高等数学教案ch8多元函数微分法及其应用
高数多元函数微分学教案 第一讲 多元函数的基本概念

第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。
邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。
多元函数微分法及应用

开区域连同它的边界一起称为闭区域.
例如,{( x, y ) | 1 x y 4}.
2 2
设 E 是平面上的一个非空点集, P 是 E 的一个点, 如果存在点 P 的一个去心邻域不含点集 E 的 点,则称 P 为 E 的孤立点.
多元函数的基本概念(52)
y
o
x
6
对于点集 E 如果存在正数 K ,使一切点 P E 与某一定点 A 间的距离 AP 不超过 K , 即 AP K 对一切 P E 成立,则称 E 为有界点集,否 则称为无界点集. 例如, y
{( x , y ) | 1 x 2 y 2 4}
有界闭区域;
o
x
{( x , y ) | x y 0}
无界开区域.
多元函数的基本概念(52)
7
聚点: 设 E 是平面上的一个点集,P 是平面上
的一个点,如果点 P 的任何一个邻域内总有无 限多个点属于点集 E,则称 P 为 E 的聚点.
特殊地当 n 1, 2, 3 时,便为数轴、平面、 空间两点间的距离; n维空间中邻域、区域等概念:
邻域: U ( P0 ) U ( P0 , ) P | | PP0 | , P R n
内点、边界点、区域、聚点等概念类似.
多元函数的基本概念(52) 11
二元函数:设 D 是平面上的一个点集,如果对于
如果非空点集 E 的点都是内点, 则称 E 为开集 .
例如,
2 2
P
E1 {( x , y ) 1 x y 4}
即为开集.
多元函数的基本概念(52)
E
4
如果点 P 的任一个邻域内既有属 于 E 的点, 也有不属于 E 的点(点 P 本身可以属于 E ,也 可以不属于 E ),则称 P 为 E 的边界点.
大学课件高等数学多元函数微分法及其应用

的 基
显然, E的内点属于E.
本
P3 •
• P1
概
念
(2) 外点 如果存在点P的某个邻域 U(P),
E
使U(P) ∩ E = , 则称P为E的外点.(P2 )
• P2
(3) 边界点 如点P的任一邻域内既有属于E的点,
也有不属于E的点, 称P为E的边界点. (P3 )
E的边界点的全体称为E的边界, 记作 E.
U( P0,δ ) {P PP0 δ, P Rn }.
10
二、多元函数的概念
多
1. 二元函数的定义
元 函
数
(1) 定义
的 基
例 理想气体的状态方程是 pV RT
(R为常数)
本 概
念
其中p为压强, V为体积, T为绝对温度.
如温度T、体积V都在变化, 则压强 p依赖
于T,V 的关系是 p R T V
18
三、多元函数的极限
多
讨论二元函数 z f ( x, y),当x x0 , y y0 ,
元 函
即P( x, y) P0 ( x0 , y0 )时的极限.
数 的 基
怎样描述呢? 回忆: 一元函数的极限
本 概
念
注 (1) P(x, y)趋向于P0(x0, y0)的方向有任意多个,
路径又是多种多样的.
如 {( x, y)1 x2 y2 4}, {( x, y) x y 0}
多
元
都是闭区域 .
