (其中127)x x x ⋯,显然14x >,若14x ,则74x ,而4673130⨯+=>,矛盾,因此15x =或16x =, 当16x =时,只能是6444444++++++,退一步必出现6410+=,或448+=, 8与4共同出现在等式中,由题意知这是不可能的,矛盾同理,当15x =时,∴情况为5544444++++++,或5554443++++++,或5555433++++++,针对以上情形采取还原的方法都可得出矛盾,综上,30n =时最多能锯成6段,即(30)6f =,故C 正确,D 不正确. 故选:AC .16. 已知O ,A ,B ,C 为平面上两两不重合的四点,且(0)xOA yOB zOC O xyz ++=≠,则( )A .当且仅当0xyz <时,O 在ABC ∆的外部B .当且仅当::3:4:5x y z =时,4ABC OBC S S ∆∆= C .当且仅当x y z ==时,O 为ABC ∆的重心D .当且仅当0x y z ++=时,A ,B ,C 三点共线【解析】解:对于A ,如图1,若x ,y ,z 只有一个为负时,不妨设0y <,0x >,0z >, 则有xOA yOC +与OB 同向.则O 在ABC ∆的外部, 若x ,y ,z 均为负时,不妨取1x y z ===-,可得0OA OB OC ++=,显然O 为ABC ∆的重心,则O 在ABC ∆的内部, 综上,A 错.对于B .::3:4:5x y z =时,不妨取3x =,4y =,5z =.分别作3OD OA =,4OE OB =,5OF OC =.则点O 为DEF ∆的重心.11112020360OBC OEF DEF DEF S S S S ∆∆∆∆==⨯=, 111545OAC ODF DEF S S S ∆∆∆==, 111236OAB ODE DEF S S S ∆∆∆==, 1111()60453615ABC DEF DEF S S S ∆∆∆∴=++= 113204155OEF OBC OBC S S S ∆∆∆=⨯=⨯=,正确. 对于C .当且仅当x y z ==时,且(0)xOA yOB zOC O xyz ++=≠,⇔0OA OB OC ++=O ⇔为ABC ∆的重心,正确.对于D .0x y z ++=时,且(0)xOA yOB zOC O xyz ++=≠,()0xOA yOB x y OC ⇔+-+=,化为:xCA yBC =,可得A ,B ,C 三点共线. 综上可得:BCD 都正确. 故选:BCD .17. 下列说法,正确的有( )A .函数()36f x lnx x =+-的零点只有1个且属于区间(1,2)B .若关于x 的不等式2210ax ax ++>恒成立,则(0,1)a ∈C .函数y x =的图象与函数sin y x =的图象有3个不同的交点D .函数sin cos sin cos ,[0,]4y x x x x x π=++∈的最小值是1【解析】解:①对于选项A ,由函数()36f x lnx x =+-在(0,)+∞为增函数,又f (1)f (2)0<,即函数()36f x lnx x =+-的零点只有1个且属于区间(1,2),即A 正确,②对于选项B ,关于x 的不等式2210ax ax ++>恒成立,则10a ︒=时,满足题意,202440a a a >⎧︒⎨-<⎩,解得:01a <<,综上可得:[0a ∈,1),即B 错误,③对于选项C ,设()sin g x x x =-,则()1cos 0g x x '=-,即()y g x =在R 上为增函数,又(0)0g =,即()g x 只有一个零点,即函数y x =的图象与函数sin y x =的图象有1个不同的交点,即C 错误,④对于选项D ,设sin cos )4t x x x π=+=+,因为[0x ∈,]4π,所以[1t ∈,所以211()22h t t t =+-,[1t ∈,,所以()min h t h =(1)1=,即D 正确,综合①②③④得: 正确的有A ,D , 故选:AD .18. 已知x ,y ,z R ∈,且x y z π++=,则cos cos cos f x y z =++的最值情况为( ) A .最大值为3B .最小值为3-C .最大值为32D .