水力平衡调节
供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨随着城市化进程的加快和居民生活水平的提高,供热管网作为城市基础设施的重要组成部分,承担着为居民提供温暖的重要任务。
在供热管网的运行中,水力平衡是一个重要问题,它直接关系到整个供热系统的运行效率和稳定性。
对供热管网水力平衡的调节措施进行探讨,对于提高供热系统的运行效率和保证居民供热质量有着重要的意义。
一、水力平衡的概念和意义水力平衡是指系统中各分支管道的局部压力、流量和温度等参数的合理调控,使各点的水压、流量和温度能够在规定的范围内保持稳定,并且水力资源得以均衡利用。
在供热管网中,水力平衡是指在整个系统中,各个分支管道的水压、流量和温度等参数能够平衡分布,保证热水能够均匀地传递给各个用户,从而实现供热系统的高效、稳定运行。
水力平衡对于提高供热系统的能效和稳定性具有重要的意义。
二、水力平衡调节措施的必要性1. 提高供热系统的运行效率如果供热管网中存在严重的水力不平衡现象,就会导致系统中部分管道的流量过大,而另一部分管道的流量过小,从而导致热水的传递不均匀,一些用户会得到过热的热水,而另一些用户则会得到过冷的热水。
这不仅会降低供热系统的能效,还会影响用户的供热体验。
2. 保证居民供热质量如果供热管网中存在水力不平衡的问题,就会导致一些用户受到供热质量的影响,有些用户会出现供热不足的情况,而另一些用户则会出现供热过热的情况,这不仅会影响用户的生活质量,还会造成用户的投诉和维修成本的增加。
水力平衡调节措施的必要性无疑是非常明显的,它关系到整个供热系统的运行效率和居民供热质量,是供热系统运行中需要高度重视的问题。
1. 合理设置阀门在供热管网中,合理设置阀门是保证系统水力平衡的必要措施之一。
通过合理设置调节阀和截止阀等,可以实现对供热系统中不同支路的流量、压力、温度等参数的调节和控制,从而达到整个系统的水力平衡。
2. 使用比例阀比例阀是一种根据流量大小自动调节开度的阀门,通过安装比例阀,可以实现对各分支管道流量的自动调节,从而达到供热系统的水力平衡。
供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究随着城市化进程的加快,城市热力供应系统也得到了迅速发展。
而在热力供应系统中,供热管网的水力平衡调节是非常重要的一环。
水力平衡是指在供热管网中,各个支路、回路以及末端用户之间保持合理的压力、流量等参数的均衡状态,以保证整个供热系统的稳定工作和高效能运行。
提高供热管网的水力平衡调节方法显得尤为重要。
本文将对当前供热管网水力平衡调节方法进行研究,并提出一些改进措施,以期能够提高供热系统的运行效率和稳定性。
1. 静态平衡调节方法静态平衡调节方法是最为直接和常见的一种方法,通常是通过合理的管道设计和安装来保证供热管网的水力平衡。
在设计和安装过程中,需要考虑管道的布局、管径、阀门的位置等因素,以确保各个支路和回路在负载均衡时能够保持相对稳定的水力平衡状态。
此方法的优点是操作简单,易于理解和掌握。
但是其缺点也显而易见,即在实际运行中由于用户用热量的变化,会使得管网产生不同程度的水力不平衡,从而影响整个供热系统的运行效率。
2. 动态平衡调节方法动态平衡调节方法是通过安装调节阀、联动阀等设备来实现管网的水力平衡调节。
这些设备能够根据系统的实际运行情况,及时调整水流的分配,从而保证管网的各个部分能够在不同的工况下保持水力平衡。
这种方法相对于静态平衡调节方法来说,能够更加灵活地应对管网运行中可能出现的各种情况,保证整个供热系统的稳定运行。
但是这种方法需要有较高的技术水平和经验来进行操作,同时成本也相对较高,对于一些小型和中小型供热系统来说,可能会存在一定的困难。
1. 结合现代控制技术随着现代控制技术的不断发展,人们可以更加方便地对供热系统进行监控和调节。
