第九章 细胞信号转导
合集下载
第九章MAPK信号转导通路

例:ERK2 — Tyr-185 , Thr-183 pY185 — 解除L12对底物结合的阻断
• MAPK是Pro指导的蛋白激酶
对于ERK2来说,其底物的一般保守性 序列为 Pro-X-Ser/Thr-Pro • 活化环中Tyr-185 和Thr-183的磷酸化, 引起该环重新折叠,与Arg结合位点相 互作用 • 酸性氨基酸替代,不导致组成性活化 • MAPK的点突变不影响其活性
五、酵母MAPK通路 酿酒酵母 — 已鉴定出5条 • 单倍体的交配途径 • 浸润性生长通路 • 细胞壁重构通路 • 双组分渗透压感受器通路 • Sho1渗透压感受器通路
(一)酵母菌中MAPK模式的组成和作用 酿酒酵母:4种MKKK 4种MKK 6种MAPK 其中,4种参加明确的5种MAPK通路 2种 (SMK1, YKL161C)参加未知 的MAPK通路 3个成员通过与支架蛋白结合而联在一起
(四)细胞壁重构通路
• 酵母的生长依赖于 有效的细胞壁重构
• PKC1:MKKKK • MKK1和MKK2的
重叠作用意义不清
(五)渗透压感受器和应激通路 酿酒酵母的2种渗透压感受器: • “双组分”渗透压感受器 低渗透压条件下激活 • 膜渗透压感受器 高渗透压条件下激活 • 2种渗透压感受器对MAPK通路的调节 作用不同
在心肌细胞 A-Raf → MEK1 → ERK1/2
在PC细胞 B-Raf → MEK1 → ERK1/2
3. ERK1/2蛋白激酶的作用底物及灭活 • 底物的保守性磷酸化位点模体为 Pro-Lue-Ser/Thr-Pro • 底物蛋白 — 胞质蛋白: p90S6K 、cPLA2 、EGF 受体 细胞骨架: MAP1、2 、4 、Tau 转录因子:Elk-1, Ets-1, Sap1a, c-Myc等 • 灭活: MKP-1, -3, -4
• MAPK是Pro指导的蛋白激酶
对于ERK2来说,其底物的一般保守性 序列为 Pro-X-Ser/Thr-Pro • 活化环中Tyr-185 和Thr-183的磷酸化, 引起该环重新折叠,与Arg结合位点相 互作用 • 酸性氨基酸替代,不导致组成性活化 • MAPK的点突变不影响其活性
五、酵母MAPK通路 酿酒酵母 — 已鉴定出5条 • 单倍体的交配途径 • 浸润性生长通路 • 细胞壁重构通路 • 双组分渗透压感受器通路 • Sho1渗透压感受器通路
(一)酵母菌中MAPK模式的组成和作用 酿酒酵母:4种MKKK 4种MKK 6种MAPK 其中,4种参加明确的5种MAPK通路 2种 (SMK1, YKL161C)参加未知 的MAPK通路 3个成员通过与支架蛋白结合而联在一起
(四)细胞壁重构通路
• 酵母的生长依赖于 有效的细胞壁重构
• PKC1:MKKKK • MKK1和MKK2的
重叠作用意义不清
(五)渗透压感受器和应激通路 酿酒酵母的2种渗透压感受器: • “双组分”渗透压感受器 低渗透压条件下激活 • 膜渗透压感受器 高渗透压条件下激活 • 2种渗透压感受器对MAPK通路的调节 作用不同
在心肌细胞 A-Raf → MEK1 → ERK1/2
在PC细胞 B-Raf → MEK1 → ERK1/2
3. ERK1/2蛋白激酶的作用底物及灭活 • 底物的保守性磷酸化位点模体为 Pro-Lue-Ser/Thr-Pro • 底物蛋白 — 胞质蛋白: p90S6K 、cPLA2 、EGF 受体 细胞骨架: MAP1、2 、4 、Tau 转录因子:Elk-1, Ets-1, Sap1a, c-Myc等 • 灭活: MKP-1, -3, -4
第九章细胞信号转导

– 水溶性信号分子:生长因子(蛋白质和肽类)、 局部化学递质、神经递质
– 气体性信号分子:NO、CO(脂溶性)
• 性质:蛋白质及短肽、氨基酸的核苷酸衍生物、脂 肪酸和胆固醇衍生物、气体分子(NO、CO)等。
• 特点:①特异性; ②高效性; ③可被灭活。