最小值为32-【解析】解:x ,y ,z R ∈,且x y z π++=,可得x y π==,z π=-时,oosx ,cos y ,cos z 取得最小值1-,即f 取得最小值3-; 当cos x ,cos y ,cos 0z >,可得f 取得最大值, 由cos y x =,02x π<,sin y x '=-,cos 0y x ''=-<,即有函数cos y x =在[0,)2π为凸函数,由()y f x =为区间I 上的凸函数,可得 1212()()()()n nf x f x f x x x x f n n++⋯+++⋯+,可得3cos cos cos 3cos 3cos 332x y z f x y z π++=++==, 即有f 的最大值为32. 故选:BC .19. 在数列{}n a 中,*n N ∈,若211(n n n na a k k a a +++-=-为常数),则称{}n a 为“等差比数列”,下列对“等差比数列”的判断正确的为( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 【解析】解:对于A ,k 不可能为0正确;对于B ,1n a =时,{}n a 为等差数列,但不是等差比数列; 对于C ,若等比数列11n n a a q -=,则2110n n n na a k q a a +++-==≠-,所以{}n a 为等差比数列;对于D ,数列0,1,0,1,0,1,⋯,0,1.是等差比数列,且有无数项为0, 故选:ACD .。
云南省临沧市2021届新高考数学三模试卷含解析

云南省临沧市2021届新高考数学三模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.点,,A B C 是单位圆O 上不同的三点,线段OC 与线段AB 交于圆内一点M ,若,(0,0),2OC mOA nOB m n m n =+>>+=u u u r u u u r u u u r ,则AOB ∠的最小值为( )A .6πB .3πC .2πD .23π 【答案】D【解析】【分析】由题意得2212cos m n mn AOB =++∠,再利用基本不等式即可求解.【详解】将OC mOA nOB =+u u u r u u u r u u u r 平方得2212cos m n mn AOB =++∠,222211()2331cos 1122222()2m n m n mn AOB m n mn mn mn ---++∠===-+≤-+=-+⨯ (当且仅当1m n ==时等号成立),0AOB π<∠<Q ,AOB ∴∠的最小值为23π, 故选:D .【点睛】 本题主要考查平面向量数量积的应用,考查基本不等式的应用,属于中档题.2.已知复数z 满足(1)2z i -=,其中i 为虚数单位,则1z -=( ).A .iB .i -C .1i +D .1i -【答案】A【解析】【分析】先化简求出z ,即可求得答案.【详解】因为(1)2z i -=, 所以()()()()2121211112i i z i i i i ++====+--+ 所以111z i i -=+-=故选:A【点睛】此题考查复数的基本运算,注意计算的准确度,属于简单题目.3.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A 22B .6C .33D .13【答案】C【解析】【分析】利用建系,假设AB 长度,表示向量AC u u u r 与BD u u u r,利用向量的夹角公式,可得结果.【详解】由平面ABD ⊥平面BCD ,AB BD ⊥平面ABD ⋂平面BCD BD =,AB Ì平面ABD所以AB ⊥平面BCD ,又DC ⊂平面BCD所以AB DC ⊥,又DB DC ⊥所以作z 轴//AB ,建立空间直角坐标系B xyz -如图设1AB =,所以1,1,2BD DC BC ===则()()()()0,1,1,0,1,0,1,0,0,0,0,0A B C D所以()()1,1,1,0,1,0AC BD =---u u u r u u u r 所以3cos ,33AC BD AC BD AC BD⋅===u u u r u u u r u u u r u u u r u u u r u u u r 故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.4.设集合{}2560A x x x =--<,{}20B x x =-<,则A B =I ( )A .{}32x x -<<B .{}22x x -<<C .{}62x x -<<D .{}12x x -<< 【答案】D【解析】【分析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合}{16A x x =-<<,}{2B x x =<,由集合的交运算可得,}{12A B x x ⋂=-<<.