结合现代控制技术,可以通过安装传感器、控制阀等设备,对供热管网进行实时监测和调节。
在管网中设置控制节点,通过数据采集和处理,可以根据实际运行情况进行动态调节,及时解决管网中的水力不平衡问题。
这种方法能够更加精确地掌握管网的运行情况,提高供热系统的运行效率和稳定性。
供热管网水力平衡调节方法的研究

供热管网水力平衡调节方法的研究1. 引言1.1 背景介绍供热管网水力平衡调节是指在供热系统中保持热水流动均匀和稳定,避免管道中出现过热和过冷的现象,以提高供热效率和节约能源。
随着供热管网规模的不断扩大和复杂度的增加,保持水力平衡成为一个重要的挑战。
水力失衡会导致部分房间温度过高或过低,影响供暖效果,甚至影响管网和设备的正常运行。
在过去的研究中,人们主要通过手动调节阀门的方式进行水力平衡调节,然而这种方法存在着调节不及时、效果不稳定等问题。
寻找一种更加科学、高效的水力平衡调节方法显得尤为重要。
本文将从基于动态水力学模型和实测数据两个方面探讨供热管网水力平衡调节方法,通过仿真模拟验证和参数优化来验证研究结果的有效性。
这将有助于提高供热系统的运行效率、减少能源浪费,为供热管网的设计和运行提供一定的参考依据。
1.2 研究意义研究供热管网水力平衡调节方法的意义在于优化供热系统的运行效率,提高能源利用率,降低运行成本,减少能源浪费,减少对环境的影响。
水力平衡是保证供热系统正常运行的关键因素,通过调节系统中的水流量和压力分布,可以有效地解决管网中水流速度不均匀、管网阻力较大、系统过热或过冷等问题,提高系统的稳定性和可靠性。
研究水力平衡调节方法还可以帮助系统运行人员更好地了解供热管网的运行状态,及时发现并解决问题,确保供热系统的安全运行。
研究供热管网水力平衡调节方法还可以为供热行业提供技术支持和参考,促进供热系统的技术水平和管理水平的提升,推动供热行业的可持续发展。
深入研究供热管网水力平衡调节方法具有重要的理论意义和实践价值。
1.3 研究方法研究方法是对于研究目标的实现路径和方法论的设计和安排。
在本文中,我们将采用多种研究方法来探讨供热管网水力平衡调节方法,并通过这些方法来验证我们的研究成果。
我们将基于现有的文献和理论知识,对供热管网水力平衡调节方法进行概述和总结,以建立起对该领域的全面认识和理解。
通过文献综述和理论分析,我们可以系统地了解目前该领域的研究现状和存在的问题,为后续的研究工作提供指导和启示。
基于热力管网水力平衡调节问题的思考

基于热力管网水力平衡调节问题的思考热力管网水力平衡调节问题是热力管道系统运行过程中常见的技术难题之一。
在热力管网系统中,水力平衡是指在供水和供热过程中,各个分支管道的水流量、压力和温度能够达到平衡状态,保证整个系统的稳定运行和高效能使用。
由于管网系统的复杂性和运行环境的变化,水力平衡经常受到影响,导致系统的能耗增加,设备的寿命缩短,并可能引起一些安全隐患。
对热力管网水力平衡调节问题进行深入思考和研究,对于提高系统的运行效率、降低能耗、延长设备寿命等方面具有重要意义。
一、水力平衡调节的意义热力管道系统中的水力平衡调节问题,主要表现在以下几个方面:1. 供水/供热页边缘段流量、压降及温度控制不稳定,影响到用户端的舒适度。
2. 系统运行参数的不稳定,影响了系统的运行效率,增加了系统的运行成本。
3. 系统设计、改造时未对涌流、回流和死水等水力不平衡因素进行充分考虑,导致了系统运行不稳定。
在水力平衡调节的过程中,需要解决的问题包括:1. 确定各分支管道的流量、压力和温度的分布规律。
2. 建立合理的水力平衡调节措施,确保系统运行稳定。
3. 通过合理的管道设计、优化调节设备的选型等方法,提高系统的运行效率和节能效果。
针对热力管网水力平衡调节问题,通常可采取以下方法进行解决:1. 系统的优化设计。
在系统设计阶段,就需要充分考虑水力平衡的问题,合理设计输水管道、主副泵、水箱等设备,以及设置合理的调节装置。
