2019秋九年级数学上册用树状图或表格求概率第1课时用树状图或表格求概率学案(新版)北师大版

合集下载

2019秋北师大版九年级数学上册作业课件:第1课时 用树状图或表格求概率

2019秋北师大版九年级数学上册作业课件:第1课时 用树状图或表格求概率

5.如图,电路图上有四个开关 A,B,C,D 和一个小灯泡,闭合开关 D 或同时闭
合开关 A,B,C 都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是 (A )
A.12
B.13
C.14
D.
1 6
6.(2018·聊城)小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好 站在中间的概率是( B )
A.14
B.12
C.13
D.23
知识点:用树状图或表格求概率 1.(2018·广州)甲袋中装有 2 个相同的小球,分别写有数字 1 和 2;乙袋中装有 2 个相同的小球,分别写有数字 1 和 2.从两个口袋中各随机取出 1 个小球,取出的两 个小球上都写有数字 2 的概率是( C ) A.12 B.13 C.14 D.16 2.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区 参加综合实践活动.那么两人选到同一社区参加实践活动的概率是( B ) A.1 B.1 C.1 D.1
第三章 概率的进一步认识
1 用树状图或表格求概率
第1课时 用树状图或表格求概率
九年级上册·数学·北师版
利用_树__状__图___或_表__格____,我们可以不重复、不遗漏地列出所有可能的结果,从而 比较方便地求出某些事件发生的概率.
练习:一个不透明的袋子中放有 2 个红球、2 个白球(红球和白球的形状、材质完 全相同),从中任意摸出 2 个球,恰好是一个红球、一个白球的概率是( D )
解:(1)画树状图得
P(小明胜)=39=13.
(2)画树状图得:
P(小明胜)=1. 6
2369
3.在一个口袋中有 3 个完全相同的小球,把它们分别标号为 1,2,3,从口袋中 随机摸出一个小球记下标号后放回,再随机摸出一个小球记下标号,两次摸出小球的 标号之和等于 4 的概率是( A )