函 数
开区域、闭区域与半开半闭区域统称为区域。
的 基
本
但注意:当教材规定了区域为开区域时,
概 念
一般的区域要称一般区域。
有界区域
总可以被包围在一个以原点为中心、 半径
多元函数微分法及其应用.doc

第八章多元函数微分法及其应用一、本章教学目标:1.使学生掌握多元函数的基本概念2.使学生掌握多元函数的微分求解关系3.使学生掌握多元函数各知识点之间的联系二、本章基本要求:1.使学生掌握多元函数连续的计算2.使学生掌握多元函数微分的计算三、本章各节的教学内容:第一节多元函数的基本概念教学内容:①平面点集,n维空间②多元函数的概念③多元函数的极限④多元函数的连续性第二节偏导数教学内容:①偏导数的定义及计算法②高阶偏导数第三节全微分教学内容:①全微分的定义②全微分在近似计算中的应用第四节多元复合函数的求导法则教学内容:①多元复合函数的求导法则第五节隐函数的求导法则教学内容:①一个方程的情形②方程组的情形第六节多元函数微分学的几何应用教学内容:①空间曲线的切线与法平面②曲面的切平面与法线第七节方向导数与梯度教学内容:①方向导数②梯度第八节多元函数的极值及其求法教学内容:①多元函数极值、最大值和最小值②条件极值,拉格朗日乘数法四、本章教学重点:1.使学生掌握多元函数的连续2.使学生掌握多元函数的微分3.使学生掌握多元函数微分学的应用五、本章教学内容的深化和拓宽:使学生深化对多元函数知识点间的联系六、本章教学方式:多媒体七、本章教学过程中应注意的问题:培养学生用发展变化的观点看待问题八、本章主要参考书目:1.同济大学数学教研室主编.1996年.北京:高等教育出版社2.华东师范大学数学系主编.1990年.北京:高等教育出版社3.惠淑荣主编.2002年.北京:中国农业出版社4.李喜霞主编.2003年.北京:中国农业出版社九、本章思考题:1.多元函数极限,连续,可微之间的关系2.多元函数求导的法则及应用3.多元函数微分学及应用§8-1多元函数的基本概念一、区域 1.邻域设0P 是XOY 平面上的一点,δ是一个正数,与点0P 的距离小于δ的点(,)P x y 的全体,称为点0P 的δ邻域。
记作()0,U P δ,即(){}00,U PP PP δδ=<,也就是 ()({}0,,U P x y δδ=<。
第8章-多元函数微分学及其应用 高等数学教学课件

xy2 x2
sin y y2
0
xy2 sin y x
x2 y2
故 lim (x, y)(0,0)
xy2 sin x x2 y2
0.
例5 求下列各极限.
1 lim sin(xy) ;
( x, y)(1,0)
y
2 lim xsin 1 .
( x, y)(0,0)
如果多元函数 f (P)在有界闭区域 D上连续, 则该函数在D上能取得最大值和最小值 .
性质3(介值定理)
如果多元函数 f (P)在有界闭区域 D上连续, 则该函数在D上必取得介于最大值M和最小值m 之间的任何值,即对于∀c[m, M ],∃P0D 使得 f(P0) = c .
lim f (x, y) lim f (0, y) lim0 0.
(x, y)(0,0)
y0
y0
当点P(x, y)沿抛物线y kx2(k 0)趋于点0,0时,
lim
(x, y)(0,0)
f (x, y) lim x0
f
(x, kx2 )
lim x0
x4
kx4 k2x4
k 1 k2
PQ x x0 )2 ( y y0 )2 .
称集合U(P,δ) ={Q(x, y)| |PQ| <δ}为点P的δ邻域.
在xOy平面上, U(P, δ)的几何意义:以点P为圆心、 δ为半径的圆内所有点所构成的集合.
集合U(P, δ)\P称为点P的去心δ邻域, 记作
U P, ,即U P, Q x, y | 0 PQ .
.
此极限值与数k有关,当k的值不同时,极限值也不同.