• 脂溶性信号分子(如甾类激素和甲状腺素):可直接穿 膜进入靶细胞,与胞内受体结合形成激素-受体复合 物,调节基因表达。
物
神经递质
(B) 受体(receptor)
受体概念:两种解释
• 其一:能够识别和选择结合信号分子(配体)并能 引起一系列生物学效应的生物大分子,多为糖蛋白, 少数为糖脂或糖蛋白与糖脂的复合物。
• 其二:能够识别和选择性结合某种信号分子 (配体) 的大分子,当与配体结合后,通过信号转导(signal transduction)作用将胞外信号转换为胞内化学或物 理的信号,以启动一系列过程,最终表现为生物学 效应。
Robert F. Furchgott Louis J. Ignarro Ferid Murad
• NO可快速扩散透过细胞膜,作用于邻近细胞。
• 血管内皮细胞和神经细胞是NO的生成细胞,NO 的生成由一氧化氮合酶(nitric oxide synthase, NOS)催化,以L-精氨酸为底物,以NADPH作 为电子供体,生成NO和L-瓜氨酸。
细胞表面受体: 为胞外亲水性信号分子所激活。
细胞表面受体分属三大家族: 离子通道耦联的受体(ion-channel-linked receptor) G-蛋白耦联的受体(G-protein-linked receptor) 酶连的受体(enzyme-linked receptor)
每一个细胞对胞外各种特异的信号 分子作出反应导致不同的效应
– 气体性信号分子:NO、CO(脂溶性)
• 性质:蛋白质及短肽、氨基酸的核苷酸衍生物、脂 肪酸和胆固醇衍生物、气体分子(NO、CO)等。
• 特点:①特异性; ②高效性; ③可被灭活。
• 脂溶性信号分子(如甾类激素和甲状腺素):可直接穿 膜进入靶细胞,与胞内受体结合形成激素-受体复合 物,调节基因表达。
物
神经递质
(B) 受体(receptor)
受体概念:两种解释
• 其一:能够识别和选择结合信号分子(配体)并能 引起一系列生物学效应的生物大分子,多为糖蛋白, 少数为糖脂或糖蛋白与糖脂的复合物。
• 其二:能够识别和选择性结合某种信号分子 (配体) 的大分子,当与配体结合后,通过信号转导(signal transduction)作用将胞外信号转换为胞内化学或物 理的信号,以启动一系列过程,最终表现为生物学 效应。
Robert F. Furchgott Louis J. Ignarro Ferid Murad
• NO可快速扩散透过细胞膜,作用于邻近细胞。
• 血管内皮细胞和神经细胞是NO的生成细胞,NO 的生成由一氧化氮合酶(nitric oxide synthase, NOS)催化,以L-精氨酸为底物,以NADPH作 为电子供体,生成NO和L-瓜氨酸。
细胞表面受体: 为胞外亲水性信号分子所激活。
细胞表面受体分属三大家族: 离子通道耦联的受体(ion-channel-linked receptor) G-蛋白耦联的受体(G-protein-linked receptor) 酶连的受体(enzyme-linked receptor)
每一个细胞对胞外各种特异的信号 分子作出反应导致不同的效应
第9章 细胞信号转导(1)

受体酪氨酸激酶及RTK-Ras蛋白信号通路
受体酪氨酸激酶(Receptor tyrosine kinase,RTK)又称 酪氨酸蛋白激酶受体。迄今已鉴定有50多种,包含7个 亚族。 RTK的N端位于胞外,是配体结合结构域,C端位于胞 内,具有酪氨酸激酶结构域,并具有自磷酸化位点。 大多数RTK是单体跨膜蛋白,配体结合导致受体二聚 化,形成同源或异源二聚体。 胞外配体是可溶性或膜结合的多肽或蛋白类激素,包 括多种生长因子、胰岛素和胰岛素样生长因子。 RTK的主要功能是控制细胞生长、分化而不是调控细 胞中间代谢。
NO参与的信号途径