2. 优化调节设备的选型。
选择合适的泵、阀门、管道等调节设备,保证系统可以实现水力平衡调节。
3. 合理规划管道布局。
通过引入换向器、弯头、渐变管等,减小水流的阻力,降低系统的压降,使系统能够更容易实现水力平衡。
4. 进行系统的水力模拟计算。
借助计算机仿真软件,对系统的水力特性进行模拟计算,找出问题所在,并制定相应的调节方案。
通过以上方法的综合应用,可以有效的解决热力管网水力平衡调节问题,提高系统的运行效率,降低系统的运行成本。
水力平衡在建筑暖通系统中的调节与优化

水力平衡在建筑暖通系统中的调节与优化随着现代建筑技术的不断发展,建筑暖通系统在人们的生活中起着越来越重要的作用。
而水力平衡作为建筑暖通系统中的一个关键环节,对于系统的运行效果和能源利用效率有着重要影响。
本文将探讨水力平衡在建筑暖通系统中的调节与优化方法,以期提高系统的性能和节能效果。
1. 水力平衡的基本概念与作用水力平衡是指在建筑暖通系统中,通过合理地调节水流量和水压,使得系统中各个部分能够获得适当的水流量和水压,从而实现系统的稳定运行和高效能利用。
水力平衡的主要作用有两个方面:一是保证系统中各个末端设备的供水和回水温度稳定,避免因水流量不均匀而导致的供暖效果差异;二是减小系统中的阻力损失,降低能耗,提高能源利用效率。
2. 水力平衡的调节方法2.1 管道设计与布局在建筑暖通系统的设计过程中,合理的管道设计与布局是实现水力平衡的基础。
首先要根据建筑的结构和功能需求,确定供水和回水的管道尺寸和布置方式。
其次,要避免管道的过长和过多的弯头,减小阻力损失。
最后,对于大型建筑物,可以考虑将系统分成多个独立的回路,以便更好地控制水流量和水压。
2.2 泵站的选择与运行在建筑暖通系统中,泵站的选择和运行对于水力平衡具有重要影响。
首先,要选择合适的泵站类型和规格,以满足系统的需求。
其次,要合理地设置泵站的运行参数,如水泵的转速和流量调节方式,以保证系统的稳定运行和水力平衡。
此外,还可以考虑使用变频调速技术,根据系统的实际负荷情况,调整泵站的运行状态,进一步提高系统的能源利用效率。
2.3 阀门的调节与控制阀门的调节与控制是实现水力平衡的重要手段之一。
通过合理地设置阀门的开度和调节方式,可以调节系统中各个末端设备的水流量和水压,从而实现水力平衡。
在实际操作中,可以采用手动调节阀门的方式,也可以使用自动调节阀门,通过传感器和控制器的反馈信号,实现对水流量和水压的自动调节。
3. 水力平衡的优化方法3.1 系统的动态调节与优化建筑暖通系统的运行状态是时刻变化的,因此,动态调节和优化是实现水力平衡的重要手段之一。
供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨随着城市供热管网的不断完善和发展,供热管网水力平衡问题也日益引起人们的关注。
水力平衡是指管网中各个分支和末端热量的分配均匀,使热力管网中的水流量和压力保持稳定。
而供热管网水力平衡的调节措施是确保供热系统正常运行的关键,本文将从调节措施的技术原理和应用效果两个方面探讨供热管网水力平衡的调节措施。
一、调节措施的技术原理1. 流量调节阀的安装在供热管网中,通过合理设置流量调节阀实现管网中各个分支和末端热量的分配均匀,保证供热系统水力平衡。
流量调节阀安装在管道上,通过调节阀门的开度来控制管道中的水流量,从而实现供热管网的水力平衡。
这种技术原理简单易行,操作方便,能够有效地调节供热管网的水力平衡。
2. 自动调节阀的应用3. 管网调节技术的优化通过对供热管网的调节技术进行优化,包括管网的设计、安装和维护等方面的措施,能够更好地实现供热管网的水力平衡。
在供热管网的设计中,应根据管道的长度、直径、材质等因素进行合理的布局和设计,确保管网中的水流量和压力均匀分布。