【北师版九年级数学上册教案】3.1第1课时用树状图或表格求概率

【北师版九年级数学上册教案】3.1第1课时用树状图或表格求概率

3.1 用树状图或表格求概率第 1 课时用树状图或表格求概率教课目的1.能运用树状图和列表法计算简单事件发生的概率.2.经历试验、统计等活动过程,在活动中进一步提升学生合作沟通的意识和能力.3.经过自主研究、合作沟通激发学生的学习兴趣,感觉数学的简捷美,及数学应用的宽泛性.教课重难点【教课要点】运用树状图和列表法计算简单事件发生的概率.【教课难点】经过两种求概率方法的选择使用,理解两种方法各自的特色,并能依据不一样情境选择适合的方法 .课前准备课件等 .教课过程一、情境导入 ,生成问题1.某校学生会倡导双休日到养老院参加服务活动,初次活动需要7 位同学参加,现有包含小杰在内的50 位同学报名,所以学生会将从这 50 位同学中随机抽取7 位,小杰被抽到7.参加初次活动的概率是502.将一质地平均的正方体骰子掷一次,察看向上一面的点数,与点数3相差 2的概率是(B)1111A. 2B. 3C.5D.6二、自学互研,生成能力知识模块一研究用树状图或表格求简单随机事件的概率自主研究阅读教材 P60“做一做”前方的内容,而后回答下边的问题:1.这个游戏对三人能否公正?请互相沟通.2.阅读教材P60“议一议”部分内容,达成“议一议”中的三个问题,请互相沟通.合作研究1.分小组达成教材P60“做一做”学习任务.概括结论:经过大批重复试验我们发现,在一般状况下,“一枚正面向上、一枚反面朝上”发生的概率大于其余两个事件发生的概率.所以,这个游戏不公正,它对小凡比较有益.2.深入研究:在上边投掷硬币试验中,(1)投掷第一枚硬币可能出现哪些结果?它们发生的可能性能否同样?(2)投掷第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?(3) 在第一枚硬币正面向上的状况下,第二枚硬币可能出现哪些结果?它们发生的可能性能否同样?假如第一枚硬币反面向上呢?研究领会:因为硬币是平均的,所以投掷第一枚硬币出现“正面向上”和“反面向上”的概率同样.不论投掷第一枚硬币出现如何的结果,投掷第二枚硬币时出现 “正面向上”和“反面向上” 的概率也是同样的. 所以,投掷两枚平均的硬币, 出现的 (正,正 )(正,反 )(反,正)( 反,反 )四种状况是等可能的. 所以,我们能够用下边的树状图或表格表示全部可能出现的结果:第一枚硬币第二枚硬币正反正 (正,正 ) (正,反)反(反,正 )(反,反)此中,小明获胜的结果有一种:(正,正 ). 所以小明获胜的概率是1;小颖获胜的结果4有一种: (反,反 ).所以小颖获胜的概率也是1;小凡获胜的结果有两种: (正,反 )(反,正 ).所42以小凡获胜的概率是4.所以,这个游戏对三人是不公正的.概括结论: 利用树状图或表格, 我们能够不重复, 不遗留地列出全部可能的结果, 进而比较方便地求出某些事件发生的概率.知识模块二 利用树状图或表格求简单事件发生的概率自主研究解答以下问题:1.假如一次试验中,全部可能出现的结果有n 个,并且全部结果出现的可能性同样,那么每个结果出现的概率( B )1D .都 是 nA .都是 1C .不必定相等B .都是 n2.如图,有以下3 个条件:① AC =AB ,② AB ∥CD ,③∠ 1=∠ 2,从这 3 个条件中 任选 2 个作为题设,另1 个作为结论,则构成的命题是真命题的概率是( D )12A . 0B. 3C.3D . 1合作研究典例解说:把大小和形状如出一辙的 6 张卡片分红两组, 每组 3 张,分别标上数字 1,2,3.将这两组卡片分别放入两个盒子中搅匀, 再从中各随机抽取一张, 试求拿出的两张卡片数字之和为偶数的概率 (要求用树状图或列表法求解 ).解:画树状图:由上图可知,全部等可能结果共有 9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.列表以下:9第一组第二组1 2 3 1 (1, 1) (1, 2) (1,3) 2 (2, 1) (2, 2) (2,3) 3(3, 1)(3, 2)(3,3)由上表可知,全部等可能结果共有9 种,此中两张卡片数字之和为偶数的结果有5 种.∴ P(和为偶数 )= 5.9对应练习:1. 达成教材 P 61 随 堂练习.2.在 A 、B 两个盒子都装入写有数字 0、1 的两张卡片,分别从每个盒子里任取1 张卡片,两张卡片上的数字之积为 0 的概率是多少?解法 1:画树状图以下:从 A 盒或 B 盒中任取一张卡片, 上边有数字 0 或 1 的可能性相等, 由树状图能够看出,两张卡片上的数字之积有4 种等可能的结果,此中两数之积为0 的结果有 3 种,于是 P(积3为 0)= 4.解法 2:列表以下:B1[根源学A科 网 Z,X,X,K]0 0 0 11由表可知, 两张卡片上的数字之积共有4 种等可能的结果, 积为 0 的结果有 3 种.所以3P(积为 0)= 4.三、沟通展现,生成新知1.将阅读教材时“生成的问题”和经过“自主研究、合作研究”得出的“结论”展现在各小组的小黑板上. 并将疑难问题也板演到黑板上, 再一次经过小组间就上述疑难问题互相释疑.2.各小组由组长一致分派展现任务,由代表将“问题和结论”展现在黑板上,经过沟通“生成新知” .四、检测反应,达成目标1.在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都同样,随机从中摸出一个球,记下颜色后放回袋子中,充足摇匀后,再随机摸出一个球,两次都摸到黑球的概率是 ( A)1112A. 4B.3C.2D.32.在a24a 4 的空格中,随意填上“+”或“-” ,在所得的代数式中,能够构成完好平方式的概率是( B)111A . 1 B. 2 C.3 D. 43.长城企业为希望小学捐献甲、乙两种品牌的体育器械,甲品牌有A、B、C 三种型号,乙品牌有 D、E 两种型号,现要从甲、乙两种品牌的器械中各选购一种型号进行捐献.将下边所画树状图增补完好.一共有 6 种结果,每种结果出现的可能性同样.那么 A 型号器械被选中的概率为1.3五、课后反省,查漏补缺1.收获:_________________________________________________________2 .存在疑惑:____________________________________________________。