NO是一种具有自由基性质的脂溶性气体分子,能够 透过细胞膜迅速扩散 NO在细胞内极其不稳定,半衰期2-30s,被氧化后以 NO3-和NO2-形式存在细胞外液中 NO只能在组织中局部扩散,对邻近的靶细胞发挥作 用 血管内皮细胞,神经细胞时NO的生成细胞,以精氨 酸为底物
细胞因子受体与JAK-STAT信号通路
3 其它细胞表面受体介导的信号通路
Wnt受体和Hedgehog受体介导的信号通路:通 过配体与受体结合引发胞质内多蛋白复合物去 装配,从而释放转录因子,在转位到核内调控 基因表达。 NF-B和Notch信号通路涉及到抑制物或受体本 身蛋白切割作用,从而释放活化的转录因子, 再转位到核内调控基因表达。
cAMP-PKA信号通路
cAMP为第二信使,激活蛋白激酶A(Protein kinase A, PKA)。 无活性PKA含有两个调节亚基(R)和2个催化亚基组 (C)成的四聚体,每个R亚基有2个cAMP结合位点。
cAMP-PKA信号通路对肝细胞和肌细胞糖原代谢的调节 GS:糖原合成酶 PKA:蛋白激酶A IP:磷蛋白磷酸酶抑制蛋白 PP:磷蛋白磷酸酶 G-1-P: 葡萄糖-1-磷酸 GPK:糖原磷酸化酶激酶 GP:糖原磷酸化酶
细胞信号转导精品课件

05
细胞信号转导的未来展 望
细胞信号转导与药物研发
细胞信号转导与药物研发
随着对细胞信号转导机制的深入了解,药物研发正逐渐转 向针对特定信号通路的治疗方法。这有助于开发更精确、 副作用更小的药物,提高治疗效果。
针对特定疾病的信号通路
针对特定疾病的信号通路进行药物设计,可以更有效地治 疗某些难以治愈的疾病,如癌症、神经退行性疾病等。
细胞信号转导精品课件
目录
• 细胞信号转导概述 • 细胞信号转导的分子机制 • 细胞信号转导与疾病 • 细胞信号转导的研究方法 • 细胞信号转导的未来展望
01
细胞信号转导概述
细胞信号转导的定义
细胞信号转导
是指细胞接收到胞外信号后,通 过一系列的信号转导过程,将胞 外信号转导至胞内,调控基因的 表达,从而影响细胞的生命活动
个性化治疗的可能性
通过对个体基因组和信号转导通路的深入研究,有望实现 个性化治疗,根据患者的具体情况制定最合适的治疗方案 。
细胞信号转导与基因治疗
基因治疗与信号转导
基因治疗是一种通过修改或替换缺陷基因来治疗遗传性疾病的方法。细胞信号转导在基因表达和调控中起着重要作用 ,因此对信号转导机制的理解有助于优化基因治疗方案。
癌症治疗中的细胞信号转导
针对癌症治疗中的细胞信号转导,可以采取多种手段,如抑制信号 转导、诱导细胞凋亡等。
神经退行性疾病与细胞信号转导
神经退行性疾病概述
01
神经退行性疾病是一类以神经元退行性病变为主要特征的疾病
,如阿尔茨海默病、帕金森病等。
细胞信号转导与神经退行性疾病
02
细胞信号转导在神经退行性疾病的发生、发展中起着重要作用
针对糖尿病的治疗,可以采取多种手段,如抑制 信号转导、调节血糖等。
9 第九章 细胞信号转导

一个细胞发出的信息通过介质(配体,信号分子)传递到 靶细胞,与靶细胞的受体作用,通过信号转导产生细胞内 一系列生理生化变化,最终表现为靶细胞整体生物学效应 的过程。
Gene transcription Cell proliferation Cell differentiation Cell death Cell mobility Immune responses
离子通道偶联受体 细胞表面 受体类型 G蛋白偶联受体 酶偶联受体
受体至少有2个功能域: 结合配体的功能域 产生效应的功能域
7
根据受体引发细胞反应作用过程的时间特 点,可以分为2种主要的细胞反应:
一、细胞内存量蛋白活性或功能的改变,进 而影响细胞代谢功能的短期反应(快反应); 二、通过转录因子的修饰激活或抑制基因表 达的长期反应(慢反应)
双信使系统
→DAG→激活PKC→蛋白磷酸化或促 Na+/H+交换使胞内pH DAG-PKC途径
35
IP3-Ca2+ 和DAG-PKC 双信使信号通路
36
1、IP3-Ca2+途径
激素
受体
G蛋白
PLC
IP3