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.5.下图为一个正四面体的侧面展开图,G 为BF 的中点,则在原正四面体中,直线EG 与直线BC 所成角的余弦值为( )A .3B .6C .3D .336【答案】C【解析】【分析】将正四面体的展开图还原为空间几何体,,,A D F 三点重合,记作D ,取DC 中点H ,连接,,EG EH GH ,EGH ∠即为EG 与直线BC 所成的角,表示出三角形EGH 的三条边长,用余弦定理即可求得cos EGH ∠.【详解】将展开的正四面体折叠,可得原正四面体如下图所示,其中,,A D F 三点重合,记作D :则G 为BD 中点,取DC 中点H ,连接,,EG EH GH ,设正四面体的棱长均为a ,由中位线定理可得//GH BC 且1122GH BC a ==, 所以EGH ∠即为EG 与直线BC 所成的角,22132EG EH a a a⎛⎫==-= ⎪⎝⎭ , 由余弦定理可得222cos 2EG GH EH EGH EG GH+-∠=⋅ 22231334446312a a a a a +-==⨯⋅, 所以直线EG 与直线BC 所成角的余弦值为36, 故选:C.【点睛】本题考查了空间几何体中异面直线的夹角,将展开图折叠成空间几何体,余弦定理解三角形的应用,属于中档题.6.如图是二次函数2()f x x bx a =-+的部分图象,则函数()ln ()g x a x f x '=+的零点所在的区间是( )A .11,42⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .(1,2)D .(2,3)【答案】B【解析】【分析】根据二次函数图象的对称轴得出b 范围,y 轴截距,求出a 的范围,判断()g x 在区间端点函数值正负,即可求出结论.【详解】∵2()f x x bx a =-+,结合函数的图象可知,二次函数的对称轴为2b x =,0(0)1<=<f a , 1122<=<b x ,∵()2'=-f x x b , 所以()ln ()ln 2'=+=+-g x a x f x a x x b 在(0,)+∞上单调递增.又因为11ln 10,(1)ln12022⎛⎫=+-<=+-> ⎪⎝⎭g a b g a b , 所以函数()g x 的零点所在的区间是1,12⎛⎫ ⎪⎝⎭. 故选:B.【点睛】本题考查二次函数的图象及函数的零点,属于基础题.7. “中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )A .56383B .57171C .59189D .61242 【答案】C【解析】【分析】根据“被5除余3且被7除余2的正整数”,可得这些数构成等差数列,然后根据等差数列的前n 项和公式,可得结果.【详解】被5除余3且被7除余2的正整数构成首项为23,公差为5735⨯=的等差数列,记数列{}n a则()233513512n a n n =+-=-令35122020n a n =-≤,解得25835n ≤. 故该数列各项之和为5857582335591892⨯⨯+⨯=. 故选:C.【点睛】本题考查等差数列的应用,属基础题。
(Word版) 2021年全国新高考Ⅱ卷数学试题真卷(含答案及详细解析)

3.非连择题必须用黑色字连的钢笔或法字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新答案:不准使用铅笔和涂改液,不按以上要求作答无效。
,
因为该四棱台上下底面边长分别为2,4,侧棱长为2,
所以该棱台的高
下底面面积S1=16,上底面面积S2=4,
参考答案及详细解析
1.A.利用复数的除法可化简 ,从而可求对应的点的位置.
【详解】 ,所以该复数对应的点为 ,该点在第一象限,故选:A
2. B.根据交集、补集的定义可求.
【详解】由题设可得, , 故 ,故选:B.
3. B. 首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p的值.
【详解】抛物线的焦点坐标为: { ,0 }
其到直线X-Y+1的距离
解得:P=2, P= - 6(舍去).
故选:B.
4. C由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.
【详解】由题意可得,S占地球表面积的百分比约为:
故选:C.