lim f (x, y)不存在. ( x, y)(0,0)
多元函数微分学的应用

多元函数微分学的应用教案主题:多元函数微分学的应用引言:多元函数微分学是数学分析的重要组成部分,它研究的是多元函数的导数及其在不同情境下的应用。
多元函数微分学的应用广泛涉及到自然科学、工程技术以及经济管理等领域。
本教案将以不同的实际问题为例,通过解析几何、极值、曲线等概念的引入,让学生掌握多元函数微分学的基本知识和应用技巧。
第一节:解析几何及曲线的切线与法线1. 引入解析几何的概念,介绍多元函数与坐标系的关系。
2. 定义多元函数在某点的偏导数,解释其几何意义。
3. 推导多元函数的全微分公式,并解释其意义。
4. 引入曲线的概念,讨论曲线在某点处的切线与法线的几何特性。
5. 通过具体例子,让学生理解切线与法线的应用意义。
第二节:多元函数的极值1. 引入多元函数的极值概念,定义极大值与极小值。
2. 推导多元函数取得极值的必要条件,即驻点的导数为零。
3. 推导多元函数取得极值的充分条件,即驻点的二阶导数的正负性。
4. 通过求解具体的极值问题,让学生掌握多元函数求解极值的方法。
5. 引入拉格朗日乘数法,解决带有约束条件的极值问题。
第三节:函数的Taylor级数与泰勒展开式1. 介绍函数的Taylor级数与泰勒展开式的概念。
2. 推导函数的Taylor级数公式,讨论其收敛性与逼近性质。
3. 通过具体例子,演示函数的泰勒展开式的计算方法。
4. 讨论泰勒展开式在近似计算中的应用,例如在物理问题中的应用。
第四节:二重积分的应用1. 回顾二重积分的概念及计算方法。
2. 引入二重积分在几何与物理问题中的应用,例如求解面积、质量、重心等问题。
3. 通过具体的几何与物理问题,让学生掌握二重积分的应用技巧。
第五节:多元函数的偏导数与偏微分方程1. 引入多元函数的偏导数及其计算方法。
2. 介绍偏微分方程的概念及其解的求解方法。
3. 推导拉普拉斯方程在某点的解析解,并讨论其物理意义。
4. 通过具体例子,让学生理解偏微分方程的应用范围与解题方法。
高等数学下册(第9章)多元函数微分学及其应用教案
高等数学教学教案第9章多元函数微分学及其应用授课序号01),n x 的全体组成的集合称为{(R x n =),n x 称为n 维空间中的一个点,数维空间中任意两点(),,n P x 与),,n Q x 之间的距离为2222(()n n PQ y x y x +-++- 2中的一个平面点集,如果对于每个点D y x ∈),(,变量y x y x f ∈),(),(),n x 或),n x D ∈授课序号02授课序号03授课序号04授课序号05授课序号06设0M 为曲面∑上的一点,若∑上任意一条过点0M 的曲线在点0M 有切线,且这些切线均在同一平面内,则称此平面为曲面∑在点0M 的切平面,称过0M 而垂直于切平面的直线为∑在点0M 的法线. 称法线的方向向量(切平面的法向量)为∑在点0M 的法向量.1.设曲面∑的方程为(),,0=F x y z ,()0000,,M x y z 是曲面∑上的一点,曲面∑上过点()0000,,M x y z 的 切平面的方程为()()()()()()000000000000,,,,,,0x y z F x y z x x F x y z y y F x y z z z -+-+-=. 法线方程为), ,() , ,() , ,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-.2.若曲面方程为(),z f x y =,曲面在点0M 的切平面方程为0000000(,)()(,)()()0x y f x y x x f x y y y z z -+---=, 法线方程为0000000(,)(,)1x y x x y y z z f x y f x y ---==-.三.例题讲解例1 求曲线231,2,3x t y t z t =+⎧⎪=+⎨⎪=+⎩在点()2,3,4处的切线及法平面方程.例2 求曲线2226,x y z x y z ⎧++=⎨++=⎩在点()1,2,1M -处的切线及法平面方程.例3 求椭球面222236x y z ++=在点()1,1,1处的切平面及法线方程.例4 求旋转抛物面221z x y =+-在点()2,1,4处的切平面及法线方程.例5 橄榄球运动是由足球运动派生出来的一项球类运动.因球形似橄榄,中国称为“橄榄球”.橄榄球运动分为英式橄榄球和美式橄榄球两大类.其中英式橄榄球相较于美式橄榄球更大、更短,如图9.22所示.(1)试建立橄榄球的空间曲面方程;(2)求上顶点处的切平面方程.图 9.22授课序号07。
多元函数微分法及其应用第三节多元函数微分法
设函数 的单值连续函数
导数;
则方程组
且有偏导数公式 :
的某一邻域内可唯一确定一组 满足条件
u1(F,G)
u 1(F,G)y J(y,v)
v 1(F,G) 1
Fv
Fu Fv