CaM 钙调蛋白
内质网上的配 体门Ca2+通道
Ca2+
Ca2+ CaM复合体 Ca2+—CaM复合体 结合并激活靶酶
G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs) 是细胞表面受体中最大的多样性家族; 统计表明:现有25%的临床处方药物是针对GPCRs所介 导信号通路为靶点研制和开发的。
23
一、G蛋白偶联受体的结构与激活
G蛋白偶联受体---配体受体复合物与靶 蛋白(酶或离子通道)的作用要通过G 蛋白偶联,才可产生第二信使。 G蛋白是三聚体GTP结合调节蛋白 (trimetric GTP-binding regulatory protein)的简称,由α,β,γ三个亚基组成, α 亚基和βγ二聚体亚基共价结合脂分子 锚于质膜PS面。 当配体结合受体后, α 亚基与受体胞内 部分偶联,引起α 亚基构象变化,使得 GDP被GTP交换, α 亚基脱离受体,产 生游离的活化α 亚基以及游离的活化βγ 二聚体。
Gene transcription Cell proliferation Cell differentiation Cell death Cell mobility Immune responses
离子通道偶联受体 细胞表面 受体类型 G蛋白偶联受体 酶偶联受体
受体至少有2个功能域: 结合配体的功能域 产生效应的功能域
7
根据受体引发细胞反应作用过程的时间特 点,可以分为2种主要的细胞反应:
一、细胞内存量蛋白活性或功能的改变,进 而影响细胞代谢功能的短期反应(快反应); 二、通过转录因子的修饰激活或抑制基因表 达的长期反应(慢反应)
双信使系统
→DAG→激活PKC→蛋白磷酸化或促 Na+/H+交换使胞内pH DAG-PKC途径
35
IP3-Ca2+ 和DAG-PKC 双信使信号通路
36
1、IP3-Ca2+途径
激素
受体
G蛋白
PLC
IP3
CaM 钙调蛋白
内质网上的配 体门Ca2+通道
Ca2+
Ca2+ CaM复合体 Ca2+—CaM复合体 结合并激活靶酶
G蛋白偶联受体(G Protein-Coupled Receptors, GPCRs) 是细胞表面受体中最大的多样性家族; 统计表明:现有25%的临床处方药物是针对GPCRs所介 导信号通路为靶点研制和开发的。
23
一、G蛋白偶联受体的结构与激活
G蛋白偶联受体---配体受体复合物与靶 蛋白(酶或离子通道)的作用要通过G 蛋白偶联,才可产生第二信使。 G蛋白是三聚体GTP结合调节蛋白 (trimetric GTP-binding regulatory protein)的简称,由α,β,γ三个亚基组成, α 亚基和βγ二聚体亚基共价结合脂分子 锚于质膜PS面。 当配体结合受体后, α 亚基与受体胞内 部分偶联,引起α 亚基构象变化,使得 GDP被GTP交换, α 亚基脱离受体,产 生游离的活化α 亚基以及游离的活化βγ 二聚体。
第九章细胞信号转导

膜受体Frzzled(Fz) 膜辅助性受体LRP5/6 糖元合酶激酶3(GSK3) 支架蛋白(Axin) 抑癌蛋白(APC) T细胞因子(TCF)
Wnt→Fz → LRP/DSH → Axin/APC/GSK3/β-catenin →β-catenin →β-catenin/TCF → 激活靶基因转录
级联反应等, 即信号的识别、转移与转换。
主要内容:
细胞信号转导概述 细胞内受体介导的信号传递 G蛋白偶联受体介导的信号转导 酶联受体介导的信号转导 其他细胞表面受体介导的信号通路 细胞信号转导的整合与控制
第一节
细胞信号转导概述
一、细胞通讯 二、信号分子与受体
三、信号转导系统及其特性
分泌化学信号
Hedgehog(Hh):Hh信号分子是一种由信号细胞分泌的局域性蛋白质 配体,作用范围小。 Hh受体:Ptc、Smo和iHog蛋白,介导细胞对Hh信号应答反应。Ptc和Smo 具有接受和转导Hh信号的功能,iHog可能作为辅助性受体参与Ptc 与Hh信号的结合。