5. D由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.
【详解】作出图形,连接该正四棱台上下底面的中心,如图:
9. 下列统计量中,能度量样本 的离散程度的是()
A. 样本 的标准差B. 样本 的中位数
C. 样本 的极差D. 样本 的平均数
10. 如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足 的是()
A. B.
C. D.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省临沧市2021届新高考数学第四次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设复数z 满足31i i z=+,则z =( ) A .1122i + B .1122-+i C .1122i - D .1122i -- 【答案】D【解析】【分析】根据复数运算,即可容易求得结果.【详解】3(1)1111(1)(1)222i i i i z i i i i ----====--++-. 故选:D.【点睛】本题考查复数的四则运算,属基础题.2.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( ) A .2,3⎛⎫-∞-⎪⎝⎭ B .2,3⎛⎫-∞ ⎪⎝⎭ C .(,0)-∞ D .2,3⎛⎫+∞ ⎪⎝⎭【答案】B【解析】【分析】由导数确定函数的单调性,利用函数单调性解不等式即可.【详解】 函数211()x f x x x x-==-,可得21()1f x x '=+, 0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-. ∴23x <.故选:B .【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.3.若1(1)z a i =+-(a R ∈),||z =a =( ) A .0或2B .0C .1或2D .1 【答案】A【解析】【分析】利用复数的模的运算列方程,解方程求得a 的值.【详解】由于1(1)z a i =+-(a R ∈),||z ==0a =或2a =. 故选:A【点睛】本小题主要考查复数模的运算,属于基础题.4.古希腊数学家毕达哥拉斯在公元前六世纪发现了第一、二个“完全数”6和28,进一步研究发现后续三个“完全数”分别为496,8128,33550336,现将这五个“完全数”随机分为两组,一组2个,另一组3个,则6和28恰好在同一组的概率为( )A .15B .25C .35D .110【答案】B【解析】【分析】推导出基本事件总数,6和28恰好在同一组包含的基本事件个数,由此能求出6和28恰好在同一组的概率.【详解】解:将五个“完全数”6,28,496,8128,33550336,随机分为两组,一组2个,另一组3个, 基本事件总数2353C 10n C ==,6和28恰好在同一组包含的基本事件个数202123234m C C C C =+=, ∴6和28恰好在同一组的概率42105m p n ===. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.5.设1F ,2F 是双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( )ABC .2D .3【答案】B【解析】【分析】 设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,联立方程,求得2a x c=,ab y c =,即2,a ab P c c ⎛⎫ ⎪⎝⎭,由1PF =,列出相应方程,求出离心率. 【详解】解:不妨设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b=--, 由()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩解得2a x c =,ab yc =,即2,a ab P c c ⎛⎫ ⎪⎝⎭, 由1PF OP =,所以有22224222226a b a a a b c c c cc ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 化简得223a c =,所以离心率==c e a. 故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.6.已知等比数列{}n a 满足21a =,616a =,等差数列{}n b 中54b a =,n S 为数列{}n b 的前n 项和,则9S =( )A .36B .72C .36-D .36± 【答案】A【解析】【分析】根据4a 是2a 与6a 的等比中项,可求得4a ,再利用等差数列求和公式即可得到9S .【详解】等比数列{}n a 满足21a =,616a =,所以44a ==±,又2420a a q =⋅>,所以44a =,由等差数列的性质可得9549936S b a ===.故选:A【点睛】本题主要考查的是等比数列的性质,考查等差数列的求和公式,考查学生的计算能力,是中档题.7.