用树状图或表格求概率第1课时课件北师大版九年级数学上册

用树状图或表格求概率第1课时课件北师大版九年级数学上册

(2)抛掷第二枚硬币可能出现哪些结果?它们产生的可能性
是否一样?
探究新知
(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能
出现哪些结果?它们产生的可能性是否一样?如果第一
枚硬币反面朝上呢?
探究新知
探究体会:
由于硬币是均匀的,因此抛掷第一枚硬币出现“正面朝上”和
“反面朝上”的概率相同. 无论抛掷第一枚硬币出现怎样的结果,抛
你认为这个游戏公平吗?
如果不公平,猜猜谁获胜的可能性更大?
探究新知
1.每人抛掷硬币20次,并记录每次实验的结果,根据记录填写
下面的表格:
抛掷的结果
两枚正面朝上
两枚反面朝上
一枚正面朝上、一枚反面朝上
频数
频率
在抛掷硬币时,要注意在一定的高度任意抛出,以保证随机性.
探究新知
2.5个同学为一个小组,把5个人的实验数据汇总,得到小组实验
的概率是
2
4
.
探究新知
因此,这个游戏对三人是不公平的.
利用树状图或表格,我们可以不重复,不遗漏地
列出所有可能的结果,从而比较方便地求出某些事
件产生的概率.
当堂训练
1. 小颖有两件上衣,分别为红色和白色,有两条裤子,
分别为黑色和白色,她随机拿出一件上衣和一条裤
子穿上,恰好是白色上衣和白色裤子的概率是多少?
当堂训练
树状图如下: 上衣

开始

裤子

所有可能出现的结果
(红,黑)

(红,白)

(白,黑)

(白,白)
总共有 4 种等可能的结果,恰好是白色上衣和白色裤子
1
的结果只有一种:(白,白),所以,所求的概率为 .

九年级数学上2 用树状图或表格求概率

九年级数学上2 用树状图或表格求概率

用树状图或表格求概率导学案年级九班级学科数学课题 3.1.2 用树状图或表格求概率第课时总课时编制人使用时间第周星期使用者课堂流程具体内容学习目标学习重点:用树状图和列表法计算涉及两步实验的随机事件发生的概率.学习难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.操作流程学法指导温故知新1.求某个事件发生概率的方法有和.2. 抛骰子时,出现点数为6的概率是多少?3.掷两枚完全相同的硬币,两个都是正面朝上的概率是多少?4. 用树状图或列表法计算概率时的注意事项?(3分钟)合作探究展示评价1.小石、小剪和小布做“石头、剪刀、布”游戏。

游戏规则如下:由小石和小剪做“石头”“剪刀”“布”的游戏,如果两人的手势相同,那么小布获胜,如果两人手势不同那么按照“石头”胜“剪刀”, “剪刀”胜“布”,“布”胜“石头”. 的规则决定小石和小剪中的获胜者.假设小石和小剪每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?2.(2016•陕西)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶、红茶和可乐,抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.(14分钟)承上启下教师引导,共同质疑,破解知识重点、难点.(10分钟)知识应用,查看对新知识的理解程度.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.学生自主参与、合作探究、展示交流并予以评价.课堂检测3.(2017•陕西)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.(8分钟)教师公布答案,统计各题完成情况,衡量教学效果.拓展延伸4.(2018•陕西)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.学生在课后时间完成,然后思考与第2题的异同点,为下一节课做铺垫.教后反思。