相关的信号分子超家族,无活性的分泌性前体需经蛋白酶水解作用形成以
二硫键连接的同源或异源二聚体,即成熟的活化形式。
TGF-β受体: 与TGF-β结合的细胞表面受体复合物,可将胞外信号将胞内转导, 包括RⅠ、RⅡ和RⅢ受体,本质上是受体Ser/Thr激酶。
TGF-β-Smad信号通路
TGF-β(配体)与TGF-β受体结合 形成复合物后便被激活,受体的激 酶活性能在胞质内直接磷酸化并激 活特殊类型的转录因子Smad,进入 核内调节基因表达。 ① 配体与RⅢ结合 ② RⅢ将配体递交给RⅡ或配体直接 结合RⅡ。RⅡ自磷酸化被激活 ③ 与配体结合的RⅡ募集并磷酸化 RⅠ的Ser/Thr残基,RⅠ受体被 激活 ④ 激活的R1受体磷酸化Smad ⑤ Smad激活靶基因转录
细胞生物学:第九章 细胞信号转导

气体性信号分子:NO ➢能自由扩散,进入细胞直接激活效应酶。
受体(Receptors)
能够识别和选择性结合某种配体(信号分 子)的大分子。
多为糖蛋白 至少包括两个功能区域
➢与配体结合的区域,具有结合特异性; ➢产生效应的区域,具有效应特异性。
类型 ➢细胞内受体:细胞质基质、核基质 小的亲脂性信号分子 ➢细胞表面受体 亲水性信号分子(分泌型和膜结合型)
B) constitutive activation of type II TGFb receptor
C) loss of Smad3 function
D) constitutive activation of Smad3
E) loss of Smad 4 function
Clicker Question 15-4
亲脂性信号分子:甾类激素、甲状腺素等。 ➢疏水性强,可穿过细胞膜进入细胞,与细 胞质或细胞核中受体结合形成激素-受体复 合物,调节基因表达。
亲水性信号分子:多肽类激素、生长因子、神经 递质、局部介质等。
➢不能穿过靶细胞质膜的脂双层,只能通过与靶 细胞表面受体结合,再经信号转换机制,在细 胞内产生第二信使或激活蛋白激酶或蛋白磷酸 酶的活性,引起细胞的应答反应。
细胞内核受体:依赖激素激活的基因调控 蛋白 ➢C端的配体结合域 ➢中部的DNA或抑制性蛋白(如Hsp90) 结合位点 ➢N端的转录激活域
在细胞内,受体与抑制性蛋白(如Hsp90) 结合形成复合物,处于非活化状态;
配体(如皮质醇)与受体结合,将导致抑制 性蛋白从复合物上解离下来,从而受体通过 暴露它的DNA结合位点而被激活。
➢ 旁分泌(paracrine):细胞通过分泌局部化学介质到细 胞外液中,经局部扩散作用于邻近靶细胞。
细胞生物学课件:9-细胞信号转导

受体数目(胰岛素受体)
内在活性-- 配体与受体结合后是否表现功 能反应。
受体激动剂/受体阻断剂
胞内信号传递关键分子(分子开关)
蛋白激酶protein kinase能将磷酸基团转移到底 物特定的氨基酸残基(ser/thr/tyr)上,使蛋白 质磷酸化,从而改变蛋白构象、促进或阻碍与底 物的结合。
G蛋白偶联受体(G-protein-coupled receptor)
识别胞外信号,自身构象改变,与G蛋白作用, 由G蛋白调节底物蛋白活性,在细胞内传递信号 。
与受体偶联的G蛋白
由α、β、γ亚基构成异三聚体,可结合GTP( 活化)/GDP(失活),具有GTP酶活性,本身 的构象改变可活化效应蛋白,进行下一步信号传 递。
胞质受体/核受体
配体多为甾体类激素/甲状腺素类激素/维生素D等。 以简单扩散的方式或借助于载体蛋白跨越靶细胞 膜,结合胞质或胞核内受体的羧基端并激活受体。
胞质受体/核受体
受体的DNA 结合区与位于靶基因的启动子或增 强子区域的特定的应答元件相结合,来行使转录 调节功能。
甾体激素受体
膜受体