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( )A .23B .2C .14D .13【答案】D【解析】【分析】将多项式的乘法式展开,结合二项式定理展开式通项,即可求得a 的值.【详解】∵()()()()666131313x a x x x a x -+=+-+所以展开式中3x 的系数为2233663313554045C aC a -=-=-, ∴解得13a =. 故选:D.【点睛】本题考查了二项式定理展开式通项的简单应用,指定项系数的求法,属于基础题. 8.已知向量(1,2),(3,1)a b =-=-r r ,则( )A .a r ∥b rB .a r ⊥b rC .a r ∥(a b -r r )D .a r ⊥( a b -r r )【答案】D【解析】【分析】 由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量a =r (1,﹣2),b =r (3,﹣1),∴a r 和b r 的坐标对应不成比例,故a r 、b r不平行,故排除A ; 显然,a r •b =r 3+2≠0,故a r 、b r 不垂直,故排除B ;∴a b -=r r (﹣2,﹣1),显然,a r 和a b -r r 的坐标对应不成比例,故a r 和a b -r r 不平行,故排除C ;∴a r •(a b -r r )=﹣2+2=0,故 a r ⊥(a b -rr ),故D 正确,本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.9.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n +的最小值为( ) A .97 B .53 C .43 D .1310【答案】D【解析】【分析】根据已知条件和等比数列的通项公式,求出,m n 关系,即可求解.【详解】22211232,7m n m n a a a a m n +-==∴+=,当1,6m n ==时,1453m n +=,当2,5m n ==时,141310m n +=, 当3,4m n ==时,1443m n +=,当4,3m n ==时,141912m n +=, 当5,2m n ==时,14115m n +=,当6,1m n ==时,14256m n +=, 14m n +最小值为1310. 故选:D.【点睛】本题考查等比数列通项公式,注意,m n 为正整数,如用基本不等式要注意能否取到等号,属于基础题.10.设()()2141A B -,,,,则以线段AB 为直径的圆的方程是( )A .22(3)2x y -+=B .22(3)8x y -+=C .22(3)2x y ++=D .22(3)8x y ++= 【答案】A【解析】【分析】计算AB 的中点坐标为()3,0,圆半径为r =.【详解】AB 的中点坐标为:()3,0,圆半径为22AB r ===, 圆方程为22(3)2x y -+=.本题考查了圆的标准方程,意在考查学生的计算能力.11.在101()2x x -的展开式中,4x 的系数为( ) A .-120B .120C .-15D .15 【答案】C【解析】【分析】 写出101()2x x -展开式的通项公式1021101()2r r r r T C x -+=-,令1024r -=,即3r =,则可求系数. 【详解】101()2x x -的展开式的通项公式为101021101011()()22r r r r r r r T C x C x x --+=-=-,令1024r -=,即3r =时,系数为33101()152C -=-.故选C 【点睛】本题考查二项式展开的通项公式,属基础题.12.下列命题为真命题的个数是( )(其中π,e 为无理数)32>;②2ln 3π<;③3ln 3e <. A .0B .1C .2D .3【答案】C【解析】【分析】对于①中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于②中,构造新函数()2ln ,03f x x x =->,利用导数得到函数为单调递增函数,进而得到()()f f e π>,即可判定是错误的;对于③中,构造新函数()ln ,0f x e x x x =->,利用导数求得函数的最大值为()0f e =,进而得到()30f <,即可判定是正确的.【详解】由题意,对于①中,由239,() 2.2524e ===,可得 2.25e >,根据不等式的性质,32>成立,所以是正确的;对于②中,设函数()2ln ,03f x x x =->,则()10f x x '=>,所以函数为单调递增函数, 因为e π>,则()()f f e π>又由()221ln 10333f e e =-=-=>,所以()0f π>,即2ln 3π>,所以②不正确; 对于③中,设函数()ln ,0f x e x x x =->,则()1e e x f x x x -'=-=, 当(0,)x e ∈时,()0f x '>,函数()f x 单调递增,当(,)x e ∈+∞时,()0f x '<,函数()f x 单调递减,所以当x e =时,函数取得最大值,最大值为()ln 0f e e e e =-=,所以()3ln330f e =-<,即ln33e <,即3ln 3e <,所以是正确的. 故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.二、填空题:本题共4小题,每小题5分,共20分。