北师大版九年级上册数学 第1课时 用树状图或表格求概率第1课时 用树状图或表格求概率教案2(2)

北师大版九年级上册数学      第1课时  用树状图或表格求概率第1课时  用树状图或表格求概率教案2(2)

第三章 概率的进一步认识3.1 用树状图或表格求概率第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?(同学们请认真阅读课本62页及63页的例题讲解部分、特别是树状图的列举)。

九年级数学上册第三章概率的进一步认识 全章学案 新版北师大版

九年级数学上册第三章概率的进一步认识  全章学案 新版北师大版

第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率一、读一读(学习目标)1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。

2. 进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.二、试一试(一)计算涉及两步试验的随机事件发生的概率1.认真阅读课本60页—61页内容并完成下列问题。

(1)现有两组相同的牌,每组两张。

牌面数字分别为1和2. (如右图)从每组牌中各摸出一张,在一次试验中,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸得第二张牌的牌面数字为2呢?要写出解答的过程。

(2)随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是多少?(用两种方法解答)(3)小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?(二)计算涉及两步以上试验的随机事件发生的概率认真阅读课本62页—63页,思考课本中提出的问题。

例1.小明、小颖和小凡做“石头、剪刀、布”游戏。

游戏规则如下:由小明和小颖做“石头、剪刀、布”游戏,如果两个人手势相同,那么小凡胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜拳头”的规则决定小明和小颖中的获胜者。

做一做:例2.小明和小军两人一起做游戏。

游戏规则如下:每人从1,2,…,12中任选一个数,然后两个人各掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数和谁就获胜;如果两个人选择的数都不等于掷得的点数之和;就再做一次上述游戏,直至决出胜负。

如果你是游戏者你会选择哪个数?三、练一练1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.2.随机掷三枚硬币,出现三个正面朝上的概率是___________________3.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。

北师大版九年级上册数学 第1课时 用树状图或表格求概率第1课时 用树状图或表格求概率教案2(2)

第三章 概率的进一步认识3.1 用树状图或表格求概率第1课时 用树状图或表格求概率教 学 目 标教学知识点:学习用树状图和列表法计算随机事件发生的概率.能力训练要求:1.培养学生合作交流的意识和能力;2.提高学生对所研究问题的反思和拓广的能力,逐步形成良好的反思意识.情感与价值观要求:积极参与数学活动,经历成功与失败,获得成功感,提高学习数学的兴趣.重 点 用树状图和列表法计算随机事件发生的概率.难 点 通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学过程:一、创设问题,引入新课游戏:小明对小亮说:“我向空中抛2枚同样的—元硬币,如果落地后一正一反,你给我10元钱,如果落地后两面一样,我给你10元线.”结果小亮欣然答应,请问,你觉得这个游戏公平吗?分析得很好,当然,这只是个数学游戏.教师只是想用此介绍一些概率问题,而国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!下面我们再来看一个游戏. 二、引入新课如果有两组牌,它们的牌面数字分别是1,2,3.那么从每组牌中各摸出一张牌,两张牌的牌面数字和为几的概率最大?两张牌的牌面数字和等于4的概率是多少呢? 小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次,因此牌面数字和等于4的概率最大,概率为93,即31.小颖的做法:通过列下表得到牌面数字和等于4的概率为51.牌面数字的可能值 23456相应的概率 5151 51 51 51]小亮的做法:也用了列表的方法,可我得到牌面数字和等于4的概率为31.第一张牌的牌 面数字第二张 牌的牌面数1 2 3 1 (1,1) (1,2) (1,3) 2 (2,1) (2,2) (2,3) 3(3,1)(3,2)(3,3)你认为谁做得对?说说你的理由.小颖和小亮都用了列表法,而小颖的做法是错误的,小亮的做法是正确的.你认为用列表法求概率时要注意些什么?用列表法求概率时应注意各种情况出现的可能性务必相同.从小亮的表格中你还能获得哪些事件发生的概率呢?用树状图或列表的方法求出:1.将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?2.掷两枚骰子.它们的点数和可能有哪些值?求出点数和为6的概率.探索活动:( 教材P62 例1)小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?(同学们请认真阅读课本62页及63页的例题讲解部分、特别是树状图的列举)。