DAG结合于质膜上,可活化与质膜结合的蛋白激酶C (Protein Kinase C,PKC)。PKC以非活性形式分布 于细胞质中。当DAG的产生增多时,PKC转位到质膜内 表面,被DAG活化,同时此时它与Ca2+的亲和力增加, 在Ca2+ 、DAG的共同作用下具有了对底物进行磷酸化的 功能。
I使P3胞与内内C质a2网+浓上度的升IP高3受,体激门活控各钙类通依道赖结钙合离,子开的启蛋钙白通。道,
胞内信号传递关键分子(分子开关)
衔接蛋白(adaptor protein)一般不具有酶活性, 而是起到一个结构枢纽的作用。
内在活性-- 配体与受体结合后是否表现功 能反应。
受体激动剂/受体阻断剂
胞内信号传递关键分子(分子开关)
蛋白激酶protein kinase能将磷酸基团转移到底 物特定的氨基酸残基(ser/thr/tyr)上,使蛋白 质磷酸化,从而改变蛋白构象、促进或阻碍与底 物的结合。
G蛋白偶联受体(G-protein-coupled receptor)
识别胞外信号,自身构象改变,与G蛋白作用, 由G蛋白调节底物蛋白活性,在细胞内传递信号 。
与受体偶联的G蛋白
由α、β、γ亚基构成异三聚体,可结合GTP( 活化)/GDP(失活),具有GTP酶活性,本身 的构象改变可活化效应蛋白,进行下一步信号传 递。
胞质受体/核受体
配体多为甾体类激素/甲状腺素类激素/维生素D等。 以简单扩散的方式或借助于载体蛋白跨越靶细胞 膜,结合胞质或胞核内受体的羧基端并激活受体。
胞质受体/核受体
受体的DNA 结合区与位于靶基因的启动子或增 强子区域的特定的应答元件相结合,来行使转录 调节功能。
甾体激素受体
膜受体
DAG结合于质膜上,可活化与质膜结合的蛋白激酶C (Protein Kinase C,PKC)。PKC以非活性形式分布 于细胞质中。当DAG的产生增多时,PKC转位到质膜内 表面,被DAG活化,同时此时它与Ca2+的亲和力增加, 在Ca2+ 、DAG的共同作用下具有了对底物进行磷酸化的 功能。
I使P3胞与内内C质a2网+浓上度的升IP高3受,体激门活控各钙类通依道赖结钙合离,子开的启蛋钙白通。道,
胞内信号传递关键分子(分子开关)
衔接蛋白(adaptor protein)一般不具有酶活性, 而是起到一个结构枢纽的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主要过程:刺激性激素(配体)→刺激性激素受体→G蛋白 上Gα亚基→受体配体复合物解离→Gα结合并激活腺苷酸 环化酶→cAMP含量增加→激活蛋白激酶A(PKA)的两 个调节亚基→释放催化亚基→酶的迅速活化→调节各种生 命代谢。
在细胞内还有另一种酶即环线甘酸磷酸二酯酶(PDE),可 降解 cAMP,导致细胞内cAMP水平下降,从而终止信号反应。
细胞通讯3种方式: 一、分泌化学信号 分泌化学信号作用方式4种: • 内分泌 • 旁分泌 • 自分泌 • 化学突出传递神经信号
二、细胞间接触性依赖通讯:
①细胞-细胞黏着
②细胞-基质黏着
三、间隙连接或胞间连丝:
• 动物细胞间的间隙连接或植物细胞间的胞 间连丝同属于通讯连接。
• 通讯连接:详见第十七章
信号转导系统及其特性: (一)基本组成及信号蛋白的相互作用 • 细胞表面受体介导的信号通路5个步骤: 受体激活→活化信号蛋白→级联反应→反 应回答→受体脱敏
信号转导系统: • 是由细胞内多种行驶不同功能的信号蛋白 所组成的信号传递连。
• 细胞内信号蛋白的相互作用是靠蛋白质模 式结合域所特异性介导的。
细胞因子与质膜受体特异性结合→细胞因子受体二聚化→JAK活化→ 磷酸化受体胞内段酪氨酸残基→与具有SH2结构域的STAT蛋白结合 →STAT被JAK磷酸化,STAT分子从受体上解离→两个磷酸化的STAT形 成同源二聚体→转位到细胞核内,与 特异基因的调控序列结合,调节相
关基因的表达
第五节 其他细胞表面受体介导的信号通路
二、G蛋白偶联受体所介导的细胞信号通路 按效应器蛋白不同可分为:
①激活离子通道的G蛋白偶联受体。 ②激活或抑制Ac,以CAMP为第二信使的G蛋白偶 联受体。 ③激活PLC,以IP3和DAG作为双信使的G蛋白偶联 受体。