Gv
Gu Gv
x
J(x,v) x J(u,x) 1 Fu Fu Fv Gu Gu Gv
v 1(F,G) 1
Fv
Fu Fv
y2 x3
f
z y
x1 x
f f
2z y2
1 x
f
x2
2z x2
y2
2z y2
y2 x
f
y2 x
f
0
2 全微分形式不变性
设函数 zf(u,v)具有连续偏导数, 如果 u,v 是自
变量, 则有全微分
dzzduzdv u v
当 u(x,y)、 v(x,y)时, 由于
dzxzdxyzdyu zu xvzxvdx
yexy 2 z ez z 0
x
x
z x
y e xy ez 2
xexy 2 z y
ez
z y
0
z x e xy y e z 2
dz(eyz ex2y)dx(exz ex2y)dy
xe
ye xy ez 2
,
e 2 . dz(eyzex2y)dx(exzex2y)dy
第三节 多元函数微分法
一 复合函数微分法 二 隐函数微分法
单击此处添加副标题
一 复合函数微分法
1 链式法则
定理 如果函数 u(t) 及 v(t)都在点 t
可导, 函数 zf(u,v)在对应点 (u,v) 具有连续偏
高等数学多元函数微分学的应用教案
( ),
则称函数 在点 有极大值(极小值) 。
二元函数的极值问题,首先讨论极值存在的必要条件:
定理1(必要条件)设函数 在点 处偏导数存在,且在点 处有极值,则有 。
证不妨设 在点 处有极大值。依极大值的定义,在点 的某邻域内异于 的点都适合不等式
讨论函数的极值问题时,如果函数在所讨论的区域内具有偏导数,则由定理1可知,极值只可能在驻点处取得。然而,如果函数在个别点处的偏导数不存在,这些点当然不是驻点,但也可能是极值点。例如在例2中,函数 在点(0,0)处的偏导数不存在,但该函数在点(0,0)处却具有极大值。因此,在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,,那末对这些点也应当考虑。
但在很多情形下,将条件极值化为无条件极值并不这么简单。我们另有一种直接寻求条件极值的方法,可以不必先把问题化到无条件极值的问题,这就是下面要介绍的拉格朗日乘数法。
现在我们来寻求函数 在满足条件 下取得极值的必要条件。
拉格朗日乘数法 要求函数 在附加条件 下的极值,可先构造辅助函数
其中 为某一常数,求其对 与 的一阶偏导数,并使之为零,然后与条件 联立
作业:1;3;6;9;10
因此,在上述假定下,求函数的最大值和最小值的一般方法是:将函数 在 内的所有驻点处的函数值及在 的边界上的最大值和最小值相互比较,其中最大的就是最大值,最小的就是最小值。但这种做法,由于要求出 在 的边界上的最大值和最小值,所以往往相当复杂。在通常遇到的实际问题中,如果根据问题的性质,知道函数 的最大值(最小值)一定在 的内部取得,而函数在 内只有一个驻点,那末可以肯定该驻点的函数值就是函数 在 上的最大值(最小值)。
高等数学 第八章 多元函数微分法及其应用 第五节 隐函数的求导法则
Fx dy = . dx Fy
求导公式推导:
隐函数的求导公式
方程 F ( x , f ( x )) ≡ 0两边对 x求导数,得:
Fx dy dy = 0, = . Fx + Fy dx Fy dx
例1 验证方程 x + y 1 = 0 在点 ( 0,1) 的某邻 域内能唯一确定一个可导,且 x = 0 时 y = 1 的隐 函数 y = f ( x ) ,并求这函数的一阶和二阶导 数在 x = 0 的值.
隐函数存在定理 2 (1)设函数 F ( x , y , z )在点 P ( x0 , y0 , z0 ) 的某一邻域内有连续的偏导数, (2) F ( x0 , y0 , z0 ) = 0 ,(3) Fz ( x0 , y0 , z0 ) ≠ 0 ,则 方程 F ( x , y , z ) = 0 在点 P ( x0 , y0 , z0 ) 的某一邻域 内恒能唯一确定一个具有连续偏导数的函数 z = f ( x , y ) ,它满足条 z0 = f ( x0 , y0 ) , 并有
Fx Fv G x Gv 1 (F ,G ) u , = = Fu Fv x J ( x, v ) Gu Gv
Fu Fx v 1 (F ,G ) = = Gu G x x J ( u, x )
Fu Fv Gu Gv
Fy 1 (F ,G ) u = = Gy y J ( y, v )
Fv Gv
Fu
在 J ≠ 0 的条件下,
u y u v x xu + yv v = = = 2 , 2 x y x x x +y y x x u3;y y x
将所给方程的两边对 y 求导,用同样方法得
u xv yu = 2 , 2 y x + y v xu + yv = 2 . 2 y x +y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。