北师大版九年级上册数学北师大版九年级上册数学 第1课时 用树状图或表格求概率教案1

第三章概率的进一步认识3.1 用树状图或表格求概率第1课时用树状图或表格求概率教学目标1、进一步理解当试验次数较大时试验频率稳定于概率.2、会借助树状图和列表法计算随机事件发生的概率.重点、难点1、借助树状图和列表法计算随机事件发生的概率.2、理解两步及两步以上试验中每步之间的相互独立性,认识试验中所有可能出现的结果及每种结果出现的等可能性.正确应用树状图和列表法计算随机事件发生的概率.3、通过两种求概率方法的选择使用,理解两种方法各自的特点,并能根据不同情境选择适当的方法.教学步骤与流程一、复习提问问题再现:小明和小凡一起做游戏。

在一个装有2个红球和3个白球(每个球除颜色外都相同)的袋中任意摸出一个球,摸到红球小明获胜,摸到白球小凡获胜。

(1)这个游戏对双方公平吗?(2)在一个双人游戏中,你是怎样理解游戏对双方公平的?如果是你,你会设计一个什么游戏活动判断胜负?二、课本做一做(1)每人抛掷硬币20次,并记录每次试验的结果,根据记录填写下面的表格:抛掷的结果两枚正面朝上两枚反面朝上一枚正面朝上、一枚反面朝上频数频率(2)5个同学为一个小组,依次累计各组的试验数据,相应得到试验100次、200次、300次、400次、500次……时出现各种结果的频率,填写下表,并绘制成相应的折现统计图。

试验次数100 200 300 400 500 …两枚正面朝上的次数两枚正面朝上的频率两枚反面朝上的次数两枚反面朝上的频率一枚正面朝上、一枚反面朝上的次数一枚正面朝上、一枚反面朝上的频率(3)由上面的数据,请你分别估计“两枚正面朝上”“两枚反面朝上”“一枚正面朝上、一枚反面朝上”这三个事件的概率。

由此,你认为这个游戏公平吗?三、课本议一议在上面抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样?(2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生可能性是否一样?如果第一枚硬币反面朝上呢?请将各自的试验数据汇总后,填写下面的表格:抛掷第一枚硬币抛掷第二枚硬币正面朝上的次数正面朝上的次数反面朝上的次数反面朝上的次数正面朝上的次数反面朝上的次数表格中的数据支持你的猜测吗?四、例题讲解内容(展示例题):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?目的:通过儿时的游戏,激发学生学习新知的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 概率的进一步认识
3.1 用树状图或表格求概率
第1课时 用树状图或表格求概率
一、读一读(学习目标)
1.学会用树状图和列表法计算涉及两步试验的随机事件发生的概率。

2. 进一步经历用树状图、列表法计算两步以上随机实验的概率的过程.

二、试一试
(一)计算涉及两步试验的随机事件发生的概率
1.认真阅读课本60页—61页内容并完成下列问题。
(1)现有两组相同的牌,每组两张。牌面数字分别为1和2. (如右图)从每组牌中各摸出一张,在一次
试验中,如果摸得第一张牌的牌面数字为1,那么摸第二张牌时,摸得牌面数字为几的可能性大?如果摸
得第二张牌的牌面数字为2呢?要写出解答的过程。

(2)随机掷一枚均匀的硬币两次,至少有一次反面朝上的概率是多少?(用两种方法解答)
(3)小颖有两件上衣,分别是红色和白色,有两条裤子,分别是黑色和白色,她随机拿出一件上衣和一
条裤子穿上,恰好是白色上衣和白色裤子的概率是多少?