(一)激活离子通道的G蛋白偶联受体所介导的信
号通路
主要过程: 信号分子→GPCR(受体)→与GP(配体) 结合→调控离子通道关闭→膜电位改变→ 产生相关活动。
(三)激活PLC,以IP3和DAG作为双信使的G蛋 白偶联受体。
信号分子→GPCR→GP→PLC→PIP2被水解为DAG和IP3;
IP3→激活Ca2+通道→使得Ca2+与CaM特异结合→多种生理功能改变
DAG→激活PKC→作用于靶蛋白→改变代谢活动
在G蛋白偶联受体介导的信号通路时, 为什么不同的信号(配体)通过类似的机 制会引发不同的细胞反映? 对某一特定配体,其受体可以几种不同 的异构体形式存在,并对配体和特异G蛋白 有不同亲和性。
一、 核受体及其对基因表达的调节
主要过程:
信号分子(激素类)进入靶细胞→跨越质膜→通过 与特异性核
受体结合为复合物→复合物入核→调节基因表达→
产生初级产物→激活其他基因转录→产生次级产物
• 二、NO作为气体信号分子进入靶细胞直接 与酶结合 • NO是一种具有自由基性质的脂溶性气体分 子,可透过细胞膜快速扩散,作用邻近靶 细胞发挥作用。
• 研究蛋白互作的模式结构域——SH2结构域 确定蛋白家族成员: 酶、癌蛋白、锚定蛋白接头蛋白、调节蛋 白、转录因子
(二)信号蛋白复合物的装配3种策略:
①.表面受体和胞内信号蛋白通过支架蛋白结
合预先形成细胞内信号复合物,当受体被激 活后,便激活细胞内信号蛋白并向下游传递。
②.表面受体被激活后胞内段氨基酸残基位点
第九章
细胞信号转导
聂银铃 陈俊洁 钱红飞
第一节 细胞信号转导概述
细胞信号转导是实现细胞间通讯的关键 过程,它是协调细胞间功能,控制细 胞的生长和分裂,组织发生与形态建 成所必需的。
细胞通讯:
指一个信号产生细胞发出的信息通 过介质(配体)传递到另一个靶细胞 并与其相应的受体相互作用,然后通 过细胞信号转导产生靶细胞内一系列 生理变化,最终表现为靶细胞整体的 生物学效应的过程。
TGF-β -Smad 信号通路
TGF-β→ RIII → RII → RI → 磷酸化Smad3并暴露其NLS
(核定位信号) → 与Smad4和Imp-β(I-Smad)结合形成细胞质 复合物并进入细胞核 → Imp-β与NLS解离再与TFE3(核内转录因
子)结合→调控基因转录
JAK-STAT 信号通路
• 主要过程:
• 血管神经末梢释放Ach→作用于GPCR(G蛋白偶联受体)→
• 活化G蛋白→激活PLC(磷脂酶C)→通过对第二信使PIP2
• 水解生成IP3和DAG两个第二信使→IP3开启Ca2+通道
• →Ca2+从内质网进入细胞质基质+CaM→NO合酶→催化
• 精氨酸氧化为瓜氨酸→释放NO→激活GC(鸟苷酸环化酶)→cGMP
三.酶联受体: 一类具有酶活性; 另一类受体胞内段与酶联系。
至少两个功能域:结合配体、产生效应
受体被激活-信号转导-引发两种主要反应: 改变预存蛋白活性 影响特殊蛋白的表达量
•
细胞信号转导过程中的蛋白:
表面受体 第二信使 分子开关
第二信使与分子开关
第二信使:指胞内产生的一类非蛋白分子,通过其 浓度的改变来应答胞外信号与细胞表面受体的结 合,从而调节胞内酶和非酶蛋白活性,从而在细 胞信号转导途径中行驶携带和放大信号的功能。
细胞内受体超家族本质是依赖激素激活的基因调控 蛋白,在细胞内,受体与抑制剂(如Hsp90)结 合为复合物,当信号分子与受体结合后,抑制剂 脱落,使得受体暴露其DNA结合位点而被激活。 这类受体含有3个功能域: C端结构域(激素结合位点) 中部结构域(DNA或HSP90结合位点) N端结构域 (转录激活)
1.缺乏Hh信号时
受体ptc蛋白抑制胞内膜泡上的Smo蛋白,而胞质调节蛋白形成复合
物并与微观结合,在复合物中转录因子Ci被各种激酶磷酸化,磷酸化的 Ci在Slimb的作用下水解形成Ci75片段,进入核内,抑制靶基因表达