在管网的安装和维护过程中,应加强对管道的维护和管理,及时检测和修复管道中的漏水和堵塞等问题,保证供热系统的正常运行。
二、调节措施的应用效果1. 提高供热系统的稳定性通过采取有效的水力平衡调节措施,能够提高供热系统的稳定性,确保供热管网中各个分支和末端热量的分配均匀。
水力平衡调节措施能够减少管网中的水流量和压力的波动,降低供热系统的运行风险,保证供热系统的安全稳定运行。
2. 减少能源消耗3. 延长设备的使用寿命通过调节措施,能够使供热系统中的设备运行更加稳定,延长设备的使用寿命。
水力平衡调节措施能够降低供热系统中设备的运行压力和负荷,减少设备的磨损和损坏,延长设备的使用寿命。
供热管网水力平衡的调节措施是确保供热系统正常运行的关键。
通过应用流量调节阀、自动调节阀等设备,优化管网调节技术,能够提高供热系统的稳定性,减少能源消耗,延长设备的使用寿命。
调节水力平衡

1、“静态平衡阀+电动二通阀”平衡调节方式:
图1为静态平衡阀安装在风机盘管各层水平支管上,图2为静态平衡阀安装在风机盘管各层水平支管和末端回水管上。
通过安装静态水力平衡阀,并且在初调试时按照一定的步骤进行调节,可以使在系统调试合格后各层水平支管或者各个风机盘管的流量同时达到设计流量,系 统部分或者全部消除了静态水力失调,但是在系统运行过程中,不同风机盘管的调节会存在一定的相互干扰,因此存在一定的动态水力失调。
动态平衡电动二通阀是动态平衡与电动二通一体化的产品。一方面它具有一般的电动二通阀的电动开关功能,另一方面,它能保证在工作压差范围内其流量不受系统压力波动的影响,始终维持在设计流量,从而实现动态平衡。
垂直立管为同程式管道的系统,水平回水管上可不加静态平衡阀,垂直立管为异程式且水力失调程度较大的系统,建议在水平回水管上增加静态水力平衡阀并在初调试时进行一定的调节。
2、“静态平衡阀+压差调节阀+电动二通阀” 平衡调节方式:
图3为压差调节器安装在风机盘管各层水平回水管上,静态平衡阀安装在各层水平供水管上;图4为压差调节器安装在风机盘管各层水平回水管上,静态平衡阀安装在末端风机盘管供水管上。
通过安装静态水力平衡阀,可以使系统在调试合格后各层水平支管或者各个风机盘管的流量同时达到设计流量,系统部分或者全部消除了静态水力失调;通过 压差调节器在各层水平供回水管的定压差作用,可以维持风机盘管末端管道的压差在一定程度上保持恒定,从而避免末端风机盘管流量调节的相互干扰,实现动态水 力平衡。但是,由于水平管道上存在着一定的沿程阻力,当水平并联风机盘管的数量较多、管道长度较长,从而使沿程阻力较大时,定压差作用就受到了消弱,这时 末端风机盘管的流量调节仍存在一定的相互影响,存在一定的动态水力失调。
供热管网水力平衡的调节措施探讨

供热管网水力平衡的调节措施探讨【摘要】本文主要探讨了供热管网水力平衡的调节措施。
首先介绍了水力平衡在供热系统中的重要作用,随后分析了影响水力平衡的因素。
然后讨论了三种常见的调节措施:阀门调节、泵站调节和管道设计。
通过对这些措施的比较和分析,可以看出它们在实际应用中各有优劣。
最后总结了调节措施的有效性,并提出了未来研究方向。
通过本文的研究,可以为供热管网水力平衡的调节提供一定的参考和指导,提高供热系统的效率和稳定性。
【关键词】供热管网、水力平衡、调节措施、阀门调节、泵站调节、管道设计、有效性、研究方向。
1. 引言1.1 研究背景供热管网水力平衡是保证供热系统正常运行的重要环节。
随着城市供热规模的不断扩大和供热管网的复杂性增加,水力平衡问题逐渐凸显出来。
供热管网水力不平衡会导致部分区域供热温度不足或者过热,影响用户舒适度,增加供热能耗,降低供热系统的效率,甚至影响供热设备的寿命。
针对供热管网水力平衡的调节措施成为研究的热点。
研究背景部分主要是对供热管网水力平衡问题的现状进行分析和说明,引出对该问题的研究意义和必要性。