(二)计算涉及两步以上试验的随机事件发生的概率
认真阅读课本62页—63页,思考课本中提出的问题。
例1.小明、小颖和小凡做“石头、剪刀、布”游戏。游戏规则如下:
由小明和小颖做“石头、剪刀、布”游戏,如果两个人手势相同,那么小凡胜;如果两人手势不同,
那么按照“石头胜剪刀,剪刀胜布,布胜拳头”的规则决定小明和小颖中的获胜者。

做一做:
例2.小明和小军两人一起做游戏。游戏规则如下:每人从1,2,…,12中任选一个数,然后两个人各
掷一次质地均匀的骰子,谁事先选择的数等于两人掷得的点数和谁就获胜;如果两个人选择的数都不等于
掷得的点数之和;就再做一次上述游戏,直至决出胜负。如果你是游戏者你会选择哪个数?

三、练一练
1.掷一枚均匀的硬币2次,2次抛掷的结果都是正面朝上的概率是_______________.
2.随机掷三枚硬币,出现三个正面朝上的概率是___________________
3.一只箱子里面有3个球,其中2个白球,1个红球,他们出颜色外均相同。(1)从箱子中任意摸出1个
球是白球的概率是_____________.(2)从箱子中任意摸出一个球,不将它放回箱子中,搅均后再摸出1个
球,两次摸出的球都是白球的概率是___________________
4.一个盒子中有1个红球、1个白球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后放回,
再从中随机摸出一个球。求:(1)两次摸到红球的概率;(2)两次摸到不同颜色的球的概率;

5.准备两组相同的牌,每组两张且大小一样,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张牌,
称为一次试验.
(1) 一次试验中两张牌的牌面数字和可能有那些值?
(2)两张牌的牌面数字和为几的概率最大?
(3)两张牌的牌面数字和等于3的概率是多少?
6.甲同学口袋中有三张卡片,分别写着数字1,1,2,乙同学口袋中也有三张卡片,分别写着数字1,2,2.两
人各自从自己的口袋中随机摸出一张卡片,若两人摸出的卡片上的数字之和为偶数则甲胜;否则乙胜。求
甲胜的概率。

7.经过某路口的行人,可能直行,也可能左拐或右拐。假设三种可能性相同。现有两个人经过该路口,
求下列事件的概率:(1)两人都左拐;(2)恰有一人直行,另一人左拐;(3)至少有一人直行。

8.掷两枚质地均匀的骰子,求下列事件的概率:
(1)至少一枚骰子的点数为1; (2)两枚骰子的点数和为奇数;
(3)两枚骰子的点数和大于9 (4)第二枚骰子的点数整除第一枚骰子点数。

9.有三张大小一样而画面不同的画片,先从每一张中间剪开,分成上下两部分;然后把三张画片的上半
部分都放在第一个盒子中,把下半部分都放在第二个盒子中。分别摇匀后,从每个盒子中各取一张,求两
张恰好能拼成原来一幅图的概率。

变式:若剪开后,6张卡片放在一个盒子里,摇匀后,随机地取两张,求这两张恰好能拼出原来一幅图的
概率。
10.准备两组相同的牌,每组三张且大小一样,三张牌的牌面上的数字分别是1.2.3。从每组牌中各摸出
一张牌。
(1)两张牌的牌面数字和等于1的概率是多少?(2)两张牌的牌面数字和等于2的概率是多少?
(3)两张牌的牌面数字和为几的概率最大? (4)两张牌面数字和大于3的概率是多少?

四、记一记
1.用树状图和列表法,可以方便地求出某些事件发生的概率.
2.在借助树状图或表格求某些事件发生的概率时,应注意到各种情况出现的可能性是相同的.

相关文档
最新文档