2.有Hh信号时
Hh信号与Ptc结合,抑制Ptc的活性并诱发其内吞被溶酶体消化,从而解 除对Smo的抑制,通过膜泡融合移位到质膜,并被CK1和PKA两种激酶 磷酸化,与Smo结合的Cos2和Fu蛋白超磷酸化,致使Fu/Cos2/Ci复合物 从微管上解离下来,从而形成稳定形式的Ci,Ci入核并与CREB结合蛋 白结合,作为靶基因的转录激活子而发挥作用
第四节 酶联受体介导的信号转导
5类催化性受体 • 受体酪氨酸激酶受体 • 丝氨酸/ 苏氨酸激酶受体 • 酪氨酸磷酸酯酶 • 受体鸟苷酸环化酶 • 性很低,当接收信号,受体二聚化后,激 活受体的蛋白酪氨酸激酶结构域,进而在二聚体内彼此交叉 磷酸化
胞外信号所介导的细胞通讯6步骤
1.信号细胞合成并释放信号分子 2.转运信号分子至靶细胞 3.信号分子与靶细胞表面受体特异性结合并导致受 体激活 4.活化受体启动靶细胞内一种或多种信号转导途径 5.引发细胞代谢、功能或基因表达的改变 6.信号的解除并导致细胞反应终止
信号分子与受体
信号分子:化学信号、局部介质、神经递质 以及物理信号。 按化学性质分3类: • 气体性信号分子 • 疏水性信号分子 • 亲水性信号分子
PI3K-PKB 信号通路
存活信号分子→RTK→PI3K→PIP2 →PIP3→与含PH结构域的信号蛋白 (AKT/PKB)结合 → PKB转位到质膜上,同时催化位点得以释放 (PKB部分活化) →完全活化PKB(PDK1与PDK2分别磷酸化PKB上苏 氨酸与丝氨酸残基)→ PKB从质膜解离下来,进入细胞质基质和细胞核 →磷酸化多种靶蛋白→抑制细胞凋亡,促进糖原合成和细胞存活
• 上升→抑制肌动肌球蛋白复合物的形成→平滑肌
舒张,降压
第三节:G蛋白偶联受体介导的信号转导
一、G蛋白偶联受体的结构与激活
G蛋白:二聚体GTP结合调节蛋白,由Gα和Gβγ锚定在质膜上。 过程:配体与受体结合→活化受体与Gα亚基结合→活化受体使Gα亚基 改变,致使GDP与G蛋白解离→GTP与Gα亚基结合,引发Gα亚基与Gβγ 和受体解离→配体-受体复合物解离,Gα亚基结合并激活效应蛋白 →GTP水解成GDP引发Gα亚基与效应蛋白分离并重新结合Gβγ亚基,恢 复到三聚体G蛋白静息状态
Went信号与受体FZ结合,引发LRP被GSK3和其它激酶磷酸化,从而 使Axin与LRP结合,致使Axin/APC/GSK3/β -catenin复合物解离,避免 β -catenin被GSK3磷酸化而免于降解并在细胞中富集,转位到核内与 TCF结合,激活靶基因转录
(二)Hedgehog 信号通路
分子开关:在细胞内一系列信号转导过程中,有正 负反馈作用的蛋白,一类是GTPase分子开关调 控蛋白构成的GTPase超家族;另一类是通过蛋 白激酶使靶蛋白磷酸化,通过蛋白磷酸水解酶使 靶蛋白去磷酸化,从而调节靶蛋白活性;还有一 类是CaM通过与Ca2+结合或解离而分别处于活化 或失活的开启或关闭状态。
2.Camp-PKA信号通路对真核细胞基因的表达
这类反应属于慢反应
主要过程:激素→G蛋白偶联受体→G蛋白→腺苷酸环化酶→cAMP →cAMP依赖的蛋白激酶A(PKA) →PKA上催化亚基释放进入细胞核 →使得基因调控蛋白(CREB)磷酸化→磷酸化的基因调控蛋白与核 内结合蛋白特异结合形成复合物→复合物与靶基因调控序列结合→激 活靶基因的表达
(一) Wnt-β -catenin 信号通路
1 .缺乏Wnt信号时
β -catenin与Axin介导的胞质蛋白复合物结合,利于β -catenin被
GSK3磷酸化,磷酸化的β -catenin泛素化后被蛋白酶体识别和降解,转 录因子TCF与抑制因子结合在核内作为阻遏物抑制靶基因转录
2.有Wnt信号时
1.cAMP—PKA信号通路对肝细胞和肌细胞糖原代谢的调节
PKA磷酸化糖原磷酸化酶激酶(GPK) →GP被激活→刺激糖原降解
PKA使糖原合酶(GS)磷酸化→抑制糖原合成 • cAMP →PKA