目前,国内外对供热管网水力平衡的研究已经取得了一定的进展,但在实际应用中仍然存在着一些问题和挑战。
有必要对供热管网水力平衡的调节措施进行深入探讨,以提高供热系统的运行效率,降低能耗,保障供热质量,推动供热行业的可持续发展。
部分的详细内容会在接下来的章节中逐步展开。
1.2 问题提出在供热管网运行过程中,水力平衡是一个至关重要的问题。
水力平衡不仅影响着管网的运行效率和能耗,还影响着供热系统的稳定性和可靠性。
在实际运行中,供热管网往往存在水力不平衡的情况,这给管网的运行带来了诸多问题。
水力不平衡会导致部分管道流速过大,而部分管道流速过小,这样不仅会影响供热系统的供热效果,还会造成部分管道的过热或过冷。
水力不平衡还会导致供热系统的能耗增加,因为部分管道流速过大会造成能耗浪费,而部分管道流速过小则需要增加泵站的运行来维持供热效果,进而增加系统的能耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
供热管网水力平衡调节方法的研究2004-2-17河北建筑工程学院马仲元张志红陈忠海这篇文章被阅读了< 151 >次摘要:分析了我国目前供热管网水力平衡调节方法中存在的一些优缺点,以计算机与单台流量计的计算及测量为手段,提出了一种从理论到实际可操作的室外管网的水力平衡综合调节方法。
并编制了供热管网水力平衡调节的应用程序,使得供热管网的水力平衡调节实用,经济、快捷、方便。
引言目前供热管网(主要为二次供热管网)的热力平衡措施,主要有装设孔板,普通截止阀、平衡阀及自力式平衡阀几种,因为平衡阀及自力式平衡阀造价较高,并且也需要一定的人工调节,所以采用较少,孔板平衡措施由于管网实际安装与计算工况很难相同,所以会有一定的误差,在实际使用中有一定的困难。
而装设具有一定调节能力的截止阀进行管网的水力平衡调节,由于其成本低,且管网具有可调性,而得到了广泛的应用。
目前,供热管网建成后,在实际运行中,往往存在水力失调问题,这主要是由以下原因造成的:(1)工程设计是根据水力学理论进行计算而选取相应的数据,而实际管材的数值与标准是有差别的;(2)由于施工条件的限制,使管路的实际情况与设计情况有很大不同,供热管网在实际运行中不能达到平衡;(3)管网建成后的新用户增加,使原有的水力平衡遭到破坏;(4)管网维护不当,使管网水力平衡受到影响。
针对供热管网水力失调问题,本文就热用户引入口装设普通截止阀的水力平衡措施的供热管网系统水力平衡调节方法进行了研究,提出了一种"综合调节法",它有别于现行的调节方法,具有这用而且简单易行,对目前解决供热管网水力平衡调节问题,具有很大的应用价值。
一、国内管网水力平衡调节的方法近年来,国内一些单位为能解决系统的水力平衡调节问题进行一些探索工作,取得了一些成果,主要调节方法有:1.温差法此法是利用在用户引入口安装压力表温度计,对系统进行初调节。
首先使整个系统达以热力稳定。
为提高系统初调节的效果,可使网路供水温度保持60℃以上的某个温度不变化,若热源的总回水温度不再变化。
就可以认为整个系统已达到热力稳定。
此时记录下热源的总供水及回水温度和所有热用户处、回水压力和供、回水温度。
先调节供回水温差小于热源总供回水温差的热用户,并按照用户的规模大小和温差的偏离程度大小,确定初调节次序。
先对规模较大且温差的偏离也较大的热用户进行调节。
根据经验对其用户引入口装置中的供水或回水阀门进行节流。
待第一轮次调节完毕系统稳定运行几小时后,现重新记录总供水温差及各用户入口处供回水压力及温度进行下一轮的调节。
该调节方法调节周期时间长,需要反复进行,它适用于保温较好的网络。
如果网路保温较差,网路供水的沿途温降较大,则对于供水温度较低的热用户,或室内供暖系统水力不平衡的用户将较差,可能出现新的水力失调。
但此调节方法属于粗调,调节效果不准确。
2.比例法此法是利用两台便携工超声波流量计,或可测得流量的阀门(如平衡阀新型入口装置)及步话机(用于调节时人员之间的联系)来完成的,比例法的基本原理为如果两条并联管路中的水流量以某比例流动(例如1:2),那么当总流量在+30%范围内变化时,它们之间的流量比仍然保持不变(1:2)。
但用比例法调节时相互间不易协调,对操作人员素质要求较高,并需要两台相同的流量计,初投入较大。
3.CCR法CCR法是在严格的对全系统刊物阻力分析计算的基础上,对全系统实行一次调整的新方法,它由采集数据,计算机计算和现场调整三步构成。
CCR法的基本思路是先测出被测管网现状的各管段阻力数S值,再根据所要求的各支路流量计算出各调节阀所相应的开度,最后根据计算结果一次将各调节阀调节到所计算的开度,使系统这到所要求的分配流量,此方法相应的初投资较大,而且测量各管段实际阻力数S值不易。
但降低了运行费用,是未来发展的方向。
二、综合调节法研究我们分析了以上各调节方法的优缺点,在此提出了一种新的调节方法,此方法具有比例法和CCR法的一些特点,因此称这综合调节法。
综合调节法有两种调节形式,一种为在管网的设计阶段通过计算为使支管线及各热用户水力平衡选取适当管径的截止阀(截止阀与管径相同或小几号)及相应的开启度管网投入运行后,按计算结果将截止阀一次调节完成。
可实现管网的初平衡。
在管网精细调节时,需要在热用户入口处或支管线上装设流量测孔,并配备一台便携式水力平衡测试仪(该仪表可测流量与温度)通过流量测试、计算、再调节,从而实现管网的最终水力平衡。
此方法先将管网的设计参数及管网安装竣工后的管网有关数据输入计算机,计算出各管段设计阻力数S值,根据各支路所设计的流量、阀门阻力特性数S与阀门开启高度Y的拟合方程式,(据大量截止阀的实验研究出的s=f(G·Y)关系)通过计算机程序计算并调节,最后使系统达到所要求的流量分配。
由于管网在水力平衡状态下,相邻的管路的压差是平衡的(图1为管路原理图)三、综合水力平衡调节方法的实施综合调节法的实施步骤是(以图1为例)1.将整个管网的设计参数按要求输入计算机;2.将管网中所有需要调节的截止阀开到最大;3.运行程序,按照计算机的提示用仪表测量参考用户1(最不利用户)的流量,输入计算机。
4.按照计算机的提示用仪表测量用户1上游处用户2的流量,输入计算机。
计算机程序将以用户的设计阻力数代替实际阻力数,计算出安装在用户2入口处的截止阀的开起高度和调节平衡后相应管段阻力数S值的变化,调节此截止阀到相应的开度。
使用户1的实际流量与设计流量比等于用户2的实际流量与设计流量比达到相等。
如等比误差较大应重新输入相关数据并调节。
直至用户1、2达到等比。
5.用仪表测量用户1及用户2的实际流量并检验是否等比,并输入计算机。
6.按照计算机的提示用仪表测量用户2上游处用户3的流量。
输入计算机。
计算机程序将以用户1、2的设计阻力数代替实际阻力数,计算出安装在用户3入口处的截止阀的开起高度和调节平衡后相应管用户的流量。
并进行调节,此后不在测量用户1的流量。
7.以后的步骤同6。
8.调节完后,计算机自动保存和输出各用户的相关数据。
四、结论这种调节方法需要干线的各管路的阻力特性数进行详细的统计计算,这样才能保证水力平衡调试的精度。
我们认为综合调节法较适合中国国情,与其它方法比较而言,这种方法管路系统投资较少,比较容易操作,这样通过计算机程序计算各管段达到平衡时所需相应的阻力、流量,通过测得的流量进行计算调节,由实验获得的阀门开启度和流量的关系,找出普遍的规律,通过单机的测量管段流量,调节阀门开启高度。
达到所需调节效果,综合调节法的外网水力平衡调节方法在计算机基础上的一种新思路,适应于现阶段我国正逐步完善的小规模集中供热系统。
五、参考文献贺平孙刚《供热工程》(新一版)1993 马个元等《河北建筑工程学院学报》2002 第三期利用新风系统消除内区余热的设计探讨作者:unknown 文章来源:互联网点击数:255 更新时间:2006-3-10 10:21:12凡是解压缩的密码都是:将风机盘管加新风系统的设计做出部分调整,使其冬季或过渡季在室外空气为冷源,对建筑物的内区或其它需供冷区域进行供冷,达到节约能源的目的。
关键词:新风系统内区余热0 引言随着生活水平的提高,人们对室内热环境舒适度的要求也越来越高。
然而对于建筑物的内区所产生的余热,在设计中较难处理或处理失当,造成冬季供热后内区室内温度不能满足要求。
也有些房间虽没有外扰负荷,但产生大量的余热、余湿(此问题在餐厅包间尤其突出)。
这些房间在冬季即使停止供暖,温度仍然偏高,需要供冷才能达到较满意的舒适度。
由于风机盘管加新风系统是我国较普遍采用的一种空调系统方式,本文将重点论述这类系统在过渡季或冬季运用新风系统对有余热区进行供冷,达到室内要求温度节约能源的设计思路。
1 冬季供冷方式的比较冬季供冷就冷源来划分有许多种方式,应结合工程实际,初投资和运行费用的比较来选择。
1.1 内区单设制冷机的方式:在一些工程设计中,冷水系统是按内、外区划分的,根据内区冷负荷单独选择一台冷水机组,在过渡季及冬季可以独立启动这台机组对内区供冷。
这种方式的特点是:能够较充分的满足内区所需的冷量,达到舒适要求;在夏季该制冷机仍可以与其它冷水机组并联运行,所以对初投资影响不大;但在非夏季仍需运行冷水机组、水泵、冷却塔、冷却塔加热防冻等用电设备,增大了运行费用。
这种系统是目前国内应用最普遍的方式。
与该系统相类似的是四管制的风机盘管水系统,可对各房间或区域供冷(热),温度调节更加灵活,可以满足房间个性化的舒适度要求,但工程量增加了,初投资及运行费用均较高,国内采用的较少。
1.2 利用冷却塔换热供冷:冷水系统内、外区分开设置。
在过渡季或冬季时利用冷却塔循环水与外界冷空气进行热交换实现供冷。
此方法容易使污物进入冷水循环系统,故一般加设热交换器或采用闭式冷却塔。
该系统已在国内的一些工程中采用,其主要特点是:能够利用天然冷源消除余热,室内管路不需增加,节省空间;但同时需要增加换热器、闭式冷却塔及相应循环泵等初投资,另外增加了循环水泵及冷却塔风机的用电;在比较寒冷的地区,冬天的室外管路需要电辅助伴热来防冻。
1.3 直接利用室外冷空气供冷:即把室外的冷空气(新风)作为冷源,通过风机引入内区以消除余热。
带有双风机的全空气系统虽然可以实现新风与回风的任意比例调节(在过渡季节常实现全新风)。
这种系统只适用于大空间或区域负荷特征较简单的场合,且仍应按内、外区划分系统。
国内最常用的空调系统是风机盘管加新风系统。
可以通过增大新风量的方法,对内区直接实现供冷。
此系统有以下优点:(1)初投资增加较小。
仅需要适当放大新风机组型号和新风管尺寸,不需要额外购买其它设备,节省和投资机房空间。
(2)节省运行费用。
充分利用天然冷源,没有增加制冷用电及其附属设备的用电,仅需适当增加通风机的功率。
(3)新风量增加,提高了室内空气品质,减小传染病的传播。
(4)保留了风机盘管加新风系统控制灵活的特点,适用于功能复杂,使用时间变化大及负荷特征复杂的房间;条件受限制情况下,水路系统可以不按内、外区划分,适合房间功能有重大改变的改造工程以及已竣工但运行不理想的工程。
以上是过渡季节与冬季利用新风管道送冷与其他冷源方式送冷的一些比较。
同时,在设计中还需注意与普通新风系统相比较需特殊的地方。
2 设计注意事项2.1 系统的划分原则我们通过对各房间的冷热负荷特性的分析及计算,划分出内区需要供冷的区域,内区的新风系统应该单独设置。
同时空调水系统也最好按内、外区分区设置,有利于日常运行的管理和节能,方便对房间温度的调节。
对于有些建筑物的内区房间过于分散或数量较少,则可考虑不按内、外区划分空调循环水系统。
对于空调改造的工程,由于受空间限制及投资的影响,可考虑内、外区合用新风系统,但应对现有设备进行校核计算并进行相应的改造。